Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum

Abstract

Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phenotypes, karyotypes and genomic features of S. spontaneum AP85-441 and Np-X.
Fig. 2: The evolution of PdCPs.
Fig. 3: The higher chromatin structure, synonymous base substitution rates and allelic expression of the S. spontaneum Np-X genome.
Fig. 4: The evolution of Saccharum.
Fig. 5: Gene families associated with crucial biological traits in sugarcane.
Fig. 6: Genetic relationships among S. spontaneum populations.
Fig. 7: Population evolution in S. spontaneum.

Similar content being viewed by others

Data availability

All raw sequencing data and assembled genome sequences for the S. spontaneum were deposited into the Sequence Read Archive (under BioProject accession PRJNA721787). Genome assemblies and annotation files of S. officinarum (LA-Purple) are available from NCBI with the same accession number and under Bioproject accession PRJNA744175.

Code availability

All public software used in this study is provided in the accompanying Nature Research Reporting Summary.

References

  1. Masterson, J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Irvine, J. E. Saccharum species as horticultural classes. Theor. Appl. Genet. 98, 186–194 (1999).

    Article  Google Scholar 

  3. Piperidis, N. & D’Hont, A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. 103, 2039–2051 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Garsmeur, O. et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 9, 2638 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Souza, G. M. et al. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. GigaScience 8, giz129 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    Article  CAS  Google Scholar 

  9. Braz, G. T., Yu, F., do Vale Martins, L. & Jiang, J. in In Situ Hybridization Protocols (eds. Nielsen, B. S. & Jones, J.) 71–83 (Springer, 2020).

  10. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat. Commun. 11, 5442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, C. et al. Comparative analysis of Miscanthus and Saccharum reveals a shared whole-genome duplication but different evolutionary fates. Plant Cell 26, 2420–2429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. The Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol. 3, 20 (2005).

    Article  PubMed Central  CAS  Google Scholar 

  19. Wang, X., Tang, H. & Paterson, A. H. Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23, 27–37 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ouyang, S. et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883–D887 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Dong, Q. et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Fujino, K. et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol. Genet. Genomics 279, 499–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujita, D. et al. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc. Natl. Acad. Sci. USA 110, 20431–20436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takai, T. et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3, 2149 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kubo, F. C., Yasui, Y., Kumamaru, T., Sato, Y. & Hirano, H.-Y. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number. Genes Genet. Syst. 91, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, J., Luo, H., Jiang, Y., Yang, X. & Zha, R. Gene mapping for rice narrow leaf mutant Narrow leaf 11 (nal11). J. South. Agric. 48, 1133–1138 (2017).

    CAS  Google Scholar 

  29. Imbrie, J. et al. in Milankovitch and Climate Part 1 (eds Berger A. L. et al.) 269–305 (D. Reidel, 1984).

  30. Martinson, D. G. et al. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  31. Sarnthein, M. & Tiedemann, R. Younger Dryas-style cooling events at glacial terminations I-VI at ODP site 658: associated benthic δ13C anomalies constrain meltwater hypothesis. Paleoceanography 5, 1041–1055 (1990).

    Article  Google Scholar 

  32. Szabo, B. J., Ludwig, K. R., Muhs, D. R. & Simmons, K. R. Thorium-230 ages of corals and duration of the last interglacial sea-level high stand on Oahu, Hawaii. Science 266, 93–96 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Stirling, C. H., Esat, T. M., McCulloch, M. T. & Lambeck, K. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth Planet. Sci. Lett. 135, 115–130 (1995).

    Article  CAS  Google Scholar 

  34. Alley, R. B. et al. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483–486 (1997).

    Article  Google Scholar 

  35. Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res.: Oceans 102, 26345–26366 (1997).

    Article  CAS  Google Scholar 

  36. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    Article  CAS  Google Scholar 

  37. Jacques, F. M. B. et al. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province. Palaeogeogr., Palaeoclimatol., Palaeoecol. 304, 318–327 (2011).

    Article  Google Scholar 

  38. Winnepenninckx, B., Backeljau, T. & De Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 9, 407 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Langdon, W. B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Bleasby, A. J., Akrigg, D. & Attwood, T. K. OWL–a non-redundant composite protein sequence database. Nucleic Acids Res. 22, 3574–3577 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, T., Liu, G., Zhao, H., Braz, G. T. & Jiang, J. Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol. J. 19, 1967–1978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, Y. et al. The formation and evolution of centromeric satellite repeats in Saccharum species. Plant J. 106, 616–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Servant, N. et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28, 2843–2844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass—a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).

    Article  CAS  Google Scholar 

  63. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, G. et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 52, 516–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ginestet, C. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc.: Ser. A 174, 245–246 (2011).

    Article  Google Scholar 

  69. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Key Research and Development Program (2021YFF1000100), the Science and Technology Planting Project of Guangdong Province (2019B020238001), the National High-tech R&D Program (2013AA100604) and the Fujian Provincial Department of Education (JA12082) to J.Z.; the National Key Research and Development Program (2021YFF1000104) to H.T.; the Science and Technology Major Project of Guangxi (AA17202025) to M.Z.; and the China Scholarship Council (201707877011), the Scientific Research Foundation of the Graduate School of Fujian Agriculture and Forestry University Grant (324-1122yb050) and the fellowship of China Postdoctoral Science Foundation (2021M703555) to Q.Z.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. conceived this genome project and coordinated research activities; J.Z. and Q.Z. designed the experiments; Q.Z., J.Z., Q.Y., Yongjun Wang., Z.D., B.C., M.Z., J.W., R.M. and X.L. collected and generated sugarcane materials; F.Y., Z.Y., Y.H. and Z.D. performed the Oligo-FISH experiments; Q.Z., J.Z., G.W., Y.Q., L.L., X.Z., Z.S. and H.T. assembled and annotated the genome; Q.Z., H.P., Yibin Wang, M.W., J.Z. and H.T. analyzed the 3D genome; J.Z., X.H., Yongjun Wang, Z. Li, Y.L., T.W., P.M., J.X., Z. Liu and M.D. studied the genes relevant to the key characteristics in sugarcane; Q.Z., J.Z. and H.T. studied genome evolution; Q.Z., J.Z., Q.Y., H.W., H.T. and Yuntong Wang contributed to the population genetic analysis; and J.Z. and Q.Z. wrote the manuscript.

Corresponding author

Correspondence to Jisen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chromosome specific oligo probes to S. spontaneum accessions with x = 8.

(a) Probes to S. spontaneum SES208 (2n = 8x = 64, x = 8). In I, II, III, IV, and V, S. spontaneum Np-X chromosome-specific oligo probes NpC1, NpC3, NpC5, NpC7, and NpC9 are visualized in red, respectively. S. spontaneum Np-X chromosome-specific oligo probes NpC2, NpC4, NpC6, NpC8, and NpC10 are visualized in gree. S. spontaneum Np-X chromosome-specific oligo probes NpC7 and NpC8 are visualized in cyan in I, III, and V. Karyotypes of SES208 by Sschr 01 to Sschr 08 in VI. These results confirm the major chromosomal rearrangement events between Np-X and AP85-441 genomes. Bars = 10 μm. (b)Probes to S. spontaneum 82-114 (2n = 10x = 80, x = 8). In I, II, III, IV, V, VI, and VII, S. spontaneum Np-X chromosome-specific oligo probes NpC1, NpC3, NpC5, NpC7, NpC9, NpC5 and NpC8 are visualized in red, respectively. S. spontaneum Np-X chromosome-specific oligo probes NpC2, NpC4, NpC6, NpC8 and NpC10 are visualized in green. S. spontaneum Np-X chromosome-specific oligo probes NpC7 and NpC9 are visualized in cyan in VI and VII. Karyotypes of S. spontaneum 82-114 by Sschr01 to Sschr08 in VIII. The experiments were repeated independently at least three times with similar results. These results confirm the major chromosomal rearrangement events between Np-X and AP85-441 genomes, Bars = 10 μm.

Extended Data Fig. 2 Genome-wide chromatin interactions at 500-kb resolution in the S. spontaneum Np-X genome.

The intensity of pixels represents the count of Hi-C links between 500-kb windows on all chromosomes on a logarithmic scale. Darker red color indicates higher contact probability.

Extended Data Fig. 3 Assessment of S. spontaneum Np-X genome assembly using ultra-long reads.

(a) Counts of total ultra-long reads lengths. The centerline in each box represents the median; the lower and upper hinges represent the 25th and 75th percentiles, respectively. the whiskers represent 1.5× the interquartile range and the dots beyond the whiskers are outliers. The number of ultra-long reads: n = 288,773. (b) Distribution of whole ultra-long read alignments by identity on the S. spontaneum Np-X genome. The centerline in each box represents the median; the lower and upper hinges represent the 25th and 75th percentiles, respectively. the whiskers represent 1.5× the interquartile range and the dots beyond the whiskers are outliers. The number of ultra-long reads: n = 288,773. (c) The genome sequence of Np-X (shown on the x-axis) was aligned and plotted against ONT reads (shown on the y-axis) by Minimap2 (https://github.com/lh3/minimap2). The line in the dot plot indicates that both the sequences are very similar to each other. The red dots indicate the best match of the reads among the four homologous chromosomes.

Extended Data Fig. 4 Schematic diagram of switch errors evaluation.

The longest 10000 ultra-long ONT reads with N50 of 193 kb were aligned against each 10 kb window to all haplotypes (A, B, C, and D) of S. spontaneum Np-X genome. The switch error was detected according to the best matches to more than one chromosome or non-consecutive contigs.

Extended Data Fig. 5 Alignment of the S. spontaneum Np-X and Miscanthus sinensis genomes shown as a dot plot.

The labels (0, 10000, 20000,…) at x/y-axis mean the gene rank along the chromosomes (i.e. the span of x/y-axis represent the total number of genes in the respective genome in comparison).

Extended Data Fig. 6 Restructured chromosomes validation.

(a)FISH signals of centromere satellite repeat probes were detected as a single centromere of each chromosome in Np-X, while in AP85-441 FISH signals of dicentric chromosomes were detected in some chromosomes (arrowhead). The experiments were repeated independently at least three times with similar results. Scale bars = 5 μm. (b). The Hi-C read of S. spontaneum AP85-441 (upper) and S. spontaneum Np-X (bottom) were mapped to S. spontaneum AP85-441 genome respectively. The chromosomal rearrangement breakpoints are indicated by blue arrows that show matching discontinuities in the contrasting Hi-C contact maps. (c). The Hi-C reads of S. spontaneum Np-X (upper) and S. spontaneum AP85-441 (bottom), respectively, were mapped to the S. spontaneum Np-X genome. The chromosomal rearrangement breakpoints are indicated by blue arrows. AP: S. spontaneum AP85-441; Np: S. spontaneum Np-X.

Extended Data Fig. 7 Recombination of higher chromatin structure in the S. spontaneum Np-X and S. spontaneum AP85-441 genomes and related species.

(a) The four tracks represent first principal component values showing A/B compartment status for O. sativa, S. bicolor, S. spontaneum Np-X, and S. spontaneum AP85-441, respectively. In the analysis of each set of species, the grey line indicates syntenic regions of the chromosome between species. (b) The red, green, and blue bars indicate A-to-B compartment switching, B-to-A compartment switching, and conserved compartments during species evolution, respectively.

Extended Data Fig. 8 Transcript expression of genes within B to A compartment switching in S. spontaneum Np-X and corresponding genes in S. spontaneum AP85-441.

Note: The genes expression in leaf and stem are indicated in (a), and the transcript expression of genes located in the A to B switching, B to A switching, or in the conserved compartment in leaf and stem are shown in (b) and (c), respectively. n indicates the number of genes expression. The centerline in each box represents the median; the lower and upper hinges represent the 25th and 75th percentiles, respectively. The whiskers represent 1.5× the interquartile range. The dots beyond the whiskers are outliers. P-values were calculated using the two-sided Wilcoxon rank-sum test.

Extended Data Fig. 9 Phylogenetic and cis-elements analysis of Narrow Leaf (NAL)-related genes in S. spontaneum Np-X (Npp) and its related species.

(a) Phylogenetic analysis of Narrow Leaf (NAL)-related genes in S. spontaneum Np-X (Npp), S. spontaneum AP85-441 (Ss), S. officinarum (So), Z. mays (GRM), rice (Os), Sorghum (Sobic), and Arabidopsis (AT). The genes from S. spontaneum Np-X, S. officinarum and S. spontaneum AP85-441 are marked with purple, orange or blue circle, respectively. (b) Variation in cis-elements presents in the 2-kb upstream sequences of the NAL1 gene in S. spontaneum and S. officinarum. The cis-elements present in NAL1 in S. spontaneum and S. officinarum predicted using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). Typical cis-elements are illustrated by boxes of different colors as shown, and unique cis-elements and the transcript abundances of these genes in different plant tissues based on RNA-seq data are presented in the table. AP: S. spontaneum AP85-441; Np: S. spontaneum Np-X; SO: S. officinarum.

Extended Data Fig. 10 Population genomics analysis for 102S. spontaneum accessions.

(a) Plot of ADMIXTURE cross-validation errors for K = 1 through K = 10. (b) STRUCTURE analysis of re-sequenced populations with K values from 2 to 6. (c) Linkage disequilibrium decay in different subpopulations of S. spontaneum. (d) Nucleotide diversity (π) and population divergence (FST) between different subpopulation of S. spontaneum. The value inside each circle represents a measure of π for that group, and the value on each line indicates FST between two groups.

Supplementary information

Supplementary Information

Supplementary Note, Supplementary Figures 1-30, and Supplementary Tables 1-24.

Reporting Summary

Supplementary Data 1

Gene function annotation for the S. spontaneum Np-X genome. The functional information of the S. spontaneum Np-X genes are predicted by searching against Nr, SWISS-PROT, KOG, GO, InterPro, KEGG and TrEMBL databases with defaults parameters. The transverse line indicates the unannotated items.

Supplementary Data 2

The gene allele information for S. spontaneum Np-X genome. The dataset contains the allele identification (ID) of each gene and the representative monoploidy gene ID. The transverse line indicates the unidentified alleles.

Supplementary Data 3

The core photosynthesis-related gene families in S. spontaneum Np-X, S. spontaneum AP85-441, Miscanthus and sorghum. The photosynthesis-related genes and alleles in S. spontaneum Np-X are presented in Sheet1, and the orthologous genes in S. spontaneum AP85-441, Miscanthus and sorghum and the homology of the amino acid sequence are indicated in Sheet2.

Supplementary Data 4

The orthologous genes in S. spontaneum Np-X, S. spontaneum AP85-441 and sorghum. The ortholog genes of S. pontaneum Np-X in S. spontaneum AP85-441 and sorghum, as well as the functional description, are shown in the table.

Supplementary Data 5

The function information of candidate genes in the selective sweep region. The genes located in the selective sweep region of S. spontaneum population and their corresponding ortholog genes in Arabidopsis, rice, sorghum and maize and their functions information annotated according to the GO database are indicated in the table. Lines marked with red represent the genes mentioned in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Qi, Y., Pan, H. et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet 54, 885–896 (2022). https://doi.org/10.1038/s41588-022-01084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01084-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research