Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Telomere biology

Nucleotide metabolism regulates human telomere length via telomerase activation

Telomere length is an important determinant of cellular aging and disease risk, but the genetics of telomere length control in humans is unclear. A genome-wide CRISPR screen has now identified a central role for thymidine nucleotide metabolism in the regulation of telomere length, which has implications for the diagnosis and treatment of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model for the impact of the nucleotide metabolism pathway on telomere lengthening.

References

  1. Greider, C. W. Proc. Natl Acad. Sci. USA 95, 90–92 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertuch, A. A. RNA Biol. 13, 696–706 (2016).

    Article  PubMed  Google Scholar 

  3. Savage, S. A. F1000Res. 7, 524 (2018).

    Article  Google Scholar 

  4. Askree, S. H. et al. Proc. Natl Acad. Sci. USA 101, 8658–8663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gatbonton, T. et al. PLoS Genet. 2, e35 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ungar, L. et al. Nucleic Acids Res. 37, 3840–3849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mannherz, W. & Agarwal, S. Nat. Genet. https://doi.org/10.1038/s41588-023-01339-5 (2023).

    Article  PubMed  Google Scholar 

  8. Li, C. et al. Am. J. Hum. Genet. 106, 389–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Codd, V. et al. Nat. Genet. 53, 1425–1433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tummala, H. et al. Am. J. Hum. Genet. 109, 1472–1483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nandakumar, J. & Cech, T. R. Nat. Rev. Mol. Cell. Biol. 14, 69–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Penev, A., Markiewicz-Potoczny, M., Sfeir, A. & Lazzerini Denchi, E. Trends Cell Biol. 32, 527–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Domínguez-González, C. et al. Ann. Neurol. 86, 293–303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hernandez-Voth, A. et al. BMJ Open Respir. Res. 7, e000774 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy M. Bryan.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryan, T.M. Nucleotide metabolism regulates human telomere length via telomerase activation. Nat Genet 55, 532–533 (2023). https://doi.org/10.1038/s41588-023-01359-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01359-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research