Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility

Subjects

Abstract

Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn’s disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Odds ratio and MAF for exome-wide significant findings that are not tagging stronger, established noncoding association signals.
Fig. 2: Schematic representation of inflamed mucosa showing the mesenchymal-related genes with newly identified mutations.

Similar content being viewed by others

Data availability

We describe all datasets in the manuscript or its Supplementary Information. Genome Reference Consortium Human Build 38 can be accessed at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40/. Sequence data used in this study have been made publicly available in dbGaP Study Accession: phs001642.v1.p1, Center for Common Disease Genomics (CCDG), Autoimmune: Inflammatory Bowel Disease (IBD) Exomes and Genomes (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001642.v1.p1). The summary statistics of Nextera and Twist meta-analysis have been deposited on GitHub (https://github.com/iibdgc/Crohn-s-Disease-WES-meta) (https://doi.org/10.5281/zenodo.6564928). This research has been conducted using the UK Biobank Resource and controls made publicly available by dbGaP (phs001000.v1.p1, phs000806.v1.p1, Myocardial Infarction Genetics Consortium (MIGen); phs000401.v1.p1, NHLBI GO-ESP Project; phs000298.v4.p3, Autism Sequencing Consortium (ASC); phs000572.v8.p4, Alzheimer’s Disease Sequencing Project (ADSP); phs001489.v1.p1, Epi25 Consortium; phs001095.v1.p1, T2D-GENES) as well as additional controls from the 1000 Genomes Project, the Epi25 Collaborative, UK-Ireland Collaborators (A. McQuillin, D. Blackwood, A. McIntosh), and collaborators A. Pulver, H. Ostrer, D. Chung, M. Hiltunen and A. Palotie (H2000 and SUPER cohorts) (Supplementary Table 1).

Code availability

The software and code used are described throughout the Methods and can be found at https://github.com/iibdgc/Crohn-s-Disease-WES-meta (https://doi.org/10.5281/zenodo.6564928).

References

  1. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo, Y. et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49, 186–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rivas, M. A. et al. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis. Nat. Commun. 7, 12342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rivas, M. A. et al. Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genet. 14, e1007329 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Beaudoin, M. et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 9, e1003723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leshchiner, E. S. et al. Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proc. Natl Acad. Sci. USA 114, 11392–11397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sivanesan, D. et al. IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafficking. J. Biol. Chem. 291, 8673–8685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohanan, V. et al. C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359, 1161–1166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glocker, E.-O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koliaraki, V., Prados, A., Armaka, M. & Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. 21, 974–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Kurashima, Y. et al. Mucosal mesenchymal cells: secondary barrier and peripheral educator for the gut immune system. Front. Immunol. 8, 1787 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Thomson, C. A., Nibbs, R. J., McCoy, K. D. & Mowat, A. M. Immunological roles of intestinal mesenchymal cells. Immunology 160, 313–324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koliaraki, V., Pallangyo, C. K., Greten, F. R. & Kollias, G. Mesenchymal cells in colon cancer. Gastroenterology 152, 964–979 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Li, C. & Kuemmerle, J. F. The fate of myofibroblasts during the development of fibrosis in Crohn’s disease. J. Dig. Dis. 21, 326–331 (2020).

    Article  PubMed  CAS  Google Scholar 

  22. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi, Y. et al. PDLIM5 inhibits STUB1-mediated degradation of SMAD3 and promotes the migration and invasion of lung cancer cells. J. Biol. Chem. 295, 13798–13811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maier, J. I. et al. EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Rep. 34, 108883 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Yuda, A., Lee, W. S., Petrovic, P. & McCulloch, C. A. Novel proteins that regulate cell extension formation in fibroblasts. Exp. Cell. Res. 365, 85–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Pompili, S., Latella, G., Gaudio, E., Sferra, R. & Vetuschi, A. The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall. Front. Med. 8, 610189 (2021).

    Article  Google Scholar 

  27. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Treveil, A. et al. Regulatory network analysis of Paneth cell and goblet cell enriched gut organoids using transcriptomics approaches. Mol. Omics 16, 39–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Kaser, A. & Blumberg, R. S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21, 156–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, M. & Wu, C. The relationship between intestinal goblet cells and the immune response. Biosci. Rep. 40, BSR20201471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. Function and dysfunction of plasma cells in intestine. Cell Biosci. 9, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Boucher, G. et al. Serum analyte profiles associated with Crohn’s disease and disease location. Inflamm. Bowel Dis. https://doi.org/10.1093/ibd/izab123 (2021).

    Article  PubMed Central  Google Scholar 

  33. Yang, J., Dai, C. & Liu, Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J. Am. Soc. Nephrol. 16, 68–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Hudry-Clergeon, H., Stengel, D., Ninio, E. & Vilgrain, I. Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3′-kinase. FASEB J. 19, 512–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Meran, L., Baulies, A. & Li, V. S. W. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017, 7970385 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sobhani, I. et al. Raised concentrations of platelet activating factor in colonic mucosa of Crohn’s disease patients. Gut 33, 1220–1225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chakravarty, V. et al. Prolonged exposure to platelet activating factor transforms breast epithelial cells. Front. Genet. 12, 634938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knezevic, I. I. et al. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J. Biol. Chem. 284, 5381–5394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jang, M. H. et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Chamaillard, M. et al. Gene–environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc. Natl Acad. Sci. USA 100, 3455–3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, W. et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat. Genet. 52, 634–639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pariente, B. et al. Treatments for Crohn’s disease-associated bowel damage: a systematic review. Clin. Gastroenterol. Hepatol. 17, 847–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Festen, E. A. M. et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet. 7, e1001283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Birkl, D. et al. TNFα promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunol. 12, 909–918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cromer, W. E., Mathis, J. M., Granger, D. N., Chaitanya, G. V. & Alexander, J. S. Role of the endothelium in inflammatory bowel diseases. World J. Gastroenterol. 17, 578–593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gommerman, J. L., Rojas, O. L. & Fritz, J. H. Re-thinking the functions of IgA+ plasma cells. Gut Microbes 5, 652–662 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stone, R. C. et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365, 495–506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fukushima, T., Uchiyama, S., Tanaka, H. & Kataoka, H. Hepatocyte growth factor activator: a proteinase linking tissue injury with repair. Int. J. Mol. Sci. 19, 3435 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  51. Waseda, M., Arimura, S., Shimura, E., Nakae, S. & Yamanashi, Y. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22. Biochem. Biophys. Res. Commun. 478, 135–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Cooke, J. et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 2128–2137 (2012).

    Article  PubMed  Google Scholar 

  53. Rhodes, J. Erythrocyte rosettes provide an analogue for Schiff base formation in specific T cell activation. J. Immunol. 145, 463–469 (1990).

    CAS  PubMed  Google Scholar 

  54. Celis-Gutierrez, J. et al. Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO J. 33, 1928–1940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mucha, S. et al. Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression. J. Allergy Clin. Immunol. 145, 1208–1218 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Tamehiro, N. et al. T-cell activation RhoGTPase-activating protein plays an important role in TH17-cell differentiation. Immunol. Cell Biol. 95, 729–735 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Duke-Cohan, J. S. et al. Regulation of thymocyte trafficking by Tagap, a GAP domain protein linked to human autoimmunity. Sci. Signal. 11, eaan8799 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Medrano, L. M. et al. Expression patterns common and unique to ulcerative colitis and celiac disease. Ann. Hum. Genet. 83, 86–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, J. et al. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat. Commun. 11, 1913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark, S. E. & Weiser, J. N. Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect. Immun. 81, 392–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lv, X.-X. et al. Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice. Oncotarget 8, 74720–74735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, G. et al. Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunol. 12, 862–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Ochoa, D. et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  64. Blumert, C. et al. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC. J. Proteomics 94, 370–386 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. You, K. et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science 371, eabb6896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujimori, T. et al. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation. Genes Cells 22, 684–698 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Meunier, L., Usherwood, Y.-K., Chung, K. T. & Hendershot, L. M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanafusa, K., Wada, I. & Hosokawa, N. SDF2-like protein 1 (SDF2L1) regulates the endoplasmic reticulum localization and chaperone activity of ERdj3 protein. J. Biol. Chem. 294, 19335–19348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sasako, T. et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat. Commun. 10, 947 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Autschbach, F., Funke, B., Katzenmeier, M. & Gassler, N. Expression of chemokine receptors in normal and inflamed human intestine, tonsil, and liver—an immunohistochemical analysis with new monoclonal antibodies from the 8th international workshop and conference on human leucocyte differentiation antigens. Cell. Immunol. 236, 110–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. McNamee, E. N. et al. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn’s-like murine ileitis. J. Leukoc. Biol. 97, 1011–1022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murugan, D. et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J. Clin. Immunol. 34, 331–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Pils, M. C. et al. Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur. J. Immunol. 40, 443–448 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Qu, X. et al. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation during experimental autoimmune encephalomyelitis development. J. Neuroinflammation 16, 183 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Thompson, M. G. et al. FOXO3-NF-κB RelA protein complexes reduce proinflammatory cell signaling and function. J. Immunol. 195, 5637–5647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Badran, Y. R. et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214, 1937–1947 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tian, B. et al. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. J. Biol. Chem. 293, 16528–16545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet. 40, 1107–1112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Agrotis, A., Pengo, N., Burden, J. J. & Ketteler, R. Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy 15, 976–997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Finisguerra, V. et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 522, 349–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stakenborg, M. et al. Neutrophilic HGF-MET signaling exacerbates intestinal inflammation. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjaa121 (2020).

  85. Kanayama, M. et al. Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G230–G239 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Tahara, Y. et al. Hepatocyte growth factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J. Pharmacol. Exp. Ther. 307, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free estimation of recent genetic relatedness. Am. J. Hum. Genet. 98, 127–148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Venkataraman, G. R., Yuan, K. & Huang, H. Crohn’s disease WES meta-analysis [Computer software]. Zenodo https://doi.org/10.5281/zenodo.6564928 (2022)

  91. Pasvol, T. J. et al. Incidence and prevalence of inflammatory bowel disease in UK primary care: a population-based cohort study. BMJ Open 10, e036584 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nakata, T. et al. A missense variant in SLC39A8 confers risk for Crohn’s disease by disrupting manganese homeostasis and intestinal barrier integrity. Proc. Natl Acad. Sci. USA 117, 28930–28938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, D. et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology 151, 724–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Sunuwar, L. et al. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight 5, e140978 (2020).

    Article  PubMed Central  Google Scholar 

  95. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE 10, e0122271 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the principal investigators, local staff from individual cohorts and all of the patients who kindly donated samples used in the study for making possible this global collaboration and resource to advance IBD genetics research. This research was funded in whole, or in part, by the US National Institutes of Health grants no. U54HG003067 and no. 5UM1HG008895, the Wellcome Trust grants no. 206194 and no. 108413/A/15/D, and The Leona M. & Harry B. Helmsley Charitable Trust grant no. 2015PG-IBD001. We thank the Broad Institute Genomics Platform for genomic data generation efforts and the Stanley Center for Psychiatric Research at the Broad Institute for supporting control sample aggregation. M.A.R. is in part supported by the NHGRI of the NIH under award no. R01HG010140 and an NIH Center for Multi- and Trans-ethnic Mapping of Mendelian and Complex Diseases grant (no. 5U01HG009080). H.H. acknowledges support from NIDDK grant no. K01DK114379, grant no. P30DK043351 and the Stanley Center for Psychiatric Research. H.S.W. receives philanthropic support from Martin Schlaff, James Brooks and the B. Hasso Family Foundation. H.H.U. and A. Sazonovs. are supported by the NIHR Oxford Biomedical Research Centre and by The Leona M. and Harry B. Helmsley Charitable Trust. A.P. is in part supported by the Academy of Finland Centre of Excellence in Complex Disease Genetics grants no. 312074 and no. 336824. Individual studies contributing to this meta-analysis acknowledge support from NIH grants no. DK062431, no. DK062432, no. DK087694, no. K23DK117054, no. R01DK111843, no. P01DK094779, no. R01HG010140, no. 5U01HG009080 and no. DK062420, and NIDDK grants no. P01DK046763, no. U01DK062413 and no. R01DK104844.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.H., C.A.A. and M.J.D. designed and supervised the study. C.R.S., H.H., C.A.A. and M.J.D. were responsible for project management. A. Sazonovs, G.R.V., K.Y., B.A., A.D., T.G., D.G., V.I., J.T.K., D.L.R., M. Solomonson, M.A.R., H.H., C.A.A. and M.J.D. performed data analysis. M.T.A., T.A., M.A., A.N.A., G.A., A. Baras, A. Beecham, A. Bitton, J.C.B., N.B., L.B., C.N.B., B.B., A.C., D.C., I.C., J. Cho, J. Cosnes, D.J.C., O.M.D., L.W.D., N.D., M.D., E.E., L.F., M. Farkkila, M. Ferreira, W.F., D.F., M. Georges, M. Giri, K.G., B.G., S.G., P.G., E.H., T.H., G.A.H., M. Hiltunen, M. Hoeppner, J.E.H., P.I., C.J., J. Kelsen, J. Kupcinskas, H.K., B.S.K., K.K., J.T.K., S.K., C.A.L., M.L., C. Lévesque, C. Liefferinckx, A.P.L., J.D.L., B.-S.L., E.L., J.M., S.M., J.L.M., E.M., M.M., P.M., C.J.M., R.D.N., S.O., D.T.O., B.O., H.O., A.P., J. Paquette, J. Pekow, I.P., M.J.P., C.Y.P., N. Pontikos, N. Prescott, A.E.P., S.R., P. Saavalainen, P. Seksik, B.S., R.B.S., E.R.S., S.S., L.P.S., A.W.S., R.S., S.Z.S., M.S.S., A. Simmons, J.S., H. Sokol, H. Somineni, D.S., S.T., D.T., H.H.U., A.E.V., S. Vermeire, S. Verstockt, M.D.V., H.S.W., J.Y., R.H.D., A.F., S.R.B., R.K.W., M.P., R.J.X., J.D.R. and D.P.B.M. were responsible for recruitment, clinical phenotyping, analysis and/or leadership of a contributing study. S.D. and S.B.G. performed sequencing technology development. A. Sazonovs, C.R.S., G.R.V., K.Y., S.R.B., J.D.R., D.P.B.M., H.H., C.A.A. and M.J.D. wrote the manuscript.

Corresponding authors

Correspondence to Hailiang Huang, Carl A. Anderson or Mark J. Daly.

Ethics declarations

Competing interests

A. Baras., M. Ferreira., J.E.H. and D.S are current or former employees and/or stockholders of Regeneron Genetics Center or Regeneron Pharmaceuticals. M.A. is consulting for or part of the advisory board for AbbVie Inc., Bellatrix Pharmaceuticals, Bristol Myers Squibb, Eli Lilly Pharmaceuticals, Gilead, Janssen Ortho, LLC, and Prometheus Biosciences; and teaching, lecturing or speaking at Alimentiv, Arena Pharmaceuticals, Janssen, Prime CME, Takeda Pharmaceuticals. A.B. is an employee of Regeneron and owns stock in Regeneron. O.M.D. has served in the IBD fellowship funding committee for Pfizer and has a funded research project by Pfizer. H.K. receives grant funding from Takeda and Pfizer and has received consulting fees from Takeda. A.P. is a member of Astra Zenecas Genomics Advisory Board. M.A.R. is on the SAB of 54gene and has advised BioMarin, Third Rock Ventures, MazeTx and Related Sciences. G.A.H. is an employee of Takeda, former employee of AbbVie and owns stock in Takeda and AbbVie. C.A.L. reports grants from Genentech, grants and personal fees from Janssen, grants and personal fees from Takeda, grants from AbbVie, personal fees from Ferring, grants from Eli Lilly, grants from Pfizer, grants from Roche, grants from UCB Biopharma, grants from Sanofi Aventis, grants from Biogen IDEC, grants from Orion OYJ, personal fees from Dr Falk Pharma and grants from AstraZeneca, outside the submitted work. H.H.U. reports research collaboration or consultancy with Janssen, Eli Lilly, UCB Pharma, Celgene, MiroBio, OMass and Mestag. D.P.B.M. has consulted for Takeda, Boehringer Ingelheim, Palatin Technologies, Bridge Biotherapeutics, Pfizer and Gilead. M.P. received an unrestricted research grant from Pfizer UK and speaker fees from Janssen. P.I. received lecture fees from AbbVie, BMS, Celgene, Celltrion, Falk Pharma, Ferring, Galapagos, Gilead, MSD, Janssen, Pfizer, Takeda, Tillotts, Sapphire Medical, Sandoz, Shire and Warner Chilcott; financial support for research from Celltrion, MSD, Pfizer and Takeda; advisory fees from AbbVie, Arena, Boehringer Ingelheim, BMS, Celgene, Celltrion, Genentech, Gilead, Hospira, Janssen, Lilly, MSD, Pfizer, Pharmacosmos, Prometheus, Roche, Sandoz, Samsung Bioepis, Takeda, Topivert, VH2, Vifor Pharma and Warner Chilcott. Cedars-Sinai and D.P.B.M. have financial interests in Prometheus Biosciences, a company which has access to the data and specimens in Cedars-Sinais MIRIAD Biobank (including the Cedars-Sinai data and specimens used in this study) and seeks to develop commercial products. H.H. has received consultancy fees from Ono Pharmaceutical and honoraria from Xian Janssen Pharmaceutical. C.A.A. has received consultancy fees from Genomics plc and BridgeBio Inc. and lecture fees from GSK. M.J.D. is a founder of Maze Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Reedik Mägi, Yukihide Momozawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of the study design.

We utilized a logistic mixed-model for the association analysis, followed by meta-analyses to combine multiple cohorts. Multiple cohorts serve the purpose of replication. Two large cohorts at Broad Institute of different exome capture platforms were used to discover candidate variants (Nextera WES and Twist WES). Two independent cohorts at Sanger (Sanger WGS and Sanger WES) and one Kiel/Regeneron cohort (Regeneron WES) were used to replicate the findings.

Extended Data Fig. 2 Quality control procedures applied in the Broad sequencing pipeline.

We show as an example the quality control steps performed on variants and subjects from the Broad sequencing platform. Quality controls performed on data from other platforms follow a similar plan and are described in Methods. Quality control steps using external information from gnomAD were colored green. Thresholds and details can be found in Methods.

Extended Data Fig. 3 QQ plots for Nextera and Twist discovery cohorts.

Only QC passed variants with minor allele frequency in NFE between 0.0001 and 0.10 were included. a, all variants. b, non-synonymous variants. c, synonymous variants. In a and b, the y axis is capped at -log10 p = 30 while the top four variants (three in NOD2 and one in IL23R) have -log10 p > 100. In c, to remove the synonymous variants that tag causal non-synonymous variants and artifacts through LD, we removed loci hosting large-effect coding variants (IL23R, NOD2, LRRK2, TYK2, ATG16L1, SLC39A8, PTGER4, IRGM, CARD9), implicated by variants removed in the heterogeneous test (AHNAK2, LILRA), and with long range LD (MHC).

Extended Data Fig. 4 Power to detect single variant associations.

We performed a series of power calculations using the methodology described by Johnson and Abecasis (2017). Our initial ‘exome-wide scan’ (two cohorts) had fewer samples and a more lenient significance threshold than subsequent meta-analysis (five cohorts). However, both analyses had similar power to detect true associations at their respective significance levels. Our single-variant association analyses did not have the power to uncover association to variants with a MAF = 0.0001 and below (unless the variant has a very strong effect, for example 0.76 power at OR = 8). Similarly, the exome-wide scan had limited power to detect association to variants with a MAF = 0.001 and OR < 2, but was well-powered above these thresholds. a, Power of the exome-wide scan analysis b, Power of the meta-analysis. c, Power to detect single-variant associations at different minor allele frequencies at α = 0.0002 (‘scan’; dashed lines) and 3 ×10-7 (‘meta’; solid lines) and assuming Crohn’s disease population prevalence of 276 in 100,000, and an additive effect model.

Extended Data Fig. 5 Relation to known IBD associations.

Numbers in brackets are the number of variants assigned to the categories out of the 45 exome-wide significant variants.

Extended Data Fig. 6 WES variants from this study implicating known IBD loci.

a-c: a novel CD variant implicating TAGAP. d-g: CD variants tagging fine-mapped IBD associations in LRRK2. a and d, P-value for variants from the fine-mapping study5. b and e, PIP from fine-mapping. c, f and g, P-value for variants from this study. Open circle indicating LD information is missing. LD calculated between the plotted variant and the best variant in b for panel c, and variants with best PIP in credible sets 1 and 2 (panel e) respectively for panels f and g.

Extended Data Fig. 7 Nextera and Twist callset population assignment.

Principal components for a, c, before removing non-European samples for Twist and Nextera respectively. b, d, after removing non-European samples for Twist and Nextera respectively. Principal components generated from the 1000 Genome Project Phase III data and different colors stand for different continental / superpopulations. Study subjects (black dots) were projected onto principal components.

Supplementary information

Supplementary Information

Details of individuals participating in IBD cohorts. Supplementary acknowledgments of participating consortia and programs.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–8.

Supplementary Data 1

Principal components for subjects in the Nextera and Twist cohorts. Cases and controls are plotted as on the first two principal components for exome-wide significant CD variants. Carriers of the minor alleles are highlighted for cases and controls, respectively.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazonovs, A., Stevens, C.R., Venkataraman, G.R. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat Genet 54, 1275–1283 (2022). https://doi.org/10.1038/s41588-022-01156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01156-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing