Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank

Abstract

Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Osteoarthritis GWAS study design.
Fig. 2: Fine-mapping of FOXP2 region associated with osteoarthritis in MVP multiancestry analysis.
Fig. 3: Comparison of analytical strategies.
Fig. 4: Summary of osteoarthritis mega-GWAS and transcriptome-wide imputation results.

Similar content being viewed by others

Data availability

The MVP GWAS summary statistics generated and/or analyzed during the current study will be made available via dbGAP; the dbGaP accession assigned to the MVP is phs001672.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v7.p1). Summary statistics from the UKB results are available in the GWAS catalog (https://www.ebi.ac.uk/gwas/home) under the following accessions: GCST90134279, GCST90134280, GCST90134281, GCST90134282, GCST90134283, GCST90134284, GCST90134285, GCST90134286, GCST90134287, GCST90134288, GCST90134289, GCST90134290.

References

  1. Yoon, J., Scott, J. Y., Phibbs, C. S. & Wagner, T. H. Recent trends in Veterans Affairs chronic condition spending. Popul. Health Manag. 14, 293–298 (2011).

    Article  Google Scholar 

  2. Musumeci, G. et al. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int. J. Mol. Sci. 16, 6093–6112 (2015).

    Article  CAS  Google Scholar 

  3. Singh, J. A. & Lewallen, D. Age, gender, obesity, and depression are associated with patient-related pain and function outcome after revision total hip arthroplasty. Clin. Rheumatol. 28, 1419–1430 (2009).

    Article  Google Scholar 

  4. Warner, S. & Valdes, A. The genetics of osteoarthritis: a review. J. Funct. Morphol. Kinesiol. 1, 140–153 (2016).

    Article  Google Scholar 

  5. Castano Betancourt, M. C. et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc. Natl Acad. Sci. USA 109, 8218–8223 (2012).

    Article  Google Scholar 

  6. Evangelou, E. et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis. 73, 2130–2136 (2014).

    Article  CAS  Google Scholar 

  7. Evans, D. S. et al. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis. Ann. Rheum. Dis. 74, 1861–1867 (2015).

    Article  CAS  Google Scholar 

  8. Styrkarsdottir, U. et al. GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nat. Commun. 10, 2054 (2019).

    Article  Google Scholar 

  9. Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 46, 498–502 (2014).

    Article  CAS  Google Scholar 

  10. Valdes, A. M. et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis. Am. J. Hum. Genet. 82, 1231–1240 (2008).

    Article  CAS  Google Scholar 

  11. Zeggini, E. et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815–823 (2012).

    Article  Google Scholar 

  12. Reynard, L. N. & Barter, M. J. Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis Cartilage 28, 275–284 (2020).

    Article  CAS  Google Scholar 

  13. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e17 (2021).

    Article  CAS  Google Scholar 

  14. Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank. Nat. Genet. 51, 230–236 (2019).

    Article  CAS  Google Scholar 

  15. Styrkarsdottir, U. et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 50, 1681–1687 (2018).

    Article  CAS  Google Scholar 

  16. Yau, M. S. et al. Genome-wide association study of radiographic knee osteoarthritis in North American Caucasians. Arthritis Rheumatol. 69, 343–351 (2017).

    Article  Google Scholar 

  17. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  Google Scholar 

  18. Montagne, K. et al. High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: a transcriptome analysis. PLoS ONE 12, e0183226 (2017).

    Article  Google Scholar 

  19. Khan, A. T. et al. Recommendations on the use and reporting of race, ethnicity, and ancestry in genetic research: experiences from the NHLBI TOPMed program. Cell Genomics 2, 100155 (2022).

    Article  CAS  Google Scholar 

  20. Chu, M. L. & Tsuda, T. Fibulins in development and heritable disease. Birth Defects Res. C Embryo Today 72, 25–36 (2004).

    Article  CAS  Google Scholar 

  21. Atef Nassif, M. Fibulin-3 serum and urine levels in the diagnosis and severity assessment of primary knee osteoarthritis. Reumatologia 57, 271–276 (2019).

    Article  Google Scholar 

  22. Runhaar, J., Sanchez, C., Taralla, S., Henrotin, Y. & Bierma-Zeinstra, S. M. Fibulin-3 fragments are prognostic biomarkers of osteoarthritis incidence in overweight and obese women. Osteoarthritis Cartilage 24, 672–678 (2016).

    Article  CAS  Google Scholar 

  23. Saberi Hosnijeh, F., Bierma-Zeinstra, S. M. & Bay-Jensen, A. C. Osteoarthritis year in review 2018: biomarkers (biochemical markers). Osteoarthritis Cartilage 27, 412–423 (2019).

    Article  CAS  Google Scholar 

  24. Bakilan, F. et al. Effects of native type II collagen treatment on knee osteoarthritis: a randomized controlled trial. Eurasian J. Med. 48, 95–101 (2016).

    Article  CAS  Google Scholar 

  25. Bradley, E. W. et al. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis Cartilage 24, 1021–1028 (2016).

    Article  CAS  Google Scholar 

  26. Bennett, D. L. H. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

    Article  CAS  Google Scholar 

  27. Taylor, S. E., Li, Y. H., Wong, W. H. & Bhutani, N. Genome-wide mapping of DNA hydroxymethylation in osteoarthritic chondrocytes. Arthritis Rheumatol. 67, 2129–2140 (2015).

    Article  CAS  Google Scholar 

  28. Arshad, F. & Bishop, N. Osteogenesis imperfecta in children. Bone 148, 115914 (2021).

    Article  CAS  Google Scholar 

  29. Garbazza, C. & Benedetti, F. Genetic factors affecting seasonality, mood, and the circadian clock. Front. Endocrinol. 9, 481 (2018).

    Article  Google Scholar 

  30. Berenbaum, F. & Meng, Q. J. The brain-joint axis in osteoarthritis: nerves, circadian clocks and beyond. Nat. Rev. Rheumatol. 12, 508–516 (2016).

    Article  Google Scholar 

  31. Eisenhauer, J. G. Meta‐analysis and mega‐analysis: a simple introduction. Teach. Stat. 43, 21–27 (2020).

    Article  Google Scholar 

  32. Boedhoe, P. S. W. et al. An empirical comparison of meta- and mega-analysis with data from the ENIGMA Obsessive-Compulsive Disorder Working Group. Front. Neuroinform. 12, 102 (2018).

    Article  Google Scholar 

  33. Zhao, X. et al. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nat. Commun. 11, 5182 (2020).

    Article  CAS  Google Scholar 

  34. Little, A. et al. Whole genome sequence analysis of platelet traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) initiative. Hum. Mol. Genet. 31, 347–361 (2022).

    Article  CAS  Google Scholar 

  35. Sarnowski, C. et al. Impact of rare and common genetic variants on diabetes diagnosis by hemoglobin A1c in multi-ancestry cohorts: the Trans-Omics for Precision Medicine Program. Am. J. Hum. Genet. 105, 706–718 (2019).

    Article  CAS  Google Scholar 

  36. Taub, M. A. et al. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genomics 2, 100084 (2022).

    Article  CAS  Google Scholar 

  37. Davis, J. P. et al. Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet. 13, e1007079 (2017).

    Article  Google Scholar 

  38. Farnaghi, S., Crawford, R., Xiao, Y. & Prasadam, I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int. J. Rheum. Dis. 20, 131–140 (2017).

    Article  CAS  Google Scholar 

  39. Rask-Andersen, M., Karlsson, T., Ek, W. E. & Johansson, A. Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects. Nat. Commun. 10, 339 (2019).

    Article  CAS  Google Scholar 

  40. Bai, W. Y. et al. Integrative analysis of genomic and epigenomic data reveal underlying superenhancer-mediated microRNA regulatory network for human bone mineral density. Hum. Mol. Genet. 30, 2177–2189 (2021).

    Article  CAS  Google Scholar 

  41. Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).

    Article  CAS  Google Scholar 

  42. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).

    Article  CAS  Google Scholar 

  43. Tachmazidou, I. et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am. J. Hum. Genet. 100, 865–884 (2017).

    Article  CAS  Google Scholar 

  44. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).

    Article  CAS  Google Scholar 

  45. Hartley, A. et al. Using multivariable Mendelian randomization to estimate the causal effect of bone mineral density on osteoarthritis risk, independently of body mass index. Int. J. Epidemiol. 51, 1254–1267 (2022).

    Article  Google Scholar 

  46. Funck-Brentano, T., Nethander, M., Moverare-Skrtic, S., Richette, P. & Ohlsson, C. Causal factors for knee, hip, and hand osteoarthritis: a Mendelian randomization study in the UK Biobank. Arthritis Rheumatol. 71, 1634–1641 (2019).

    Article  CAS  Google Scholar 

  47. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  Google Scholar 

  48. Zhu, Z. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 145, 537–549 (2020).

    Article  CAS  Google Scholar 

  49. Ripatti, P. et al. Polygenic hyperlipidemias and coronary artery disease risk. Circ. Genom. Precis. Med. 13, e002725 (2020).

    Article  Google Scholar 

  50. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    Article  CAS  Google Scholar 

  51. Han, X. et al. Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. Eur. J. Epidemiol. 35, 139–146 (2020).

    Article  CAS  Google Scholar 

  52. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 53, 185–194 (2021).

    Article  CAS  Google Scholar 

  53. Gratten, J. & Visscher, P. M. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med. 8, 78 (2016).

    Article  Google Scholar 

  54. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

    Article  CAS  Google Scholar 

  55. Paaby, A. B. & Rockman, M. V. The many faces of pleiotropy. Trends Genet. 29, 66–73 (2013).

    Article  CAS  Google Scholar 

  56. Stearns, F. W. One hundred years of pleiotropy: a retrospective. Genetics 186, 767–773 (2010).

    Article  CAS  Google Scholar 

  57. van den Driest, J. J. et al. Antidepressant and anticonvulsant prescription rates in patients with osteoarthritis: a population-based cohort study. Rheumatology 60, 2206–2216 (2021).

    Article  Google Scholar 

  58. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  Google Scholar 

  59. Yazdani, S., Bansal, R. & Prakash, J. Drug targeting to myofibroblasts: implications for fibrosis and cancer. Adv. Drug Deliv. Rev. 121, 101–116 (2017).

    Article  CAS  Google Scholar 

  60. Bay-Jensen, A. C., Thudium, C. S. & Mobasheri, A. Development and use of biochemical markers in osteoarthritis: current update. Curr. Opin. Rheumatol. 30, 121–128 (2018).

    Article  CAS  Google Scholar 

  61. Yin, H. et al. Metabolomic analysis of biochemical changes in urine of osteoarthritis rat and interventional effects of Bushen-Huoxue herb couple. Chin. Herbal Med. 9, 369–375 (2017).

    Article  Google Scholar 

  62. Valdes, A. M. et al. Association of beta-blocker use with less prevalent joint pain and lower opioid requirement in people with osteoarthritis. Arthritis Care Res. 69, 1076–1081 (2017).

    Article  CAS  Google Scholar 

  63. Singhmar, P. et al. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc. Natl Acad. Sci. USA 113, 3036–3041 (2016).

    Article  CAS  Google Scholar 

  64. Evron, T., Daigle, T. L. & Caron, M. G. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol. Sci. 33, 154–164 (2012).

    Article  CAS  Google Scholar 

  65. Styrkarsdottir, U. et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat. Genet. 49, 801–805 (2017).

    Article  CAS  Google Scholar 

  66. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  CAS  Google Scholar 

  67. Bennell, K. L., Hunter, D. J. & Hinman, R. S. Management of osteoarthritis of the knee. BMJ 345, e4934 (2012).

    Article  Google Scholar 

  68. Whittaker, J. L., Runhaar, J., Bierma-Zeinstra, S. & Roos, E. M. A lifespan approach to osteoarthritis prevention. Osteoarthritis Cartilage 29, 1638–1653 (2021).

    Article  CAS  Google Scholar 

  69. Murphy, L. B. et al. Arthritis among veterans – United States, 2011–2013. MMWR Morb. Mortal. Wkly Rep. 63, 999–1003 (2014).

    Google Scholar 

  70. Stanishewski, M. & Zimmermann, B. Osteoarthritis treatment in the veteran population. Fed. Pract. 32, 21S–25S (2015).

    Google Scholar 

  71. Hinojosa, R. & Hinojosa, M. S. Activity-limiting musculoskeletal conditions in US veterans compared to non-veterans: results from the 2013 National Health Interview Survey. PLoS ONE 11, e0167143 (2016).

    Article  Google Scholar 

  72. Toivanen, A. T. et al. Obesity, physically demanding work and traumatic knee injury are major risk factors for knee osteoarthritis—a population-based study with a follow-up of 22 years. Rheumatology 49, 308–314 (2010).

    Article  Google Scholar 

  73. Lin, D. Y. A simple and accurate method to determine genomewide significance for association tests in sequencing studies. Genet. Epidemiol. 43, 365–372 (2019).

    Article  Google Scholar 

  74. Sobota, R. S. et al. Addressing population-specific multiple testing burdens in genetic association studies. Ann. Hum. Genet. 79, 136–147 (2015).

    Article  CAS  Google Scholar 

  75. Asif, H. et al. GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. Mol. Psychiatry 26, 2048–2055 (2021).

    Article  CAS  Google Scholar 

  76. Chen, Z., Boehnke, M., Wen, X. & Mukherjee, B. Revisiting the genome-wide significance threshold for common variant GWAS. G3 11, jkaa056 (2021).

    Article  Google Scholar 

  77. Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).

    Article  CAS  Google Scholar 

  78. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article  CAS  Google Scholar 

  79. Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  Google Scholar 

  80. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  Google Scholar 

  81. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  Google Scholar 

  82. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  Google Scholar 

  83. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  Google Scholar 

  84. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

    Article  CAS  Google Scholar 

  85. Kichaev, G. et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics 33, 248–255 (2017).

    Article  CAS  Google Scholar 

  86. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  Google Scholar 

  87. Kichaev, G. PAINTOR running software and suggested pipeline: https://github.com/gkichaev/PAINTOR_V3.0/wiki/3.-Running-Software-and-Suggested-Pipeline (2017).

  88. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  89. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using summary statistics. Nat. Genet. 52, 458–462 (2020).

    Article  CAS  Google Scholar 

  90. Sakaue, S. & Okada, Y. GREP: Genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Tindal, a medical student in the McDonald laboratory at UAB, for assistance with manuscript editing, and C. Cole, a summer student in the McDonald laboratory at UAB, for assistance with formatting data. We thank the VA MVP, including members of the MVP Executive Committee, MVP Recruitment/Enrollment, MVP Science and current MVP Local Site Investigators, for providing the datasets used for the MVP analyses. We also thank the UKB for providing the datasets used for the UKB analyses. Please see the Supplementary Note for complete acknowledgement information. This research was based on data from the MVP, Office of Research and Development, Veterans Health Administration, and was supported by award no. I01RX002745 (M.M.B. and J.A.S.). This publication does not represent the views of the Department of Veteran Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to this manuscript. M.-L.N.M., J.S.R., R.D., V.J., C.J.B., H.K.T., M.M.B. and J.A.S. conceived and designed the study. P.L.K., V.S., A.N., A.P.R., S.A.P. and A.C.W. executed and summarized analyses. J.C. summarized analyses. H.K.T. and S.P. advised on statistical models and computational implementation. M.-L.N.M. wrote and revised the manuscript, which all authors reviewed and edited.

Corresponding author

Correspondence to Merry-Lynn N. McDonald.

Ethics declarations

Competing interests

All authors declare competing financial interests in the form of employment at UAB and/or US Veterans Health Administration. M.-L.N.M., J.C.R., R.D., C.J.B., S.P., H.K.T., J.A.S. and M.M.B. have received research support from the National Institutes of Health. J.A.S. has received consultant fees from Crealta/Horizon, Medisys, Fidia, UBM LLC, Trio health, Medscape, WebMD, PK Med, Two labs Inc., Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, Practice Point communications, the National Institutes of Health and the American College of Rheumatology. J.A.S. has received institutional research support from Zimmer Biomet Holdings. J.A.S. received food and beverage payments from Intuitive Surgical Inc./Philips Electronics North America. J.A.S. owns stock options in TPT Global Tech, Vaxart Pharmaceuticals, Atyu Biopharma, Adaptimmune Therapeutics, GeoVax Labs, Pieris Pharmaceuticals, Enzolytics Inc., Seres Therapeutics, Tonix Pharmaceuticals Holding Corp. and Charlotte’s Web Holdings, Inc. J.A.S. previously owned stock options in Amarin, Viking and Moderna pharmaceuticals. J.A.S. is on the speakers’ bureau of Simply Speaking. J.A.S. is a member of the executive of Outcomes Measures in Rheumatology, an organization that develops outcome measures in rheumatology and receives arms-length funding from 12 companies. J.A.S. serves on the FDA Arthritis Advisory Committee. J.A.S. is the chair of the Veterans Affairs Rheumatology Field Advisory Committee. J.A.S. is the editor and the Director of the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis. J.A.S. previously served on the following committees: member of the American College of Rheumatology (ACR) Annual Meeting Planning Committee and Quality of Care Committees, Chair of the ACR Meet-the-Professor, Workshop and Study Group Subcommittee, and cochair of the ACR Criteria and Response Criteria subcommittee.

Peer review

Peer review information

Nature Genetics thanks Unnur Styrkarsdottir and Fernando Rivadeneira for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–12.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, ML.N., Lakshman Kumar, P., Srinivasasainagendra, V. et al. Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank. Nat Genet 54, 1816–1826 (2022). https://doi.org/10.1038/s41588-022-01221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01221-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing