Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myasthenia gravis: the changing treatment landscape in the era of molecular therapies

Abstract

Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunopathogenesis of AChR-MG and MuSK-MG, and therapeutic targets.
Fig. 2: Standard therapy algorithm for the management of AChR-MG and MuSK-MG.
Fig. 3: An algorithm for the management of AChR-MG and MuSK-MG incorporating new molecular therapies.

Similar content being viewed by others

References

  1. Claytor, B., Cho, S. M. & Li, Y. Myasthenic crisis. Muscle Nerve 68, 8–19 (2023).

    Article  PubMed  Google Scholar 

  2. Gilhus, N. E. et al. Myasthenia gravis. Nat. Rev. Dis. Prim. 5, 30 (2019).

    Article  PubMed  Google Scholar 

  3. Higuchi, O., Hamuro, J., Motomura, M. & Yamanashi, Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 69, 418–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Li, Y. et al. Anti-LRP4 autoantibodies in Chinese patients with myasthenia gravis. Muscle Nerve 56, 938–942 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zisimopoulou, P. et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J. Autoimmun. 52, 139–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Klein, C. J. et al. LRP4-IgG service line testing in seronegative myasthenia gravis and controls. J. Neuroimmunol. 368, 577895 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Narayanaswami, P. et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 96, 114–122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huscher, D. et al. Dose-related patterns of glucocorticoid-induced side effects. Ann. Rheum. Dis. 68, 1119–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lascano, A. M. & Lalive, P. H. Update in immunosuppressive therapy of myasthenia gravis. Autoimmun. Rev. 20, 102712 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Machkhas, H & Harati, Y. Side effects of immunosuppressant therapies used in neurology. Neurol. Clin. 16, 171–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Mantegazza, R. & Antozzi, C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther. Adv. Neurol. Disord. 11, 1756285617749134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chia, R. et al. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc. Natl Acad. Sci. USA 119, e2108672119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasumizu, Y. et al. Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma. Nat. Commun. 13, 4230 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Ingelfinger, F. et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 141, 901–915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fichtner, M. L., Jiang, R., Bourke, A., Nowak, R. J. & O’Connor, K. C. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front. Immunol. 11, 776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masi, G. & O’Connor, K. C. Novel pathophysiological insights in autoimmune myasthenia gravis. Curr. Opin. Neurol. 35, 586–596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zografou, C., Vakrakou, A. G. & Stathopoulos, P. Short- and long-lived autoantibody-secreting cells in autoimmune neurological disorders. Front. Immunol. 12, 686466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stathopoulos, P., Kumar, A., Nowak, R. J. & O’Connor, K. C. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2, e94263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marino, M. et al. Long-lasting rituximab-induced reduction of specific–but not total–IgG4 in MuSK-positive myasthenia gravis. Front. Immunol. 11, 613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evoli, A. & Iorio, R. Controversies in ocular myasthenia gravis. Front. Neurol. 11, 605902 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaminski, H. J., Li, Z., Richmonds, C., Lin, F. & Medof, M. E. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis. Exp. Neurol. 189, 333–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Vilquin, J. T., Bayer, A. C., Le Panse, R. & Berrih-Aknin, S. The muscle is not a passive target in myasthenia gravis. Front. Neurol. 10, 1343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Punga, A. R., Maddison, P., Heckmann, J. M., Guptill, J. T. & Evoli, A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 21, 176–188 (2022).

    Article  PubMed  Google Scholar 

  25. Marx, A. et al. Thymus and autoimmunity. Semin. Immunopathol. 43, 45–64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gregersen, P. K. et al. Risk for myasthenia gravis maps to a 151Pro->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann. Neurol. 72, 927–935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maniaol, A. H. et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS ONE 7, e36603 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Iorio, R., Spagni, G. & Evoli, A. Paraneoplastic neurological syndromes associated with mediastinal tumors. Mediastinum https://doi.org/10.21037/med.2018.01.03 (2018).

  29. Iorio, R., Evoli, A., Lauriola, L. & Batocchi, A. P. A B3 type-thymoma in a 7-year-old child with myasthenia gravis. J. Thorac. Oncol. 7, 937–938 (2012).

    Article  PubMed  Google Scholar 

  30. Cetin, H., Beeson, D., Vincent, A. & Webster, R. The structure, function, and physiology of the fetal and adult acetylcholine receptor in muscle. Front. Mol. Neurosci. 13, 581097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo, J. et al. Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J. Neurosci. 29, 13898–13908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lennon, V. A., Lambert, E. H., Leiby, K. R., Okarma, T. B. & Talib, S. Recombinant human acetylcholine receptor ɑ-subunit induces chronic experimental autoimmune myasthenia gravis. J. Immunol. 146, 2245–2248 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Pham, M. C. et al. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol. 146, 319–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Vincent, A. Unravelling the pathogenesis of myasthenia gravis. Nat. Rev. Immunol. 2, 797–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sahashi, K., Engel, A. G., Lambert, E. H. & Howard, F. M. Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol. 39, 160–172 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Sahashi, K., Engel, A. G., Linstrom, J. M., Lambert, E. H. & Lennon, V. A. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J. Neuropathol. Exp. Neurol. 37, 212–223 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Reis, E. S., Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. New insights into the immune functions of complement. Nat. Rev. Immunol. 19, 503–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00926-1 (2023).

    Article  PubMed  Google Scholar 

  39. Engel, A. G., Lambert, E. H. & Howard, F. M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin. Proc. 52, 267–280 (1977).

    CAS  PubMed  Google Scholar 

  40. Engel, A. G. et al. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 29, 179–188 (1979).

    Article  CAS  PubMed  Google Scholar 

  41. Chamberlain-Banoub, J., Neal, J. W., Mizuno, M., Harris, C. L. & Morgan, B. P. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin. Exp. Immunol. 146, 278–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuzun, E., Scott, B. G., Goluszko, E., Higgs, S. & Christadoss, P. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol. 171, 3847–3854 (2003).

    Article  PubMed  Google Scholar 

  43. Christadoss, P. C5 gene influences the development of murine myasthenia gravis. J. Immunol. 140, 2589–2592 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Tuzun, E., Li, J., Saini, S. S., Yang, H. & Christadoss, P. Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J. Neuroimmunol. 182, 167–176 (2007).

    Article  PubMed  Google Scholar 

  45. Zhou, Y. et al. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J. Immunol. 179, 8562–8567 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Biesecker, G. & Gomez, C. M. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol. 142, 2654–2659 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Kusner, L. L. et al. Investigational RNAi therapeutic targeting C5 is efficacious in pre-clinical models of myasthenia gravis. Mol. Ther. Methods Clin. Dev. 13, 484–492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huda, R., Tuzun, E. & Christadoss, P. Complement C2 siRNA mediated therapy of myasthenia gravis in mice. J. Autoimmun. 42, 94–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Qi, Y., Zhang, R., Lu, Y., Zou, X. & Yang, W. Aire and Fezf2, two regulators in medullary thymic epithelial cells, control autoimmune diseases by regulating TSAs: partner or complementer? Front. Immunol. 13, 948259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weigert, C. Pathologisch-anatomischer Beitrag zur Erb’schen Krankheit (myasthenia gravis). Neurologisches Centralblatt. Jg 20, 597–601 (1901).

    Google Scholar 

  51. Wolfe, G. I. et al. Randomized trial of thymectomy in myasthenia gravis. N. Engl. J. Med. 375, 511–522 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sims, G. P., Shiono, H., Willcox, N. & Stott, D. I. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol. 167, 1935–1944 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Bernasconi, P. et al. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am. J. Pathol. 167, 129–139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cavalcante, P. et al. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 221, 516–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Rose, N. et al. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Acta Neuropathol. 144, 1005–1025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fujii, Y., Monden, Y., Hashimoto, J., Nakahara, K. & Kawashima, Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin. Immunol. Immunopathol. 34, 141–146 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Fujii, Y., Monden, Y., Hashimoto, J., Nakahara, K. & Kawashima, Y. Acetylcholine receptor antibody production by bone marrow cells in a patient with myasthenia gravis. Neurology 35, 577–579 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Lisak, R. P., Laramore, C., Zweiman, B. & Moskovitz, A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cells of patients with myasthenia gravis. Neurology 33, 604–608 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Lacazette, E., Le Calvez, S., Gajendran, N. & Brenner, H. R. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J. Cell Biol. 161, 727–736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, N. et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135, 334–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burden, S. J., Yumoto, N. & Zhang, W. The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb. Perspect. Biol. 5, a009167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zong, Y. & Jin, R. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cell Mol. Life Sci. 70, 3077–3088 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Evoli, A. et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126, 2304–2311 (2003).

    Article  PubMed  Google Scholar 

  65. Farrugia, M. E. et al. MRI and clinical studies of facial and bulbar muscle involvement in MuSK antibody-associated myasthenia gravis. Brain 129, 1481–1492 (2006).

    Article  PubMed  Google Scholar 

  66. Evoli, A. & Iorio, R. Characteristics of myasthenia gravis with antibodies to muscle‐specific kinase and low‐density lipoprotein‐related receptor protein 4. Clin. Exp. Neuroimmunol. 6, 40–48 (2015).

    Article  CAS  Google Scholar 

  67. Evoli, A. et al. Myasthenia gravis with antibodies to MuSK: an update. Ann. N. Y. Acad. Sci. 1412, 82–89 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Koneczny, I., Cossins, J., Waters, P., Beeson, D. & Vincent, A. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS ONE 8, e80695 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    Article  PubMed  ADS  Google Scholar 

  70. Huijbers, M. G. et al. MuSK myasthenia gravis monoclonal antibodies: valency dictates pathogenicity. Neurol. Neuroimmunol. Neuroinflamm 6, e547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Damato, V. et al. Clinical value of cell-based assays in the characterisation of seronegative myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 93, 995–1000 (2022).

    Article  PubMed  Google Scholar 

  72. Hoffmann, S. et al. Complement deposition at the neuromuscular junction in seronegative myasthenia gravis. Acta Neuropathol. 139, 1119–1122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Evoli, A. et al. Italian recommendations for the diagnosis and treatment of myasthenia gravis. Neurol. Sci. 40, 1111–1124 (2019).

    Article  PubMed  Google Scholar 

  74. Murai, H. et al. The Japanese clinical guidelines 2022 for myasthenia gravis and Lambert–Eaton myasthenic syndrome. Clin. Exp. Neuroimmunol. 14, 19–27 (2023).

    Article  Google Scholar 

  75. Melzer, N. et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J. Neurol. 263, 1473–1494 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Modoni, A., Mastrorosa, A., Spagni, G. & Evoli, A. Cholinergic hyperactivity in patients with myasthenia gravis with MuSK antibodies: a neurophysiological study. Clin. Neurophysiol. 132, 1845–1849 (2021).

    Article  PubMed  Google Scholar 

  77. Evoli, A., Alboini, P. E., Damato, V. & Iorio, R. 3,4-Diaminopyridine may improve myasthenia gravis with MuSK antibodies. Neurology 86, 1070–1071 (2016).

    Article  PubMed  Google Scholar 

  78. Ipe, T. S., Davis, A. R. & Raval, J. S. Therapeutic plasma exchange in myasthenia gravis: a systematic literature review and meta-analysis of comparative evidence. Front. Neurol. 12, 662856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rozsa, C., Lovas, G., Fornadi, L., Szabo, G. & Komoly, S. Safety of long-term combined immunosuppressive treatment in myasthenia gravis – analysis of adverse effects of 163 patients. Eur. J. Neurol. 13, 947–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Verwijst, J., Westerberg, E. & Punga, A. R. Cancer in myasthenia gravis subtypes in relation to immunosuppressive treatment and acetylcholine receptor antibodies: a Swedish nationwide register study. Eur. J. Neurol. 28, 1706–1715 (2021).

    Article  PubMed  Google Scholar 

  81. Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Tsavaris, N. & Papadaki, T. Anti-CD20-based therapy of B cell lymphoma: state of the art. Leukemia 16, 2004–2015 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug. Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Schioppo, T. & Ingegnoli, F. Current perspective on rituximab in rheumatic diseases. Drug. Des. Devel Ther. 11, 2891–2904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Whittam, D. H. et al. Rituximab in neurological disease: principles, evidence and practice. Pract. Neurol. 19, 5–20 (2019).

    Article  PubMed  Google Scholar 

  85. Pavlasova, G. & Mraz, M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica 105, 1494–1506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klasener, K. et al. CD20 as a gatekeeper of the resting state of human B cells. Proc. Natl Acad. Sci. USA 118, e2021342118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leandro, M. J., Cooper, N., Cambridge, G., Ehrenstein, M. R. & Edwards, J. C. Bone marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology 46, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kamburova, E. G. et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am. J. Transpl. 13, 1503–1511 (2013).

    Article  CAS  Google Scholar 

  89. Iorio, R., Damato, V., Alboini, P. E. & Evoli, A. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J. Neurol. 262, 1115–1119 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Dos Santos, A. et al. Efficacy and safety of rituximab in myasthenia gravis: a French multicentre real-life study. Eur. J. Neurol. 27, 2277–2285 (2020).

    Article  PubMed  Google Scholar 

  91. Hehir, M. K. et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology 89, 1069–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Topakian, R. et al. High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. J. Neurol. 266, 699–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Brauner, S. et al. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. 77, 974–981 (2020).

    Article  PubMed  Google Scholar 

  94. Nowak, R. J. et al. Phase 2 trial of rituximab in acetylcholine receptor antibody-positive generalized myasthenia gravis: the BeatMG study. Neurology 98, e376–e389 (2021).

    Google Scholar 

  95. Piehl, F. et al. Efficacy and safety of rituximab for new-onset generalized myasthenia gravis: the RINOMAX randomized clinical trial. JAMA Neurol. 79, 1105–1112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jiang, R. et al. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. JCI Insight 5, e136471 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Hauser, S. L. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 383, 546–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, B. Ofatumumab. MAbs 1, 326–331 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Steinman, L. et al. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N. Engl. J. Med. 387, 704–714 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Le Garff-Tavernier, M. et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia 28, 230–233 (2014).

    Article  PubMed  Google Scholar 

  102. Tedder, T. F. CD19: a promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 572–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Khaled, A., Kaminski, H. J. & Howard, J. F. Complement inhibitor therapy for myasthenia gravis. Front. Immunol. https://doi.org/10.3389/fimmu.2020.00917 (2020).

  105. Holers, V. M. Complement and its receptors: new insights into human disease. Annu. Rev. Immunol. 32, 433–459 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Killick, J., Morisse, G., Sieger, D. & Astier, A. L. Complement as a regulator of adaptive immunity. Semin. Immunopathol. 40, 37–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Li, Y. et al. Cellular changes in eculizumab early responders with generalized myasthenia gravis. Clin. Immunol. 231, 108830 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Dubois, E. A. & Cohen, A. F. Eculizumab. Br. J. Clin. Pharmacol. 68, 318–319 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  109. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Howard, J. F. Jr. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Mantegazza, R. et al. Post-intervention status in patients with refractory myasthenia gravis treated with eculizumab during REGAIN and its open-label extension. Neurology 96, e610–e618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Andersen, H. et al. Eculizumab improves fatigue in refractory generalized myasthenia gravis. Qual. Life Res. 28, 2247–2254 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  115. McNamara, L. A. et al. High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb. Mortal. Wkly. Rep. 66, 734–737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bozio, C. H., Isenhour, C. & McNamara, L. A. Characteristics of and meningococcal disease prevention strategies for commercially insured persons receiving eculizumab in the United States. PLoS ONE 15, e0241989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gäckler, A. et al. Failure of first meningococcal vaccination in patients with atypical haemolytic uraemic syndrome treated with eculizumab. Nephrol. Dial. Transpl. 35, 298–303 (2020).

    Google Scholar 

  118. Nishimura, J. et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 370, 632–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Vu, T. et al. Ravulizumab pharmacokinetics and pharmacodynamics in patients with generalized myasthenia gravis. J. Neurol. 270, 3129–3137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, J. W. et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood 133, 530–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tuan, V. et al. Terminal complement inhibitor ravulizumab in generalized myasthenia gravis. NEJM Evid. 1, EVIDoa2100066 (2022).

    Google Scholar 

  122. Navarro-Carrera, P., Garcia-Rodriguez, J. & Cendejas-Bueno, E. Detection of Neisseria meningitidis in a patient receiving ravulizumab by the FilmArray(R) Meningitis/Encephalitis Panel – a case report. J. Infect. 82, e22–e23 (2021).

    Article  PubMed  Google Scholar 

  123. Tang, G. Q. et al. Zilucoplan, a macrocyclic peptide inhibitor of human complement component 5, uses a dual mode of action to prevent terminal complement pathway activation. Front. Immunol. 14, 1213920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug. Discov. 18, 707–729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Howard, J. F. Jr et al. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol. 22, 395–406 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Pyzik, M., Kozicky, L. K., Gandhi, A. K. & Blumberg, R. S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 23, 415–432 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Blumberg, L. J. et al. Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex-mediated immune responses. Sci. Adv. 5, eaax9586 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Baker, K., Rath, T., Pyzik, M. & Blumberg, R. S. The role of FcRn in antigen presentation. Front. Immunol. 5, 408 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ulrichts, P. et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Invest. 128, 4372–4386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Howard, J. F. Jr. et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 20, 526–536 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Hoy, S. M. Rozanolixizumab: first approval. Drugs 83, 1341–1347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bril, V. et al. Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 22, 383–394 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Kiessling, P. et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci. Transl. Med. 9, eaan1208 (2017).

    Article  PubMed  Google Scholar 

  136. Guptill, J. A. et al. Vivacity-MG: a phase 2, multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of nipocalimab administered to adults with generalized myasthenia gravis [abstract]. Neurology https://doi.org/10.1212/WNL.96.15_supplement.2157 (2021).

  137. Yap, D. Y. H. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin. Transl. Sci. 14, 1769–1779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yan, C. et al. Therapeutic effects of batoclimab in Chinese patients with generalized myasthenia gravis: a double-blinded, randomized, placebo-controlled phase II study. Neurol. Ther. 11, 815–834 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Robinson, M. J. et al. Long-lived plasma cells accumulate in the bone marrow at a constant rate from early in an immune response. Sci. Immunol. 7, eabm8389 (2022).

    Article  PubMed  Google Scholar 

  140. Lightman, S. M., Utley, A. & Lee, K. P. Survival of long-lived plasma cells (LLPC): piecing together the puzzle. Front. Immunol. 10, 965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mahevas, M., Michel, M., Weill, J. C. & Reynaud, C. A. Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front. Immunol. 4, 494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Robinson, M. J., Webster, R. H. & Tarlinton, D. M. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol. Rev. 296, 87–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, S. et al. Bortezomib-based consolidation or maintenance therapy for multiple myeloma: a meta-analysis. Blood Cancer J. 10, 33 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gomez, A. M. et al. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J. Immunol. 186, 2503–2513 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Field-Smith, A., Morgan, G. J. & Davies, F. E. Bortezomib (Velcadetrade) in the treatment of multiple myeloma. Ther. Clin. Risk Manag. 2, 271–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Siegel, D. et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 98, 1753–1761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zeng, G. et al. Recent advances and future perspectives of noncompetitive proteasome inhibitors. Bioorg. Chem. 135, 106507 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Yang, J. C. & Rosenberg, S. A. Adoptive T-cell therapy for cancer. Adv. Immunol. 130, 279–294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  152. Sermer, D. & Brentjens, R. CAR T-cell therapy: full speed ahead. Hematol. Oncol. 37, 95–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Alnefaie, A. et al. Chimeric antigen receptor T-cells: an overview of concepts, applications, limitations, and proposed solutions. Front. Bioeng. Biotechnol. 10, 797440 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Chatenoud, L. Precision medicine for autoimmune disease. Nat. Biotechnol. 34, 930–932 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  157. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 353, 1229–1238 (2023).

    Article  Google Scholar 

  158. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Velez-Santamaria, V. et al. Eculizumab as a promising treatment in thymoma-associated myasthenia gravis. Ther. Adv. Neurol. Disord. 13, 1756286420932035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Strano, C. M. M. et al. Eculizumab as a fast-acting rescue therapy in a refractory myasthenic crisis: a case report. J. Neurol. 269, 6152–6154 (2022).

    Article  PubMed  Google Scholar 

  162. Vinciguerra, C. et al. Starting eculizumab as rescue therapy in refractory myasthenic crisis. Neurol. Sci. 44, 3707–3709 (2023).

    Article  PubMed  Google Scholar 

  163. Lin, C. Y. et al. iPSC-derived functional human neuromuscular junctions model the pathophysiology of neuromuscular diseases. JCI Insight 4, e124299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Tice, J. A. et al. The effectiveness and value of eculizumab and efgartigimod for generalized myasthenia gravis. J. Manag. Care Spec. Pharm. 28, 119–124 (2022).

    PubMed  Google Scholar 

  165. Bubuioc, A. M., Kudebayeva, A., Turuspekova, S., Lisnic, V. & Leone, M. A. The epidemiology of myasthenia gravis. J. Med. Life 14, 7–16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Guptill, J. T. et al. Addressing outcome measure variability in myasthenia gravis clinical trials. Neurology 101, 442–451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Jaretzki, A. 3rd et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55, 16–23 (2000).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Iorio.

Ethics declarations

Competing interests

The author has received consultancy fees and speaker honoraria from Alexion, Argenx and UCB.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorio, R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 20, 84–98 (2024). https://doi.org/10.1038/s41582-023-00916-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00916-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing