Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Common variants contribute to intrinsic human brain functional networks

Abstract

The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10−11), including associations to the central executive, default mode, and salience networks involved in the triple-network model of psychopathology. A number of brain activity-associated loci colocalized with brain disorders (e.g., the APOE ε4 locus with Alzheimer’s disease). Variation in brain function was genetically correlated with brain disorders, such as major depressive disorder and schizophrenia. Together, our study provides a step forward in understanding the genetic architecture of brain functional networks and their genetic links to brain-related complex traits and disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SNP heritability analysis of rsfMRI traits.
Fig. 2: Selected genetic locus associated with both rsfMRI trait of brain activity and brain-related complex traits.
Fig. 3: Selected pairwise genetic correlations between functional connectivity traits and regional brain volumes.
Fig. 4: Selected pairwise genetic correlations between functional connectivity traits and fractional anisotropy of white matter tracts.
Fig. 5: Selected pairwise genetic correlations between functional connectivity traits and brain disorders and intelligence.

Similar content being viewed by others

Data availability

Our GWAS summary statistics are publicly available at Zenodo105 (https://doi.org/10.5281/zenodo.5775047). The individual-level imaging and genetics data used in the present study are available from four publicly accessible data resources: UKB (https://www.ukbiobank.ac.uk/), ABCD (https://abcdstudy.org/), HCP (https://www.humanconnectome.org/) and PNC (https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html). The Molecular Signatures Database dataset can be downloaded from https://www.gsea-msigdb.org/gsea/msigdb/. The Hi-C datasets of brain tissue and cell types can be requested or accessed following the instructions in the original publications. Our results can also be easily browsed through our knowledge portal at https://bigkp.org/.

Code availability

We made use of publicly available software and tools listed in URLs. The codes to generate the rsfMRI features are publicly available on Zenodo (https://doi.org/10.5281/zenodo.5784010). Other codes used in our analyses are available upon reasonable request.

References

  1. Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  3. Lv, H. et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. Am. J. Neuroradiol. 39, 1390–1399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    Article  PubMed  Google Scholar 

  5. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  8. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  9. Menon, V. The triple network model, insight, and large-scale brain organization in autism. Biol. Psychiatry 84, 236–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. (Amst). 8, 73–85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolters, A. F. et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat. Disord. 62, 16–27 (2019).

    Article  PubMed  Google Scholar 

  12. Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).

    Article  PubMed  Google Scholar 

  13. Foo, H. et al. Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: a systematic review. Neurosci. Biobehav. Rev. 113, 98–110 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Glahn, D. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elliott, M. L. et al. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage 189, 516–532 (2019).

    Article  PubMed  Google Scholar 

  16. Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R. Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adhikari, B. M. et al. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline. In Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium 307-318 (World Scientific, 2018).

  18. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiesa, P. A. et al. Revolution of resting-state functional neuroimaging genetics in Alzheimer’s disease. Trends Neurosci. 40, 469–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, N. et al. APOE and KIBRA interactions on brain functional connectivity in healthy young adults. Cereb. Cortex 27, 4797–4805 (2017).

    PubMed  Google Scholar 

  21. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex.Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human neuroimaging. Neuron 97, 263–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Casey, B. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  Google Scholar 

  28. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 86, 544–553 (2014).

    Article  PubMed  Google Scholar 

  29. Somerville, L. H. et al. The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. NeuroImage 183, 456–468 (2018).

    Article  PubMed  Google Scholar 

  30. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).

    Article  PubMed  Google Scholar 

  32. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).

    Article  PubMed  Google Scholar 

  34. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  39. Jun, G. R. et al. Transethnic genome‐wide scan identifies novel Alzheimer’s disease loci. Alzheimer’s Dement. 13, 727–738 (2017).

    Article  Google Scholar 

  40. Nazarian, A., Yashin, A. I. & Kulminski, A. M. Genome-wide analysis of genetic predisposition to Alzheimer’s disease and related sex disparities. Alzheimer’s Res. Ther. 11, 5 (2019).

    Article  Google Scholar 

  41. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrari, R. et al. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiol. aging 36, 2904.e13–2904.e26 (2015).

    Article  CAS  Google Scholar 

  43. Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Davies, G. et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 19, 76–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, C. et al. Genome-wide association and mechanistic studies indicate that immune response contributes to Alzheimer’s disease development. Front. Genet. 9, 410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, Q. et al. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 26, 309–321 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Scelsi, M. A. et al. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain 141, 2167–2180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liang, P. et al. Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 11, 389–398 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Mattsson, N. et al. Emerging β-amyloid pathology and accelerated cortical atrophy. JAMA Neurol. 71, 725–734 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Consortium, I. P. D. G. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    Article  CAS  Google Scholar 

  52. Vacic, V. et al. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Hum. Mol. Genet. 23, 4693–4702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anney, R. J. et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. Mol. Autism 8, 21 (2017).

    Article  CAS  Google Scholar 

  57. Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Baselmans, B. M. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Lane, J. M. et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 51, 387–393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill, W. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L. & Menon, V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol. Psychiatry 85, 60–69 (2019).

    Article  PubMed  Google Scholar 

  63. Zheng, H. et al. The altered triple networks interaction in depression under resting state based on graph theory. BioMed. Res. Int. 2015, 386326 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Uddin, L. Q. et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA psychiatry 70, 869–879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  66. Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol. Psychiatry 21, 758–767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Binkofski, F. C., Klann, J. & Caspers, S. On the neuroanatomy and functional role of the inferior parietal lobule and intraparietal sulcus. In Neurobiology of Language 35–47 (Elsevier, 2016).

  73. Cappelletti, M., Lee, H. L., Freeman, E. D. & Price, C. J. The role of right and left parietal lobes in the conceptual processing of numbers. J. Cogn. Neurosci. 22, 331–346 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Koenigs, M., Barbey, A. K., Postle, B. R. & Grafman, J. Superior parietal cortex is critical for the manipulation of information in working memory. J. Neurosci. 29, 14980–14986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bijsterbosch, J. D., Beckmann, C. F., Woolrich, M. W., Smith, S. M. & Harrison, S. J. The relationship between spatial configuration and functional connectivity of brain regions revisited. Elife 8, e44890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  77. Zovetti, N. et al. Default mode network activity in bipolar disorder. Epidemiol. Psychiatr. Sci. 29, e166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gur, R. E. & Gur, R. C. Functional magnetic resonance imaging in schizophrenia. Dialogues Clin. Neurosci. 12, 333 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Adams, R. A. et al. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 143, 1261–1277 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang, Q. et al. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci. 22, 691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Giusti-Rodriguez, P. M. & Sullivan, P. F. Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. Preprint in bioRxiv, https://doi.org/10.1101/406330 (2019).

  86. Huang, H. et al. Improving polygenic prediction in ancestrally diverse populations. Preprint in medRxiv https://doi.org/10.1101/2020.12.27.20248738 (2020).

  87. Fortin, J.-P. et al. Removing inter-subject technical variability in magnetic resonance imaging studies. Neuroimage 132, 198–212 (2016).

    Article  PubMed  Google Scholar 

  88. Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2020).

    Article  PubMed  Google Scholar 

  89. Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  91. Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA–DTI working group. Neuroimage 81, 455–469 (2013).

    Article  PubMed  Google Scholar 

  92. Kochunov, P. et al. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and megaanalytical approaches for data pooling. Neuroimage 95, 136–150 (2014).

    Article  PubMed  Google Scholar 

  93. Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. NeuroImage 206, 116189 (2020).

    Article  PubMed  Google Scholar 

  94. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).

    Article  PubMed  Google Scholar 

  99. International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  Google Scholar 

  100. Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liberzon, A. et al. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung, I. et al. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat. Genet. 51, 1442–1449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 1252–1262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, B. et al. GWAS summary statistics for 191 resting-state functional MRI (rs-fMRI) traits. Zenodo https://doi.org/10.5281/zenodo.5775047 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by National Institutes of Health (NIH) grants MH086633 (H.Z.) and MH116527 (T. Li). We thank the individuals represented in the UKB, ABCD, HCP and PNC studies for their participation and the research teams for their work in collecting, processing and disseminating these datasets for analysis. We gratefully acknowledge all the studies and databases that made GWAS summary data available. This research has been conducted using the UKB resource (application number 22783), subject to a data transfer agreement. Some data used in the preparation of this article were obtained from the ABCD study (https://abcdstudy.org), held in the National Institute of Mental Health Data Archive. This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9–10 years and follow them over 10 years into early adulthood. The ABCD study is supported by the NIH and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093 and U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/scientists/workgroups/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in analysis or writing of this report. This article reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. Support for the collection of the PNC datasets was provided by grant RC2MH089983 awarded to Raquel Gur and RC2MH089924 awarded to H. Hakonarson. All PNC subjects were recruited through the Center for Applied Genomics at The Children’s Hospital in Philadelphia. HCP data were provided by the HCP, WU-Minn Consortium (principal investigators D. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH institutes and centers that support the NIH Blueprint for Neuroscience Research and the McDonnell Center for Systems Neuroscience at Washington University. The UKB study has obtained ethics approval from the North West Multi-Centre Research Ethics Committee (approval number 11/NW/0382) and obtained written informed consent from all participants before the study. All experimental procedures in the HCP study were approved by the institutional review boards at Washington University (approval number 201204036). All procedures in the ABCD study were approved by the institutional review boards at ABCD collection sites (approval numbers 201708123 and 160091). The institutional review boards of the University of Pennsylvania and the Children’s Hospital of Philadelphia approved all study procedures in the PNC study.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., H.Z., J.L.S., S.M.S., and Y.L. designed the study. B.Z., T. Li, D.X., X.W., Yue Yang, T. Luo, N.M., Q.S. and Yuchen Yang analyzed the data. T. Li, Z.Z. and Y.S. downloaded the datasets, processed rsfMRI data and undertook quantity controls. W.L. assisted in interpreting findings. P.R., M.E.H., J.B. and J.F.F. analyzed brain cell chromatin accessibility data. B.Z. wrote the manuscript, with feedback from all authors.

Corresponding author

Correspondence to Hongtu Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genetic locus at 19q13.21 associated with both rsfMRI trait of brain activity and brain-related complex traits and disorders.

At 19q13.32, we observed colocalization (LD r2 ≥ 0.6) between the amplitude of the precuneus region in the default mode and central executive networks and Alzheimer’s disease (shared index SNP rs429358). Location of the displayed rsfMRI trait (amplitude of the precuneus) is illustrated in the right panel.

Extended Data Fig. 2 Genetic locus at 2p16.1 associated with both rsfMRI trait of brain activity and brain-related complex traits and disorders.

At 2p16.1, we observed colocalization (LD r2 ≥ 0.6) between the functional connectivity among the default mode, central executive, and salience networks (index SNP rs2678890) and schizophrenia (index SNP rs1518395). Location of the displayed rsfMRI trait (functional connectivity between precuneus & cuneus and superior frontal & middle frontal regions) is illustrated in the right panel.

Supplementary information

Supplementary Information

Supplementary Note, Supplementary Figures 1-29, and captions for Supplementary Tables 1-26.

Reporting Summary

Peer Review File

Supplementary Table 1

Supplementary Tables 1-26

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Li, T., Smith, S.M. et al. Common variants contribute to intrinsic human brain functional networks. Nat Genet 54, 508–517 (2022). https://doi.org/10.1038/s41588-022-01039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01039-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing