Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Is Alzheimer disease a disease?

Abstract

Dementia, a prevalent condition among older individuals, has profound societal implications. Extensive research has resulted in no cure for what is perceived as the most common dementing illness: Alzheimer disease (AD). AD is defined by specific brain abnormalities — amyloid-β plaques and tau protein neurofibrillary tangles — that are proposed to actively influence the neurodegenerative process. However, conclusive evidence of amyloid-β toxicity is lacking, the mechanisms leading to the accumulation of plaques and tangles are unknown, and removing amyloid-β has not halted neurodegeneration. So, the question remains, are we making progress towards a solution? The complexity of AD is underscored by numerous genetic and environmental risk factors, and diverse clinical presentations, suggesting that AD is more akin to a syndrome than to a traditional disease, with its pathological manifestation representing a convergence of pathogenic pathways. Therefore, a solution requires a multifaceted approach over a single ‘silver bullet’. Improved recognition and classification of conditions that converge in plaques and tangle accumulation and their treatment requires the use of multiple strategies simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789 (2022).

  2. Borelli, C. M., Grennan, D. & Muth, C. C. Causes of memory loss in elderly persons. JAMA 323, 486 (2020).

    Article  PubMed  Google Scholar 

  3. Nelson, P. T. et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 144, 27–44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graff-Radford, J. et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 20, 222–234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andrade-Moraes, C. H. et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136, 3738–3752 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357, 169–175 (2001).

    Article  Google Scholar 

  7. Jack, C. R. Jr et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  Google Scholar 

  8. Vromen, E. M. et al. Biomarker A+T−: is this Alzheimer’s disease or not? A combined CSF and pathology study. Brain 146, 1166–1174 (2023).

    Article  PubMed  Google Scholar 

  9. Beach, T. G., Monsell, S. E., Phillips, L. E. & Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 71, 266–273 (2012).

    Article  PubMed  Google Scholar 

  10. Arenaza-Urquijo, E. M. & Vemuri, P. Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies. Neurology 90, 695–703 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Middleton, L. E., Grinberg, L. T., Miller, B., Kawas, C. & Yaffe, K. Neuropathologic features associated with Alzheimer disease diagnosis: age matters. Neurology 77, 1737–1744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suemoto, C. K. et al. Neuropathological lesions in the very old: results from a large Brazilian autopsy study. Brain Pathol. 29, 771–781 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jellinger, K. A. & Korczyn, A. D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med. 16, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nelson, P. T. et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 145, 159–173 (2023).

    Article  PubMed  Google Scholar 

  15. Gearing, M., Lynn, M. & Mirra, S. S. Neurofibrillary pathology in Alzheimer disease with Lewy bodies: two subgroups. Arch. Neurol. 56, 203–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Calvo, F., Karras, B. T., Phillips, R., Kimball, A. M. & Wolf, F. Diagnoses, syndromes, and diseases: a knowledge representation problem. AMIA Annu. Symp. Proc. 2003, 802 (2003).

    PubMed  PubMed Central  Google Scholar 

  17. Goedert, M. Oskar Fischer and the study of dementia. Brain 132, 1102–1111 (2009).

    Article  PubMed  Google Scholar 

  18. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Korczyn, A. D. The amyloid cascade hypothesis. Alzheimers Dement. 4, 176–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  22. Woloshin, S. & Kesselheim, A. S. What to know about the Alzheimer drug aducanumab (Aduhelm). JAMA Intern. Med. 182, 892 (2022).

    Article  PubMed  Google Scholar 

  23. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330, 512–527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salloway, S. et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 27, 1187–1196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sepulveda-Falla, D. et al. Distinct tau neuropathology and cellular profiles of an APOE3 Christchurch homozygote protected against autosomal dominant Alzheimer’s dementia. Acta Neuropathol. 144, 589–601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopera, F. et al. Resilience to autosomal dominant Alzheimer’s disease in a reelin-COLBOS heterozygous man. Nat. Med. 29, 1243–1252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spina, S. et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 144, 2186–2198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016).

    Article  PubMed  Google Scholar 

  29. Xiong, C. et al. Cross-sectional and longitudinal comparisons of biomarkers and cognition among asymptomatic middle-aged individuals with a parental history of either autosomal dominant or late-onset Alzheimer’s disease. Alzheimers Dement. 19, 2923–2932 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y. et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375, 167–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray, M. E. et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10, 785–796 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petersen, C. et al. Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol. 138, 597–612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ossenkoppele, R. et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimers Dement. 16, 335–344 (2020).

    Article  PubMed  Google Scholar 

  34. Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sepulveda-Falla, D. et al. A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease. Acta Neuropathol. 141, 217–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Yokoyama, M., Kobayashi, H., Tatsumi, L. & Tomita, T. Mouse models of Alzheimer’s disease. Front. Mol. Neurosci. 15, 912995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sasaguri, H. et al. Recent advances in the modeling of Alzheimer’s disease. Front. Neurosci. 16, 807473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oblak, A. L. et al. Model organism development and evaluation for late-onset Alzheimer’s disease: MODEL-AD. Alzheimers Dement. 6, e12110 (2020).

    Article  Google Scholar 

  39. Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  Google Scholar 

  40. Stratmann, K. et al. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology. Brain Pathol. 26, 371–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Giannakopoulos, P., Gold, G., von Gunten, A., Hof, P. R. & Bouras, C. Pathological substrates of cognitive decline in Alzheimer’s disease. Front. Neurol. Neurosci. 24, 20–29 (2009).

    Article  PubMed  Google Scholar 

  43. Pontecorvo, M. J. et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140, 748–763 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Karanth, S. et al. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. JAMA Neurol. 77, 1299–1307 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suemoto, C. K. et al. Neuropathological diagnoses and clinical correlates in older adults in Brazil: a cross-sectional study. PLoS Med. 14, e1002267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Korczyn, A. D. Mixed dementia — the most common cause of dementia. Ann. N. Y. Acad. Sci. 977, 129–134 (2002).

    Article  PubMed  Google Scholar 

  47. Yang, T., Li, S., Xu, H., Walsh, D. M. & Selkoe, D. J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lannfelt, L. et al. Perspectives on future Alzheimer therapies: amyloid-β protofibrils — a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther. 6, 16 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Safieh, M., Korczyn, A. D. & Michaelson, D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 17, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Drory, V. E., Birnbaum, M., Korczyn, A. D. & Chapman, J. Association of APOE ε4 allele with survival in amyotrophic lateral sclerosis. J. Neurol. Sci. 190, 17–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Chapman, J., Korczyn, A. D., Karussis, D. M. & Michaelson, D. M. The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurology 57, 1482–1485 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Chapman, J. et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 56, 312–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Pankratz, N. et al. Presence of an APOE4 allele results in significantly earlier onset of Parkinson’s disease and a higher risk with dementia. Mov. Disord. 21, 45–49 (2006).

    Article  PubMed  Google Scholar 

  55. Bowirrat, A., Friedland, R. P., Farrer, L., Baldwin, C. & Korczyn, A. Genetic and environmental risk factors for Alzheimer’s disease in Israeli Arabs. J. Mol. Neurosci. 19, 239–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Qin, W. et al. Race-related association between APOE genotype and Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 83, 897–906 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Naslavsky, M. S. et al. Global and local ancestry modulate APOE association with Alzheimer’s neuropathology and cognitive outcomes in an admixed sample. Mol. Psychiatry 27, 4800–4808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rajabli, F. et al. A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer’s disease in African ancestry. PLoS Genet. 18, e1009977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nemes, S. et al. Sex and APOE ε4 carrier effects on atrophy, amyloid PET, and tau PET burden in early-onset Alzheimer’s disease. Alzheimers Dement. 19, S49–S63 (2023).

    Article  PubMed  Google Scholar 

  60. Thonberg, H. et al. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene. Acta Neuropathol. Commun. 5, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jin, S. C. et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. Mol. Genet. 23, 5838–5846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Rojas, I. et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, 3417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, J. et al. Differential effects of risk factors on the cognitive trajectory of early- and late-onset Alzheimer’s disease. Alzheimers Res. Ther. 13, 113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Perneczky, R. et al. Translational research on reserve against neurodegenerative disease: consensus report of the International Conference on Cognitive Reserve in the Dementias and the Alzheimer’s Association Reserve, Resilience and Protective Factors Professional Interest Area working groups. BMC Med. 17, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oh, J. Y. et al. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol. 79, 498–508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mandel, S. A., Morelli, M., Halperin, I. & Korczyn, A. D. Biomarkers for prediction and targeted prevention of Alzheimer’s and Parkinson’s diseases: evaluation of drug clinical efficacy. EPMA J. 1, 273–292 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Satizabal, C. L. et al. Incidence of dementia over three decades in the Framingham Heart Study. N. Engl. J. Med. 374, 523–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seblova, D. et al. Thirty-year trends in dementia: a nationwide population study of Swedish inpatient records. Clin. Epidemiol. 10, 1679–1693 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mattap, S. M. et al. The economic burden of dementia in low- and middle-income countries (LMICs): a systematic review. BMJ Glob. Health 7, e007409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kivipelto, M. et al. World-wide FINGERS network: a global approach to risk reduction and prevention of dementia. Alzheimers Dement. 16, 1078–1094 (2020).

    Article  PubMed  Google Scholar 

  73. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde [in German]. Allg. Z. für. Psychiatr. und Psych. Gerichtl. Med. 64, 5–6 (1907).

    Google Scholar 

  74. Muller, U., Winter, P. & Graeber, M. B. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol. 12, 129–130 (2013).

    Article  PubMed  Google Scholar 

  75. Liesinger, A. M. et al. Sex and age interact to determine clinicopathologic differences in Alzheimer’s disease. Acta Neuropathol. 136, 873–885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van der Flier, W. M. Clinical heterogeneity in familial Alzheimer’s disease. Lancet Neurol. 15, 1296–1298 (2016).

    Article  PubMed  Google Scholar 

  77. Hammers, D. B. et al. Profiling baseline performance on the Longitudinal Early-Onset Alzheimer’s Disease Study (LEADS) cohort near the midpoint of data collection. Alzheimers Dement. 19, S8–S18 (2023).

    Article  PubMed  Google Scholar 

  78. van der Flier, W. M., Pijnenburg, Y. A., Fox, N. C. & Scheltens, P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE ε4 allele. Lancet Neurol. 10, 280–288 (2011).

    Article  PubMed  Google Scholar 

  79. Polsinelli, A. J. et al. APOE ε4 is associated with earlier symptom onset in LOAD but later symptom onset in EOAD. Alzheimers Dement. 19, 2212–2217 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Morris, J. C. et al. Autosomal dominant and sporadic late onset Alzheimer’s disease share a common in vivo pathophysiology. Brain 145, 3594–3607 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Levitis, E. et al. Differentiating amyloid β spread in autosomal dominant and sporadic Alzheimer’s disease. Brain Commun. 4, fcac085 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cohen, A. D. et al. Early striatal amyloid deposition distinguishes down syndrome and autosomal dominant Alzheimer’s disease from late-onset amyloid deposition. Alzheimers Dement. 14, 743–750 (2018).

    Article  PubMed  Google Scholar 

  83. Boon, B. D. C. et al. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer’s disease. Acta Neuropathol. 140, 811–830 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crook, R. et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat. Med. 4, 452–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Ehrenberg, A. J. et al. Priorities for research on neuromodulatory subcortical systems in Alzheimer’s disease: position paper from the NSS PIA of ISTAART. Alzheimers Dement. 19, 2182–2196 (2023).

    Article  PubMed  Google Scholar 

  86. Rub, U. et al. The brainstem tau cytoskeletal pathology of Alzheimer’s disease: a brief historical overview and description of its anatomical distribution pattern, evolutional features, pathogenetic and clinical relevance. Curr. Alzheimer Res. 13, 1178–1197 (2016).

    Article  PubMed  Google Scholar 

  87. O’Connor, A. et al. Tau accumulation in autosomal dominant Alzheimer’s disease: a longitudinal [18]Fflortaucipir study. Alzheimers Res. Ther. 15, 99 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cho, H. et al. Amyloid and tau-PET in early-onset AD: baseline data from the Longitudinal Early-onset Alzheimer’s Disease Study (LEADS). Alzheimers Dement. 19, S98–S114 (2023).

    Article  PubMed  Google Scholar 

  89. Novacek, L., Palat, K., Celadnik, M. & Kubala, E. Antitubercular agents. XI. Function derivatives of 5-substituted 2-pyrazinecarboxylic acid [in Czech]. Cesk. Farm. 21, 145–149 (1972).

    CAS  PubMed  Google Scholar 

  90. Tanner, J. A. et al. Amyloid, tau and metabolic PET correlates of cognition in early and late-onset Alzheimer’s disease. Brain 145, 4489–4505 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Touroutoglou, A. et al. The sporadic early-onset Alzheimer’s disease signature of atrophy: preliminary findings from the Longitudinal Early-onset Alzheimer’s Disease Study (LEADS) cohort. Alzheimers Dement. 19, S74–S88 (2023).

    Article  PubMed  Google Scholar 

  92. Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Keret, O. et al. Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer’s disease. Alzheimers Dement. 13, e12197 (2021).

    Google Scholar 

Download references

Acknowledgements

L.T.G. receives research support for the Rainwater Charitable Foundation and from the US National Institutes of Health (K24AG053435, R01AG060477, R01AG064314, R01AG070826, R01AG075802, U54NS123746, U01AG057195, U54AG065187, P30AG062422 and P01AG019724).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Amos D. Korczyn.

Ethics declarations

Competing interests

A.D.K. is the President of the World Congress on Controversies in Neurology. L.T.G. receives research support from Genentech Inc. and a gift from Pivotal Life Science; received honoraria for educational activities from Medscape Education, Celdara Medical and for consulting from Guidepoint Insights; and is a member of the Medical and Scientific Advisory Group for the Alzheimer’s Association.

Peer review

Peer review information

Nature Reviews Neurology thanks George Perry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korczyn, A.D., Grinberg, L.T. Is Alzheimer disease a disease?. Nat Rev Neurol 20, 245–251 (2024). https://doi.org/10.1038/s41582-024-00940-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-00940-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing