Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

3D GENOMICS

Chromatin architecture is a flexible foundation for gene expression

The structure of chromatin is associated with its function, but precisely how is unclear. New data show that the higher-order architecture of the genome is similar among cell types with widely variant fates and gene expression patterns, thus challenging the view that chromatin domains determine function in the genome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The emergence of chromatin domains.

References

  1. 1.

    Sexton, T. et al. Cell 148, 458–472 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Stadler, M. R., Haines, J. E. & Eisen, M. B. eLife 6, e29550 (2017).

    Article  Google Scholar 

  3. 3.

    Espinola, S. M. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00816-z (2021).

  4. 4.

    Ing-Simmons, E. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00799-x (2021).

    Article  PubMed  Google Scholar 

  5. 5.

    Cattoni, D. I. et al. Nat. Commun. 8, 1753 (2017).

    Article  Google Scholar 

  6. 6.

    Finn, E. H. et al. Cell 176, 1502–1515.e10 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Novo, C. L. et al. Cell Rep. 22, 2615–2627 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Chapski, D. J., Rosa-Garrido, M., Hua, N., Alber, F. & Vondriska, T. M. Front. Cardiovasc. Med. 5, 186 (2019).

    Article  Google Scholar 

  9. 9.

    Chen, H. et al. Nat. Genet. 50, 1296–1303 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Shi, G., Liu, L., Hyeon, C. & Thirumalai, D. Nat. Commun. 9, 3161 (2018).

    Article  Google Scholar 

  11. 11.

    Bintu, B. et al. Science 362, eaau1783 (2018).

    Article  Google Scholar 

  12. 12.

    Heinz, S. et al. Cell 174, 1522–1536.e22 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Brandão, H. B. et al. Proc. Natl Acad. Sci. USA 116, 20489–20499 (2019).

    Article  Google Scholar 

  14. 14.

    Misteli, T. Cell 183, 28–45 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Finn, E. H. & Misteli, T. Science 365, eaaw9498 (2019).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tom Misteli or Elizabeth H. Finn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Misteli, T., Finn, E.H. Chromatin architecture is a flexible foundation for gene expression. Nat Genet 53, 426–427 (2021). https://doi.org/10.1038/s41588-021-00813-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing