Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Complex synthetic lethality in cancer

Abstract

The concept of synthetic lethality has been widely applied to identify therapeutic targets in cancer, with varying degrees of success. The standard approach normally involves identifying genetic interactions between two genes, a driver and a target. In reality, however, most cancer synthetic lethal effects are likely complex and also polygenic, being influenced by the environment in addition to involving contributions from multiple genes. By acknowledging and delineating this complexity, we describe in this article how the success rate in cancer drug discovery and development could be improved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polygenic and complex synthetic lethal interactions.
Fig. 2: Necessity, sufficiency and penetrance in polygenic synthetic lethal effects.
Fig. 3: Conditional synthetic lethality.
Fig. 4: Polygenic synthetic lethal interactions that target multiple co-occurring drivers in cancer.
Fig. 5: Exploiting multiple targets to elicit polygenic synthetic lethality.
Fig. 6: Empirical approaches to identifying polygenic synthetic lethal interactions.

Similar content being viewed by others

References

  1. Ryan, C. J., Bajrami, I. & Lord, C. J. Synthetic lethality and cancer—penetrance as the major barrier. Trends Cancer 4, 671–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1919).

    Article  Google Scholar 

  3. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sulahian, R. et al. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. Cell Rep. 29, 118–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McDonald, E. R. III et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Lord, C. J., Quinn, N. & Ryan, C. J. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions. eLife 9, e58925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaa01729 (2018).

    Article  Google Scholar 

  12. Celaj, A. et al. Highly combinatorial genetic interaction analysis reveals a multi-drug transporter influence network. Cell Syst. 10, 25–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wicks, A. J., Krastev, D. B., Pettitt, S. J., Tutt, A. N. J. & Lord, C. J. Opinion: PARP inhibitors in cancer—what do we still need to know? Open Biol. 12, 220118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Brinch, S. A. et al. The tankyrase inhibitor OM-153 demonstrates antitumor efficacy and a therapeutic window in mouse models. Cancer Res. Commun. 2, 233–245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roberts, S. M. & Winston, F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147, 451–465 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ku, A. A. et al. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility. Nat. Commun. 11, 2375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Costanzo, M. et al. Environmental robustness of the global yeast genetic interaction network. Science 372, eabf8424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guenole, A. et al. Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol. Cell 49, 346–358 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Herken, B. W., Wong, G. T., Norman, T. M. & Gilbert, L. A. Environmental challenge rewires functional connections among human genes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.09.552346 (2023).

  23. Rossiter, N. J. et al. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab. 33, 1248–1263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, K. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580, 136–141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327–1335 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182, 481–496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAFV600E inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. El Tekle, G. et al. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us. Trends Cancer 7, 823–836 (2021).

    Article  PubMed  Google Scholar 

  30. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smida, M. et al. MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated. Nat. Commun. 7, 13701 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chandler, R. L. et al. Coexistent ARID1APIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat. Commun. 6, 6118 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Zatreanu, D. et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, J. et al. A first-in-class polymerase θ inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2, 598–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gatenby, R. A. & Brown, J. S. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, a040972 (2020).

    CAS  Google Scholar 

  36. Dietlein, F. et al. A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell 162, 146–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Kelly, M. R. et al. Combined proteomic and genetic interaction mapping reveals new RAS effector pathways and susceptibilities. Cancer Discov. 10, 1950–1967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mencher, S. K. & Wang, L. G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pettitt, S. J. et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 10, 1475–1488 (2020).

  41. Pettitt, S. J. et al. Genome-wide and high-density CRISPR–Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat. Commun. 9, 1849 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunn, S. et al. AKT–mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 41, 5046–5060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Simpson, D., Ling, J., Jing, Y. & Adamson, B. Mapping the genetic interaction network of PARP inhibitor response. Preprint at bioRxiv https://doi.org/10.1101/2023.08.19.553986 (2023).

  46. van Leeuwen, J., Boone, C. & Andrews, B. J. Mapping a diversity of genetic interactions in yeast. Curr. Opin. Syst. Biol. 6, 14–21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deans, R. M. et al. Parallel shRNA and CRISPR–Cas9 screens enable antiviral drug target identification. Nat. Chem. Biol. 12, 361–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ryan, C. J., Mehta, I., Kebabci, N. & Adams, D. J. Targeting synthetic lethal paralogs in cancer. Trends Cancer 9, 397–409 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, J. et al. Computational methods, databases and tools for synthetic lethality prediction. Brief. Bioinform. 23, bbac106 (2022).

    Article  Google Scholar 

  52. De Kegel, B., Quinn, N., Thompson, N. A., Adams, D. J. & Ryan, C. J. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines. Cell Syst. 12, 1144–1159 (2021).

    Article  PubMed  Google Scholar 

  53. Al-Anzi, B. F., Khajah, M. & Fakhraldeen, S. A. Predicting and explaining the impact of genetic disruptions and interactions on organismal viability. Bioinformatics 38, 4088–4099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaaks, P. et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Menden, M. P. et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 10, 2674 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Posch, C. et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl Acad. Sci. USA 110, 4015–4020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuenzi, B. M. et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38, 672–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Astier for initial conversations regarding this article. We also thank the following for funding work in our respective laboratories: C.J.L. and S.J.P. thank Breast Cancer Now as part of program funding to the Breast Cancer Now Toby Robins Research Centre, Cancer Research UK as part of a program grant and the Basser Foundation. C.J.R. thanks the Science Foundation for funding under grant number 20/FFP-P/8641. Figures were generated using BioRender.

Author information

Authors and Affiliations

Authors

Contributions

The concept for this article was conceived by C.J.L. and C.J.R. The article and figures were written and compiled by C.J.L., C.J.R., L.P.S.D. and S.J.P.

Corresponding authors

Correspondence to Colm J. Ryan, Lovely Paul Solomon Devakumar, Stephen J. Pettitt or Christopher J. Lord.

Ethics declarations

Competing interests

C.J.L. makes the following disclosures: he receives and/or has received research funding from AstraZeneca, Merck and Artios; he received consultancy, SAB membership or honoraria payments from Syncona, Sun Pharma, Gerson Lehrman Group, Merck, Vertex, AstraZeneca, Tango, Third Rock, Ono Pharma, Artios, Abingworth, Tesselate, Dark Blue Therapeutics, Pontifax, Astex, NeoPhore and GlaxoSmithKline; he has stock in Tango, Ovibio, Hysplex and Tesselate. C.J.L. is also a named inventor on patents describing the use of DNA-repair inhibitors and stands to gain from their development and use as part of the ICR ‘Rewards to Inventors’ scheme and also reports benefits from this scheme associated with patents for PARPi paid into C.J.L.’s personal account and research accounts at the Institute of Cancer Research. C.J.R., L.P.S.D. and S.J.P. have no competing interests to declare.

Peer review information

Nature Genetics thanks William Sellers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, C.J., Devakumar, L.P.S., Pettitt, S.J. et al. Complex synthetic lethality in cancer. Nat Genet 55, 2039–2048 (2023). https://doi.org/10.1038/s41588-023-01557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01557-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer