Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Huntington disease-like 2: insight into neurodegeneration from an African disease

Abstract

Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.

Key points

  • Huntington disease (HD)-like 2 (HDL2) is a rare autosomal dominant genetic disease caused by a CTG/CAG trinucleotide repeat expansion in a variably spliced exon of the JPH3 gene (encoding junctophilin 3) located on chromosome 16q24.2.

  • All documented patients with HDL2 have African ancestry and a shared haplotype across the JPH3 locus, suggesting a common ancient African origin, possibly in West Africa.

  • Fewer than 100 cases of HDL2 have been reported worldwide, emphasizing the need for concerted efforts to systematically ascertain patients for longitudinal studies.

  • HDL2 is the HD phenocopy that has the strongest clinical resemblance to HD across the disease course, with overlapping movement, psychiatric, cognitive and radiological features, progressing to non-verbal and akinetic dementia and premature death.

  • Loss of function of the junctophilin 3 protein, RNA toxicity of the sense strand and expanded CAG, and polyglutamine toxicity from the antisense strand have all been implicated in HDL2 pathogenesis.

  • Studies comparing HDL2 to HD provide unique opportunities to improve our understanding of the role of junctophilin 3 in the brain and of repeat expansion pathogenesis, allowing the development of novel biomarkers and therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of HDL2.
Fig. 2: The JPH3 locus.
Fig. 3: Structural MRI findings in HD and HDL2.
Fig. 4: Neuronal aggregates in HD and HDL2.
Fig. 5: Electron micrographs of intranuclear aggregates in HD and HDL2 cortical neurons.
Fig. 6: Proposed mechanisms of HDL2 pathogenesis.

Similar content being viewed by others

References

  1. Walker, F. O. Huntington’s disease. Lancet 369, 218–228 (2007).

    CAS  PubMed  Google Scholar 

  2. Franklin, G. L., Teive, H. A. G., Meira, A. T., Nepomuceno, A. M. T. & Tabrizi, S. J. “On chorea”: 150 years of the beginning of hope. Mov. Disord. 37, 2194–2196 (2022).

    PubMed  Google Scholar 

  3. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Google Scholar 

  4. Margolis, R. L. et al. A disorder similar to Huntington’s disease is associated with a novel CAG repeat expansion. Ann. Neurol. 50, 373–380 (2001).

    CAS  PubMed  Google Scholar 

  5. Margolis, R. L. & Rudnicki, D. D. Pathogenic insights from Huntington’s disease-like 2 and other Huntington’s disease genocopies. Curr. Opin. Neurol. 29, 743–748 (2016).

    CAS  PubMed  Google Scholar 

  6. Krause, A. et al. Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 573–585 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, D. G. et al. Comparison of the Huntington’s disease like 2 and Huntington’s disease clinical phenotypes. Mov. Disord. Clin. Pract. 6, 302–311 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Tabrizi, S. J. et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8, 791–801 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Paulsen, J. S. et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J. Neurol. Neurosurg. Psychiatry 79, 874–880 (2008).

    CAS  PubMed  Google Scholar 

  10. Ruderfer, D. M. & Dudley, J. T. Deep phenotyping predicts Huntington’s genotype. Nat. Biotechnol. 34, 823–824 (2016).

    CAS  PubMed  Google Scholar 

  11. Weir, D. W., Sturrock, A. & Leavitt, B. R. Development of biomarkers for Huntington’s disease. Lancet Neurol. 10, 573–590 (2011).

    CAS  PubMed  Google Scholar 

  12. Tabrizi, S. J. et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities. Lancet Neurol. 21, 645–658 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Medina, A., Mahjoub, Y., Shaver, L. & Pringsheim, T. Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov. Disord. 37, 2327–2335 (2022).

