Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

GENOME EDITING

CRISPR–Cas9 can cause chromothripsis

Genome editing with CRISPR–Cas9 is beginning to be used clinically; promising results to date inspire hope for broad medical impact and mindfulness about safety. A new study shows that when Cas9 cuts its target, a fraction of the time, the target chromosome experiences a breakage process known as chromothripsis, thus prompting efforts to understand the potential negative consequences of this phenomenon and ways to mitigate them.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Carroll, D. Annu. Rev. Biochem. 83, 409–439 (2014).

    Article  CAS  Google Scholar 

  2. Frangoul, H. et al. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  Google Scholar 

  3. Porteus, M. H. N. Engl. J. Med. 380, 947–959 (2019).

    Article  CAS  Google Scholar 

  4. Leibowitz, M. L. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00838-7 (2021).

    Article  PubMed  Google Scholar 

  5. Knott, G. J. & Doudna, J. A. Science 361, 866–869 (2018).

    Article  CAS  Google Scholar 

  6. Alanis-Lobato, G. et al. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2004832117 (2021).

    Article  PubMed  Google Scholar 

  7. Brunet, E. et al. Proc. Natl Acad. Sci. USA 106, 10620–10625 (2009).

    Article  CAS  Google Scholar 

  8. Stephens, P. J. et al. Cell 144, 27–40 (2011).

    Article  CAS  Google Scholar 

  9. Orkin, S. H. & Bauer, D. E. Annu. Rev. Med. 70, 257–271 (2019).

    Article  CAS  Google Scholar 

  10. Piel, F. B., Steinberg, M. H. & Rees, D. C. N. Engl. J. Med. 376, 1561–1573 (2017).

    Article  CAS  Google Scholar 

  11. Ribeil, J.-A. et al. N. Engl. J. Med. 376, 848–855 (2017).

    Article  CAS  Google Scholar 

  12. Esrick, E. B. et al. N. Engl. J. Med. 384, 205–215 (2021).

    Article  CAS  Google Scholar 

  13. Chu, S. H. et al. CRISPR J. 4, 169–177 (2021).

    Article  CAS  Google Scholar 

  14. Grupp, S. A. et al. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  Google Scholar 

  15. Kohn, D. B., Sadelain, M. & Glorioso, J. C. Nat. Rev. Cancer 3, 477–488 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fyodor D. Urnov.

Ethics declarations

Competing interests

F.U. is a scientific co-founder of Tune Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urnov, F.D. CRISPR–Cas9 can cause chromothripsis. Nat Genet 53, 768–769 (2021). https://doi.org/10.1038/s41588-021-00881-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00881-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing