Challenges and guidelines toward 4D nucleome data and model standards

Abstract

Due to recent advances in experimental and theoretical approaches, the dynamic three-dimensional organization (3D) of the nucleus has become a very active area of research in life sciences. We now understand that the linear genome is folded in ways that may modulate how genes are expressed during the basic functioning of cells. Importantly, it is now possible to build 3D models of how the genome folds within the nucleus and changes over time (4D). Because genome folding influences its function, this opens exciting new possibilities to broaden our understanding of the mechanisms that determine cell fate. However, the rapid evolution of methods and the increasing complexity of data can result in ambiguity and reproducibility challenges, which may hamper the progress of this field. Here, we describe such challenges ahead and provide guidelines to think about strategies for shared standardized validation of experimental 4D nucleome data sets and models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Toward FAIR data, unified standards and RICH visualizations in 4D nucleome research.

References

  1. 1.

    Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Van Bortle, K. & Corces, V. G. Nuclear organization and genome function. Annu. Rev. Cell Dev. Biol. 28, 163–187 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  5. 5.

    Bernstein, B. E. et al. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  6. 6.

    Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Read, R. J. et al. A new generation of crystallographic validation tools for the protein data bank. Structure 19, 1395–1412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Westbrook, J., Feng, Z., Burkhardt, K. & Berman, H. M. Validation of protein structures for protein data bank. Methods Enzymol. 374, 370–385 (2003).

    CAS  PubMed  Google Scholar 

  10. 10.

    Montelione, G. T. et al. Recommendations of the wwPDB NMR validation task force. Structure 21, 1563–1570 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sali, A. et al. Outcome of the First wwPDB hybrid/integrative methods task force workshop. Structure 23, 1156–1167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Teif, V. B. Nucleosome positioning: resources and tools online. Brief. Bioinform. 17, 745–757 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Buffry, A. D., Mendes, C. C. & McGregor, A. P. The functionality and evolution of eukaryotic transcriptional enhancers. Adv. Genet. 96, 143–206 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Deaton, A. M. et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5, e15316 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Poorey, K. et al. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342, 369–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zentner, G. E., Kasinathan, S., Xin, B., Rohs, R. & Henikoff, S. ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nat. Commun. 6, 8733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Grimaldi, Y., Ferrari, P. & Strubin, M. Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo. Genome Res. 24, 117–124 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  25. 25.

    Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Giorgetti, L. & Heard, E. Closing the loop: 3C versus DNA FISH. Genome Biol. 17, 215 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Fudenberg, G. & Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673–678 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Olivares-Chauvet, P. et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cattoni, D. I. et al. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nat. Commun. 8, 1753 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Fenrich, K. K. et al. Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J. Physiol. (Lond.) 590, 3665–3675 (2012).

    CAS  Google Scholar 

  38. 38.

    Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    CAS  PubMed  Google Scholar 

  39. 39.

    Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    CAS  PubMed  Google Scholar 

  40. 40.

    Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    CAS  PubMed  Google Scholar 

  41. 41.

    Lassadi, I., Kamgoué, A., Goiffon, I., Tanguy-le-Gac, N. & Bystricky, K. Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLOS Comput. Biol. 11, e1004306 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Saad, H. et al. DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet. 10, e1004187 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. USA 112, 3002–3007 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ma, H., Reyes-Gutierrez, P. & Pederson, T. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc. Natl. Acad. Sci. USA 110, 21048–21053 (2013).

    CAS  PubMed  Google Scholar 

  47. 47.

    Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M. E. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Dubarry, M., Loïodice, I., Chen, C. L., Thermes, C. & Taddei, A. Tight protein-DNA interactions favor gene silencing. Genes Dev. 25, 1365–1370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lenstra, T. L., Coulon, A., Chow, C. C. & Larson, D. R. Single-molecule I=imaging reveals a switch between spurious and functional ncRNA transcription. Mol. Cell 60, 597–610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Masui, O. et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145, 447–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    CAS  PubMed  Google Scholar 

  52. 52.

    Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119–121 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Chao, J. A., Yoon, Y. J. & Singer, R. H. Imaging translation in single cells using fluorescent microscopy. Cold Spring Harb. Perspect. Biol. 4, a012310 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Stasevich, T. J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928–941 (2011).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Matsuda, A. et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones. PLoS One 5, e12768 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60–63 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Abrahamsson, S. et al. MultiFocus polarization microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. Opt. Express 23, 7734–7754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hajj, B., El Beheiry, M. & Dahan, M. PSF engineering in multifocus microscopy for increased depth volumetric imaging. Biomed. Opt. Express 7, 726–731 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Oudjedi, L. et al. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging. Biomed. Opt. Express 7, 2163–2173 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Wolff, G., Hagen, C., Grünewald, K. & Kaufmann, R. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol. Cell 108, 245–258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Titze, B. & Genoud, C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol. Cell 108, 307–323 (2016).

    CAS  PubMed  Google Scholar 

  65. 65.

    Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    CAS  PubMed  Google Scholar 

  67. 67.

    Pollex, T., Piolot, T. & Heard, E. Live-cell imaging combined with immunofluorescence, RNA, or DNA FISH to study the nuclear dynamics and expression of the X-inactivation center. Methods Mol. Biol. 1042, 13–31 (2013).

    CAS  PubMed  Google Scholar 

  68. 68.

    Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375–387 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001).

    CAS  PubMed  Google Scholar 

  70. 70.

    Marti-Renom, M. A. & Mirny, L. A. Bridging the resolution gap in structural modeling of 3D genome organization. PLOS Comput. Biol. 7, e1002125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Mirny, L. A. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Barbieri, M. et al. A model of the large-scale organization of chromatin. Biochem. Soc. Trans. 41, 508–512 (2013).

    CAS  PubMed  Google Scholar 

  73. 73.

    Barbieri, M. et al. Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 24, 515–524 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Emanuel, M., Radja, N. H., Henriksson, A. & Schiessel, H. The physics behind the larger scale organization of DNA in eukaryotes. Phys. Biol. 6, 025008 (2009).

    PubMed  Google Scholar 

  77. 77.

    Hahnfeldt, P., Hearst, J. E., Brenner, D. J., Sachs, R. K. & Hlatky, L. R. Polymer models for interphase chromosomes. Proc. Natl. Acad. Sci. USA 90, 7854–7858 (1993).

    CAS  PubMed  Google Scholar 

  78. 78.

    Münkel, C. & Langowski, J. Chromosome structure predicted by a polymer model. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 5888 (1998).

    Google Scholar 

  79. 79.

    Di Stefano, M., Rosa, A., Belcastro, V., di Bernardo, D. & Micheletti, C. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19. PLoS Comput. Biol. 9, e1003019 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  Google Scholar 

  81. 81.

    Chiariello, A. M., Annunziatella, C., Bianco, S., Esposito, A. & Nicodemi, M. Polymer physics of chromosome large-scale 3D organisation. Sci. Rep. 6, 29775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res. 44, 3503–3512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    CAS  PubMed  Google Scholar 

  86. 86.

    Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Tan, L., Xing, D., Chang, C.-H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Serra, F. et al. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett. 589(20 Pt A), 2987–2995 (2015).

    CAS  PubMed  Google Scholar 

  89. 89.

    Jhunjhunwala, S. et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133, 265–279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Ferraiuolo, M. A. et al. The three-dimensional architecture of Hox cluster silencing. Nucleic Acids Res. 38, 7472–7484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

    CAS  PubMed  Google Scholar 

  93. 93.

    Baù, D. et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107–114 (2011).

    PubMed  Google Scholar 

  94. 94.

    Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Trussart, M. et al. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat. Commun. 8, 14665 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Trussart, M. et al. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Res. 43, 3465–3477 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bianco, S. et al. Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Genet. 50, 662–667 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  PubMed  Google Scholar 

  102. 102.

    Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Stadhouders, R. et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet. 50, 238–249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Hu, J. et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 42, 4375–4390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Yan, Q. et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure. Sci. Rep. 6, 38970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wijchers, P. J. et al. Cause and consequence of tethering a SubTAD to different nuclear compartments. Mol. Cell 61, 461–473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346, 1238–1242 (2014).

    CAS  PubMed  Google Scholar 

  115. 115.

    Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    CAS  PubMed  Google Scholar 

  116. 116.

    Deng, W. & Blobel, G. A. Detecting long-range enhancer-promoter interactions by quantitative chromosome conformation capture. Methods Mol. Biol. 1468, 51–62 (2017).

    CAS  PubMed  Google Scholar 

  117. 117.

    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Alber, F., Förster, F., Korkin, D., Topf, M. & Sali, A. Integrating diverse data for structure determination of macromolecular assemblies. Annu. Rev. Biochem. 77, 443–477 (2008).

    CAS  PubMed  Google Scholar 

  119. 119.

    Goodstadt, M. & Marti-Renom, M. A. Challenges for visualizing three-dimensional data in genomic browsers. FEBS Lett. 591, 2505–2519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the community of researchers around the EU 4DNucleome Initiative for their continuous support.

Author information

Affiliations

Authors

Contributions

All authors wrote and approved the manuscript.

Corresponding author

Correspondence to Marc A. Marti-Renom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marti-Renom, M.A., Almouzni, G., Bickmore, W.A. et al. Challenges and guidelines toward 4D nucleome data and model standards. Nat Genet 50, 1352–1358 (2018). https://doi.org/10.1038/s41588-018-0236-3

Download citation

Further reading