    PubMed  PubMed Central  Google Scholar 

  14. Schneider, S. A. & Bird, T. Huntington’s disease, Huntington’s disease look-alikes, and benign hereditary chorea: what’s new? Mov. Disord. Clin. Pract. 3, 342–354 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Andrew, S. E. et al. Huntington disease without CAG expansion: phenocopies or errors in assignment? Am. J. Hum. Genet. 54, 852–863 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wild, E. J. et al. Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov. Disord. 23, 716–720 (2008).

    PubMed  Google Scholar 

  17. Schneider, S. A., Walker, R. H. & Bhatia, K. P. The Huntington’s disease-like syndromes: what to consider in patients with a negative Huntington’s disease gene test. Nat. Clin. Pract. Neurol. 3, 517–525 (2007).

    CAS  PubMed  Google Scholar 

  18. Nguyen, Q. T. R. et al. Combining literature review with a ground truth approach for diagnosing Huntington’s disease phenocopy. Front. Neurol. 13, 817753 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82, 292–299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore, R. C. et al. Huntington disease phenocopy is a familial prion disease. Am. J. Hum. Genet. 69, 1385–1388 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kambouris, M., Bohlega, S., Al-Tahan, A. & Meyer, B. F. Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. Am. J. Hum. Genet. 66, 445–452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rawlins, M. D. et al. The prevalence of Huntington’s disease. Neuroepidemiology 46, 144–153 (2016).

    PubMed  Google Scholar 

  23. Baine, F. K. et al. Huntington disease in the South African population occurs on diverse and ethnically distinct genetic haplotypes. Eur. J. Hum. Genet. 21, 1120–1127 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cubo, E. et al. The burden of movement disorders in Cameroon: a rural and urban-based inpatient/outpatient study. Mov. Disord. Clin. Pract. 4, 568–573 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Baine, F. K., Krause, A. & Greenberg, L. J. The frequency of Huntington disease and Huntington disease-like 2 in the South African population. Neuroepidemiology 46, 198–202 (2016).

    PubMed  Google Scholar 

  26. Kay, C. et al. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 346–357 (2018).

    CAS  PubMed  Google Scholar 

  27. Holmes, S. E. et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat. Genet. 29, 377–378 (2001).

    CAS  PubMed  Google Scholar 

  28. Margolis, R. L. et al. Huntington’s disease-like 2 (HDL2) in North America and Japan. Ann. Neurol. 56, 670–674 (2004).

    CAS  PubMed  Google Scholar 

  29. Robbins, N. M. et al. Black patients matter in neurology: race, racism, and race-based neurodisparities. Neurology 99, 106–114 (2022).

    PubMed  PubMed Central  Google Scholar 

  30. Walker, R. H. et al. Huntington’s disease-like disorders in Latin America and the Caribbean. Parkinsonism Relat. Disord. 53, 10–20 (2018).

    PubMed  Google Scholar 

  31. Rodrigues, G. G. R. et al. Huntington’s disease-like 2 in Brazil–report of 4 patients. Mov. Disord. 23, 2244–2247 (2008).

    PubMed  Google Scholar 

  32. Paradisi, I., Ikonomu, V. & Arias, S. Huntington disease-like 2 Venezuela: frequency ethnic origin. J. Hum. Genet. 58, 3–6 (2013).

    CAS  PubMed  Google Scholar 

  33. Santos, C. et al. Huntington disease-like 2: the first patient with apparent European ancestry. Clin. Genet. 73, 480–485 (2008).

    CAS  PubMed  Google Scholar 

  34. Parra, F. C. et al. Color and genomic ancestry in Brazilians. Proc. Natl Acad. Sci. USA 100, 177–182 (2003).

    CAS  PubMed  Google Scholar 

  35. de Souza, A. M., Resende, S. S., de Sousa, T. N. & de Brito, C. F. A. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet. Mol. Biol. 42, 495–508 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Rodrigues, G. G. R., Teive, H. A. G. & Tumas, V. Huntington’s disease-like 2 and apparent ancestry. Clin. Genet. 75, 207 (2009).

    CAS  PubMed  Google Scholar 

  37. Anderson, D. G. et al. A systematic review of the Huntington disease-like 2 phenotype. J. Huntingt. Dis. 6, 37–46 (2017).

    CAS  Google Scholar 

  38. Stevanin, G. et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126, 1599–1603 (2003).

    PubMed  Google Scholar 

  39. Mariani, L. et al. Expanding the spectrum of genes involved in Huntington disease using a combined clinical and genetic approach. JAMA Neurol. 73, 1105–1114 (2016).

    PubMed  Google Scholar 

  40. Ruscitti, F. et al. A case of Huntington disease-like 2 in a patient of African ancestry: the everlasting support of clinical examination in the molecular era. Clin. Case Rep. 10, e6308 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Baine, F. K., Peerbhai, N. & Krause, A. A study of Huntington disease-like syndromes in black South African patients reveals a single SCA2 mutation and a unique distribution of normal alleles across five repeat loci. J. Neurol. Sci. 390, 200–204 (2018).

    CAS  PubMed  Google Scholar 

  42. Ocampo, C., Daimari, R. & Oyekunle, A. A. Huntington’s disease-like 2 with an expansion mutation of the Junctophilin-3 gene; first reported case from Botswana. J. Clin. Neurosci. 47, 126–127 (2018).

    CAS  PubMed  Google Scholar 

  43. Micheletti, S. J. et al. Genetic consequences of the transatlantic slave trade in the Americas. Am. J. Hum. Genet. 107, 265–277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Muthinja, M. J. et al. An exploration of the genetics of the mutant Huntingtin (mHtt) gene in a cohort of patients with chorea from different tribes in 6 sub-Saharan African countries. Preprint at medRxiv https://doi.org/10.1101/2022.07.13.22272435 (2022).

  45. Chukwuneke, F. N., Ezeonu, C. T., Onyire, B. N. & Ezeonu, P. O. Culture and biomedical care in Africa: the influence of culture on biomedical care in a traditional African society, Nigeria, West Africa. Niger. J. Med. 21, 331–333 (2012).

    CAS  PubMed  Google Scholar 

  46. Glover, S. M. Mark Nichter: global health: why cultural perceptions, social representations, and biopolitics matter. Hum. Ecol. 37, 669–670 (2009).

    Google Scholar 

  47. Seixas, A. I. et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Ann. Neurol. 71, 245–257 (2012).

    CAS  PubMed  Google Scholar 

  48. Hayden, M. R., MacGregor, J. M., Saffer, D. S. & Beighton, P. H. The high frequency of juvenile Huntington’s chorea in South Africa. J. Med. Genet. 19, 94–97 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Quarrell, O., O’Donovan, K. L., Bandmann, O. & Strong, M. the prevalence of juvenile Huntington’s disease: a review of the literature and meta-analysis. PLoS Curr. 4, e4f8606b742ef3 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Bardien, S. et al. A South African mixed ancestry family with Huntington disease-like 2: clinical and genetic features. Mov. Disord. 22, 2083–2089 (2007).

    PubMed  Google Scholar 

  51. Warby, S. C. et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am. J. Hum. Genet. 84, 351–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pearson, C. E., Nichol Edamura, K. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005).

    CAS  PubMed  Google Scholar 

  53. McMurray, C. T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldman, A., Ramsay, M. & Jenkins, T. Absence of myotonic dystrophy in southern African Negroids is associated with a significantly lower number of CTG trinucleotide repeats. J. Med. Genet. 31, 37–40 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gennarelli, M. et al. CTG repeats distribution and Alu insertion polymorphism at myotonic dystrophy (DM) gene in Amhara and Oromo populations of Ethiopia. Hum. Genet. 105, 165–167 (1999).

    CAS  PubMed  Google Scholar 

  56. Chiurazzi, P. et al. Extended gene diversity at the FMR1 locus and neighbouring CA repeats in a sub-Saharan population. Am. J. Med. Genet. 64, 216–219 (1996).

    CAS  PubMed  Google Scholar 

  57. Ritchie, R. J., Chakrabarti, L., Knight, S. J., Harding, R. M. & Davies, K. E. Population genetics of the FRAXE and FRAXF GCC repeats, and a novel CGG repeat, in Xq28. Am. J. Med. Genet. 73, 463–469 (1997).

    CAS  PubMed  Google Scholar 

  58. Peprah, E. K., Allen, E. G., Williams, S. M., Woodard, L. M. & Sherman, S. L. Genetic diversity of the fragile X syndrome gene (FMR1) in a large sub-Saharan West African population. Ann. Hum. Genet. 74, 316–325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Levesley, J. Investigating allele sequence diversity at the Huntington disease loci HTT and JPH3 in African ancestry individuals. The University of the Witwatersrand: Electronic Theses and Dissertations https://wiredspace.wits.ac.za/items/25004bb1-ea69-4035-bec5-1134d077c768. (2021).

  60. Ibañez, K. et al. Population frequency of repeat expansions indicates increased disease prevalence estimates across different populations. Preprint at: medRxiv https://doi.org/10.1101/2023.07.03.23292162 (2023).

  61. Squitieri, F. et al. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum. Mol. Genet. 3, 2103–2114 (1994).

    CAS  PubMed  Google Scholar 

  62. Ciosi, M. et al. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine 48, 568–580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178, 887–900.e14 (2019).

    Google Scholar 

  64. Wright, G. E. B. et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am. J. Hum. Genet. 104, 1116–1126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dawson, J. et al. A probable cis-acting genetic modifier of Huntington disease frequent in individuals with African ancestry. HGG Adv. 3, 100130 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maiuri, T. et al. DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurotherapeutics 16, 948–956 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162, 516–526 (2015).

    Google Scholar 

  68. Lee, J. et al. Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. Am. J. Hum. Genet. 109, 885–899 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenstein, P. E., Vonsattel, J. G., Margolis, R. L. & Joseph, J. T. Huntington’s disease like-2 neuropathology. Mov. Disord. 22, 1416–1423 (2007).

    PubMed  Google Scholar 

  70. Walker, R. H. et al. Autosomal dominant chorea-acanthocytosis with polyglutamine-containing neuronal inclusions. Neurology 58, 1031–1037 (2002).

    CAS  PubMed  Google Scholar 

  71. Walker, R. H. et al. Huntington’s disease-like 2 can present as chorea-acanthocytosis. Neurology 61, 1002–1004 (2003).

    CAS  PubMed  Google Scholar 

  72. Krause, A., Temlett, J. & Van der Meyden, K. CAG/CTG repeat expansions at the HDL2 locus are a common cause of Huntington disease in Black South Africans (Abstr.). Am. J. Hum. Genet. 71, 528 (2002).

    Google Scholar 

  73. Rudnicki, D. D., Pletnikova, O., Vonsattel, J. G., Ross, C. A. & Margolis, R. L. A comparison of Huntington disease and Huntington disease-like 2 neuropathology. J. Neuropathol. Exp. Neurol. 67, 366–374 (2008).

    PubMed  Google Scholar 

  74. Anderson, D. G. et al. Emerging differences between Huntington’s disease-like 2 and Huntington’s disease: a comparison using MRI brain volumetry. Neuroimage Clin. 21, 101666 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Stevanin, G. et al. CAG/CTG repeat expansions at the Huntington’s disease-like 2 locus are rare in Huntington’s disease patients. Neurology 58, 965–967 (2002).

    CAS  PubMed  Google Scholar 

  76. Schneider, S. A., Marshall, K. E., Xiao, J. & LeDoux, M. S. JPH3 repeat expansions cause a progressive akinetic-rigid syndrome with severe dementia and putaminal rim in a five-generation African-American family. Neurogenetics 13, 133–140 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Walker, R. H., Jankovic, J., O’Hearn, E. & Margolis, R. L. Phenotypic features of Huntington’s disease-like 2. Mov. Disord. 18, 1527–1530 (2003).

    PubMed  Google Scholar 

  78. Mulroy, E. et al. Huntington disease like 2 (HDL-2) with parkinsonism and abnormal DAT-SPECT — a novel observation. Parkinsonism Relat. Disord. 71, 46–48 (2020).

    PubMed  Google Scholar 

  79. [No authors listed] Unified Huntington’s disease rating scale: reliability and consistency. Huntington Study Group.Mov. Disord. 11, 136–142 (1996).

    Google Scholar 

  80. Lasker, A. G. & Zee, D. S. Ocular motor abnormalities in Huntington’s disease. Vis. Res. 37, 3639–3645 (1997).

    CAS  PubMed  Google Scholar 

  81. Rosenblatt, A. et al. Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov. Disord. 27, 272–276 (2012).

    PubMed  Google Scholar 

  82. Rudnicki, D. D. et al. Huntington’s disease-like 2 is associated with CUG repeat-containing RNA foci. Ann. Neurol. 61, 272–282 (2007).

    CAS  PubMed  Google Scholar 

  83. Ferreira-Correia, A., Krause, A. & Anderson, D. G. The neuropsychiatry of Huntington disease-like 2: a comparison with Huntington’s disease. J. Huntingt. Dis. 9, 325–334 (2020).

    CAS  Google Scholar 

  84. Margolis, R. L. & Holmes, S. E. Huntington’s disease-like 2: a clinical, pathological, and molecular comparison to Huntington’s disease. Clin. Neurosci. Res. 3, 187–196 (2003).

    CAS  Google Scholar 

  85. Duff, K. et al. Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol. Psychiatry 62, 1341–1346 (2007).

    PubMed  Google Scholar 

  86. Fischer, C. A., Licht, E. A. & Mendez, M. F. The neuropsychiatric manifestations of Huntington’s disease-like 2. J. Neuropsychiatry Clin. Neurosci. 24, 489–492 (2012).

    PubMed  Google Scholar 

  87. Castilhos, R. M. et al. Huntington disease and Huntington disease-like in a case series from Brazil. Clin. Genet. 86, 373–377 (2014).

    CAS  PubMed  Google Scholar 

  88. Paradisi, I., Ikonomu, V. & Arias, S. Huntington disease-like 2 (HDL2) in Venezuela: frequency and ethnic origin. J. Hum. Genet. 58, 3–6 (2013).

    CAS  PubMed  Google Scholar 

  89. Ferreira-Correia, A., Anderson, D. G., Cockcroft, K. & Krause, A. The neuropsychological deficits and dissociations in Huntington disease-like 2: a series of case-control studies. Neuropsychologia 136, 107238 (2020).

    PubMed  Google Scholar 

  90. Ferreira-Correia, A., Anderson, D. G., Cockcroft, K. & Krause, A. A comparison between the neurocognitive profile of Huntington disease-like 2 and Huntington disease: exploring the presence of double dissociations. Appl. Neuropsychol. Adult 29, 223–233 (2022).

    PubMed  Google Scholar 

  91. Ferreira-Correia, A. & Cockcroft, K. Controlling for inequality in neuropsychological assessment: using Crawford and Howell’s (1998) single-case methodology with norms from demographically homogeneous groups of South Africans. S. Afr. J. Psychol.53, https://doi.org/10.1177/0081246322115100 (2023).

  92. Roussakis, A. & Piccini, P. PET imaging in Huntington’s disease. J. Huntingt. Dis. 4, 287–296 (2015).

    Google Scholar 

  93. Gamez, J. et al. Does reduced [123I]-FP-CIT binding in Huntington’s disease suggest pre-synaptic dopaminergic involvement? Clin. Neurol. Neurosurg. 112, 870–875 (2010).

    PubMed  Google Scholar 

  94. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    CAS  PubMed  Google Scholar 

  95. Danek, A. & Walker, R. H. Neuroacanthocytosis. Curr. Opin. Neurol. 18, 386–392 (2005).

    PubMed  Google Scholar 

  96. Anderson, D. G. et al. Absence of acanthocytosis in Huntington’s disease-like 2: a prospective comparison with Huntington’s disease. Tremor Other Hyperkinet Mov. 7, 512 (2017).

    Google Scholar 

  97. Walker, R. H. & Danek, A. “Neuroacanthocytosis” — overdue for a taxonomic update. Tremor Other Hyperkinet Mov. 11, 1 (2021).

    Google Scholar 

  98. Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020).

    PubMed  Google Scholar 

  99. Iyer, R. R. & Pluciennik, A. DNA mismatch repair and its role in Huntington’s disease. J. Huntingt. Dis. 10, 75–94 (2021).

    CAS  Google Scholar 

  100. Marti, E. RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 26, 779–786 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Banez-Coronel, M. et al. RAN translation in Huntington disease. Neuron 88, 667–677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl Acad. Sci. USA 110, 2366–2370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chung, D. W., Rudnicki, D. D., Yu, L. & Margolis, R. L. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum. Mol. Genet. 20, 3467–3477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Saudou, F. & Humbert, S. The biology of huntingtin. Neuron 89, 910–926 (2016).

    CAS  PubMed  Google Scholar 

  105. Lehnart, S. E. & Wehrens, X. H. T. The role of junctophilin proteins in cellular function. Physiol. Rev. 102, 1211–1261 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Piggott, C. A. et al. Caenorhabditis elegans junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. Genetics 218, iyab063 (2021).

    PubMed  PubMed Central  Google Scholar 

  107. Takeshima, H., Komazaki, S., Nishi, M., Iino, M. & Kangawa, K. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11–22 (2000).

    CAS  PubMed  Google Scholar 

  108. Landstrom, A. P., Beavers, D. L. & Wehrens, X. H. T. The junctophilin family of proteins: from bench to bedside. Trends Mol. Med. 20, 353–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kakizawa, S., Moriguchi, S., Ikeda, A., Iino, M. & Takeshima, H. Functional crosstalk between cell-surface and intracellular channels mediated by junctophilins essential for neuronal functions. Cerebellum 7, 385–391 (2008).

    CAS  PubMed  Google Scholar 

  110. Takeshima, H., Hoshijima, M. & Song, L. Ca2+ microdomains organized by junctophilins. Cell Calcium 58, 349–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sahu, G. et al. Junctophilin proteins tether a Cav1-RyR2-KCa3.1 tripartite complex to regulate neuronal excitability. Cell. Rep. 28, 2427–2442.e6 (2019).

    CAS  PubMed  Google Scholar 

  112. Guo, A. et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362, eaan3303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lahiri, S. K. et al. Nuclear localization of a novel calpain-2 mediated junctophilin-2 C-terminal cleavage peptide promotes cardiomyocyte remodeling. Basic Res. Cardiol. 115, 49 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Nishi, M. et al. Motor discoordination in mutant mice lacking junctophilin type 3. Biochem. Biophys. Res. Commun. 292, 318–324 (2002).

    CAS  PubMed  Google Scholar 

  115. Calpena, E. et al. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis. Model. Mech. 11, dmm029082 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bourinaris, T. et al. Allelic and phenotypic heterogeneity in Junctophillin-3 related neurodevelopmental and movement disorders. Eur. J. Hum. Genet. 29, 1027–1031 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Steel, D. et al. Both heterozygous and homozygous loss-of-function JPH3 variants are associated with a paroxysmal movement disorder. Mov. Disord. 38, 155–157 (2023).

    CAS  PubMed  Google Scholar 

  119. Auerbach, W. et al. The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum. Mol. Genet. 10, 2515–2523 (2001).

    CAS  PubMed  Google Scholar 

  120. Murthy, V. et al. Hypomorphic mutation of the mouse Huntington’s disease gene orthologue. PLoS Genet. 15, e1007765 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Timchenko, L. Development of therapeutic approaches for myotonic dystrophies type 1 and type 2. Int. J. Mol. Sci. 23, 10491 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wilburn, B. et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 70, 427–440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nucifora, F. C. J. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    CAS  PubMed  Google Scholar 

  124. Rodrigues, G. R. et al. Clinical and genetic analysis of 29 Brazilian patients with Huntington’s disease-like phenotype. Arq. Neuropsiquiatr. 69, 419–423 (2011).

    PubMed  Google Scholar 

  125. Bonomo, R. et al. Deep brain stimulation in Huntington’s disease: a literature review. Neurol. Sci. 42, 4447–4457 (2021).

    PubMed  Google Scholar 

  126. Yu, H., Takahashi, K., Bloom, L., Quaynor, S. D. & Xie, T. Effect of deep brain stimulation on swallowing function: a systematic review. Front. Neurol. 11, 547 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Testa, C. M. & Jankovic, J. Huntington disease: a quarter century of progress since the gene discovery. J. Neurol. Sci. 396, 52–68 (2019).

    CAS  PubMed  Google Scholar 

  128. Jiang, J., Tang, M., Huang, Z. & Chen, L. Junctophilins emerge as novel therapeutic targets. J. Cell. Physiol. 234, 16933–16943 (2019).

    CAS  PubMed  Google Scholar 

  129. Sathe, S. et al. Enroll-HD: an integrated clinical research platform and worldwide observational study for Huntington’s disease. Front. Neurol. 12, 667420 (2021).

    PubMed  PubMed Central  Google Scholar 

  130. Magazi, D. S. et al. Huntington’s disease: genetic heterogeneity in black African patients. S. Afr. Med. J. 98, 200–203 (2008).

    CAS  PubMed  Google Scholar 

  131. Vasconcellos, L. F. R. et al. Huntington’s Disease like 2 presenting with isolated Parkinsonism. J. Neurol. Sci. 373, 105–106 (2017).

    PubMed  Google Scholar 

  132. Teive, H. A. G. et al. Huntington’s disease-like 2: the first case report in Latin America in a patient without African ethnic origin. Mov. Disord. 22, S27 (2007).

    Google Scholar 

  133. Seeley, A. H. et al. Macrocerebellum, epilepsy, intellectual disability, and gut malrotation in a child with a 16q24.1-q24.2 contiguous gene deletion. Am. J. Med. Genet. A 164A, 2062–2068 (2014).

    PubMed  Google Scholar 

  134. Perni, S. & Beam, K. Neuronal junctophilins recruit specific CaV and RyR isoforms to ER-PM junctions and functionally alter CaV2.1 and CaV2.2. eLife 10, e64249 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.K., D.G.A., A.F.-C. and R.L.M. researched data for the article and made substantial contributions to discussions of the content, and each wrote a section. J.D. and F.B.-S. contributed to the Genetics section. J.D. generated some of the unpublished data mentioned in the article. P.P.L. contributed to the Pathogenesis section and references. All authors edited and reviewed the document before submission.

Corresponding author

Correspondence to Amanda Krause.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks R. Walker, S. Schneider and E. Wild for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acanthocytes

Red blood cells with spiculated protrusions from the cell membrane of varying size and distribution.

Anticipation

A phenomenon whereby disease onset occurs earlier and more severely with each successive generation.

Synonymous sequence variation

DNA sequence variation that does not change the amino acid sequence of the encoded protein.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, A., Anderson, D.G., Ferreira-Correia, A. et al. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 20, 36–49 (2024). https://doi.org/10.1038/s41582-023-00906-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00906-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing