Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes

Abstract

We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe an enrichment of rare ADCY3 loss-of-function variants among individuals with type 2 diabetes in trans-ancestry cohorts. These findings provide new information on disease etiology relevant for future treatment strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ADCY3 isoforms, observed loss-of-function variants and functional consequences based on RNA sequencing of leukocytes from 17 Greenlandic individuals.

References

  1. Moltke, I. et al. Nature 512, 190–193 (2014).

    Article  CAS  Google Scholar 

  2. Pedersen, C. T. et al. Genetics 205, 787–801 (2017).

    Article  Google Scholar 

  3. Speliotes, E. K. et al. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  Google Scholar 

  4. Warrington, N. M. et al. Int. J. Epidemiol. 44, 700–712 (2015).

    Article  Google Scholar 

  5. Lek, M. et al. Nature 536, 285–291 (2016).

    Article  CAS  Google Scholar 

  6. Fuchsberger, C. et al. Nature 536, 41–47 (2016).

    Article  CAS  Google Scholar 

  7. Sigma Type Diabetes Consortium. J. Am. Med. Assoc. 311, 2305–2314 (2014).

    Article  CAS  Google Scholar 

  8. Lohmueller, K. E. et al. Am. J. Hum. Genet. 93, 1072–1086 (2013).

    Article  CAS  Google Scholar 

  9. Laakso, M. et al. J. Lipid Res. 58, 481–493 (2017).

    Article  CAS  Google Scholar 

  10. Panoutsopoulou, K. et al. Nat. Commun. 5, 5345 (2014).

    Article  CAS  Google Scholar 

  11. Liu, Y. et al. PLoS One 8, e66883 (2013).

    Article  CAS  Google Scholar 

  12. Vitting-Seerup, K. & Sandelin, A. Mol. Cancer Res. 15, 1206–1220 (2017).

    Article  CAS  Google Scholar 

  13. Xu, T. R., Yang, Y., Ward, R., Gao, L. & Liu, Y. Cell. Signal. 25, 2413–2423 (2013).

    Article  CAS  Google Scholar 

  14. Yang, H. & Yang, L. J. Mol. Endocrinol. 57, R93–R108 (2016).

    Article  CAS  Google Scholar 

  15. Tong, T., Shen, Y., Lee, H. W., Yu, R. & Park, T. Sci. Rep. 6, 34179 (2016).

    Article  CAS  Google Scholar 

  16. Pitman, J. L. et al. PLoS One 9, e110226 (2014).

    Article  Google Scholar 

  17. Wang, Z. et al. PLoS One 4, e6979 (2009).

    Article  Google Scholar 

  18. Chen, X. et al. Biol. Psychiatry 80, 836–848 (2016).

    Article  CAS  Google Scholar 

  19. Vaisse, C., Reiter, J. F. & Berbari, N. F. Cold Spring Harb. Perspect. Biol. 9, a028217 (2017).

    Article  Google Scholar 

  20. Dupuis, J. et al. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  Google Scholar 

  21. Tachmazidou, I. et al. Am. J. Hum. Genet. 100, 865–884 (2017).

    Article  CAS  Google Scholar 

  22. Bjerregaard, P. et al. Int. J. Circumpolar Health 62 (Suppl. 1), 3–79 (2003).

    CAS  PubMed  Google Scholar 

  23. Bjerregaard, P. Inuit Health in Transition—Greenland Survey 2005–2010 2nd edn (National Institute of Public Health, Copenhagen, 2011).

    Google Scholar 

  24. Philipsen, A. et al. PLoS One 10, e0123062 (2015).

    Article  Google Scholar 

  25. Jørgensen, M. E., Borch-Johnsen, K., Stolk, R. & Bjerregaard, P. Diabetes Care 36, 2988–2994 (2013).

    Article  Google Scholar 

  26. Matthews, D. R. et al. Diabetologia 28, 412–419 (1985).

    Article  CAS  Google Scholar 

  27. Gutt, M. et al. Diabetes Res. Clin. Pract. 47, 177–184 (2000).

    Article  CAS  Google Scholar 

  28. World Health Organization Study Group. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications (World Health Organization, Geneva, 1999).

    Article  CAS  Google Scholar 

  29. Andersen, M. K. et al. PLoS Genet. 12, e1006119 (2016).

    Article  Google Scholar 

  30. Zhou, X. & Stephens, M. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  Google Scholar 

  31. Alexander, D. H., Novembre, J. & Lange, K. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  Google Scholar 

  32. Moltke, I. & Albrechtsen, A. Bioinformatics 30, 1027–1028 (2014).

    Article  CAS  Google Scholar 

  33. Bolger, A. M., Lohse, M. & Usadel, B. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  34. Kim, D., Langmead, B. & Salzberg, S. L. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  35. Harrow, J. et al. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  Google Scholar 

  36. Katz, Y. et al. Bioinformatics 31, 2400–2402 (2015).

    Article  CAS  Google Scholar 

  37. Robinson, J. T. et al. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  38. Liao, Y., Smyth, G. K. & Shi, W. Bioinformatics 30, 923–930 (2014).

    Article  CAS  Google Scholar 

  39. Trapnell, C. et al. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  40. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Nat. Methods 14, 417–419 (2017).

    Article  CAS  Google Scholar 

  41. Punta, M. et al. Nucleic Acids Res. 40, D290–D301 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participants in the Greenlandic health surveys. We thank J. Flannick (Broad Institute) for help with obtaining the AMP-T2D exome sequencing data. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (http://www.metabol.ku.dk). This project was also funded by the Danish Council for Independent Research (Sapere Aude DFF-Ung Eliteforsker grant 11-120909 from FSS to I.M.; DFF-4090-00244 from FNU to I.M.; Sapere Aude DFF-Forskningsleder 6108-00038B from FNU to R.A.; DFF-4181-00383 to A.A.), the Steno Diabetes Center Copenhagen (http://www.steno.dk), Simon Fougner Hartmanns Familiefond to N.G., the Lundbeck Foundation (R215-2015-4174) to A.A., the Novo Nordisk Foundation (NNF15OC0017918 to N.G.; NNF16OC0019986 to N.G.; NNFCC0018486 to T.H.) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 638173) to R.A. The Greenlandic health surveys (IHIT and B99) were supported by Karen Elise Jensen’s Foundation, the Department of Health in Greenland, NunaFonden, the Medical Research Council of Denmark, the Medical Research Council of Greenland and the Commission for Scientific Research in Greenland.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and A.A. conceived and headed the project. I.M. and A.A. designed the statistical setup for the association testing, while T.H., N.G., M.K.A. and O.P. designed the experimental setup for the DNA extraction, genotyping and sequencing. M.E.J. and P.B. were principal investigators of the population studies in Greenland and, together with C.V.L.L. and I.K.D.-P., provided the Greenlandic samples, collected and defined the phenotypes, and provided context for these samples. I.M., N.G., E.J. and A.A. performed the association analyses. T.K. and Y.M. designed the experimental setup for RNA extraction and sequencing. A.G., D.S., G.D. and E.Z. performed the loss-of-function analysis in the Greek cohorts. K.V.-S., M.D. and R.A. performed the RNA sequence analysis. N.G., I.M., M.K.A., A.A. and T.H. wrote the majority of the manuscript with input from all authors. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Marit E. Jørgensen, Anders Albrechtsen or Torben Hansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1

Procedure used for identifying and selecting loss-of-function variants to study further.

Supplementary Figure 2 RNA expression of ADCY3 stratified according to c.2433–1G>A genotype

a, Sashimi plot of ADCY3 exons 13–15, displaying raw mapped RNA sequencing reads, pooled within individuals wild type (WT) (7 GG carriers), heterozygous (HE) (6 GA carriers) and homozygous (HO) (4 AA carriers) for the ADCY3 c.2433–1G>A variant from leukocytes and one adipose tissue sample. RNA sequencing densities are aligned to the transcript isoforms shown in Fig. 1. Read depth is displayed for each track (top left). Junction reads are visualized as arcs connecting the pair of exons at junction borders together with the number of junction reads. The plot was simplified by removing junction-spanning reads only observed once or connecting to features outside of exons 13–15 from the visualization. b, Splicing patterns within ADCY3, exons 13–15, quantified as percentage spliced in (PSI) for each ADCY3 c.2433–1G>A genotype group. c, Transcripts per million (TPM) normalized isoform expression for each of the three predicted ADCY3 isoforms, within each of the ADCY3 c.2433–1G>A genotype groups. The lower and upper hinges of the boxes in b and c correspond to the first and third quartiles of data, respectively, while the middle line is the median. The whiskers extend to the largest and smallest data points no further than 1.5 times the interquartile range.

Supplementary Figure 3 QQ plot for gene-based burden tests for association with type 2 diabetes in trans-ancestry cohorts

A QQ plot of the P values from gene-based burden tests performed using loss-of-function variants (MAF < 5%) from the Accelerating Medicines Partnership Type 2 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org/). The analysis was performed as described in the Methods. The inflation factor lambda is the median test statistics divided by the expected median. No systematic inflation of our test statistics is observed.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 2–6.

Life Sciences Reporting Summary.

Supplementary Table 1

All loss-of-function variants present in at least one copy in the Greenlandic exome sequencing data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grarup, N., Moltke, I., Andersen, M.K. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet 50, 172–174 (2018). https://doi.org/10.1038/s41588-017-0022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-017-0022-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing