Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Idiopathic intracranial hypertension: a step change in understanding the disease mechanisms

Abstract

The understanding of idiopathic intracranial hypertension (IIH) has evolved over the past few years. Previously, IIH was considered a disease exclusively affecting the neuro-ophthalmic axis, characterized by raised intracranial pressure, headache and papilloedema, and resulting in the risk of severe and permanent visual loss and life-changing disabling headaches. Recent advances have begun to redefine IIH as a probable metabolic disease involving a range of systemic manifestations. More than 95% of individuals affected by the disease are women of reproductive age with obesity. The incidence is rapidly rising and parallels the escalating worldwide obesity rates. Contemporary insights identify associations with insulin resistance, type 2 diabetes and a twofold increased risk of cardiovascular disease in excess of that driven by obesity alone. Adipose distribution in people with IIH, like that in other metabolic diseases, is preferentially centripetal and is associated with changes in intracranial pressure. Evidence now demonstrates adipose tissue dysfunction in people with IIH, involving transcriptional and metabolic priming for lipogenesis and weight gain. Hormonal perturbations are also observed, including a unique phenotype of androgen excess that promotes cerebrospinal fluid secretion. Knowledge of these additional disease features is driving research into novel therapeutic targets and altering the approach to multidisciplinary care.

Key points

  • Idiopathic intracranial hypertension (IIH) is emerging as a probable metabolic disease encompassing a range of systemic manifestations.

  • Key disease features of IIH are broadening to include impaired fertility, gestational diabetes, pre-eclampsia, increased risk of cardiometabolic complications and reversible cognitive dysfunction.

  • Comorbid associated conditions include polycystic ovarian syndrome, obstructive sleep apnoea, anxiety and depression.

  • A positive relationship between headache and intracranial pressure has been observed, and specific signalling pathways have been speculated to be mechanistic drivers of IIH headaches.

  • Weight loss is established as the only disease-modifying therapy, with bariatric surgery delivering sustained control of intracranial pressure.

  • New therapeutic avenues are emerging to target metabolic pathways. The glucagon-like peptide 1 receptor agonist exenatide has been demonstrated to significantly reduce intracranial pressure in a randomized placebo-controlled trial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical coherence tomography showing global RNFL progression.
Fig. 2: Optical coherence tomography disc volume assessment.
Fig. 3: OCT infrared and cross-sectional image.

Similar content being viewed by others

References

  1. Friedman, D. I., Liu, G. T. & Digre, K. B. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 81, 1159–1165 (2013).

    PubMed  Google Scholar 

  2. Mollan, S. P. et al. Idiopathic intracranial hypertension: consensus guidelines on management. J. Neurol. Neurosurg. Psychiatry 89, 1088–1100 (2018). Consensus guidelines for management of IIH.

    PubMed  Google Scholar 

  3. Wakerley, B. R., Mollan, S. P. & Sinclair, A. J. Idiopathic intracranial hypertension: update on diagnosis and management. Clin. Med. 20, 384–388 (2020).

    Google Scholar 

  4. Mollan, S. P., Aguiar, M., Evison, F., Frew, E. & Sinclair, A. J. The expanding burden of idiopathic intracranial hypertension. Eye 33, 478–485 (2019).

    PubMed  Google Scholar 

  5. Adderley, N. J. et al. Association between idiopathic intracranial hypertension and risk of cardiovascular diseases in women in the United Kingdom. JAMA Neurol. 76, 1088–1098 (2019). Cohort study showing increased risk of diabetes and cardiovascular disorders in IIH.

    PubMed  PubMed Central  Google Scholar 

  6. Miah, L. et al. Incidence, prevalence and healthcare outcomes in idiopathic intracranial hypertension: a population study. Neurology 96, e1251–e1261 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Friedman, D. I. & Jacobson, D. M. Idiopathic intracranial hypertension. J. Neuroophthalmol. 24, 138–145 (2004).

    PubMed  Google Scholar 

  8. Mollan, S. P., Grech, O., Alimajstorovic, Z., Wakerley, B. R. & Sinclair, A. J. New horizons for idiopathic intracranial hypertension: advances and challenges. Br. Med. Bull. 136, 118–126 (2020).

    CAS  PubMed  Google Scholar 

  9. McCluskey, G. et al. Meta-analysis and systematic review of population-based epidemiological studies in idiopathic intracranial hypertension. Eur. J. Neurol. 25, 1218–1227 (2018).

    CAS  PubMed  Google Scholar 

  10. Raoof, N., Sharrack, B., Pepper, I. M. & Hickman, S. J. The incidence and prevalence of idiopathic intracranial hypertension in Sheffield, UK. Eur. J. Neurol. 18, 1266–1268 (2011).

    CAS  PubMed  Google Scholar 

  11. Corbett, J. J. et al. Visual loss in pseudotumor cerebri. Follow-up of 57 patients from five to 41 years and a profile of 14 patients with permanent severe visual loss. Arch. Neurol. 39, 461–474 (1982).

    CAS  PubMed  Google Scholar 

  12. Best, J., Silvestri, G., Burton, B., Foot, B. & Acheson, J. The incidence of blindness due to idiopathic intracranial hypertension in the UK. Open Ophthalmol. J. 7, 26–29 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Yri, H. M., Rönnbäck, C., Wegener, M., Hamann, S. & Jensen, R. H. The course of headache in idiopathic intracranial hypertension: a 12-month prospective follow-up study. Eur. J. Neurol. 21, 1458–1464 (2014).

    CAS  PubMed  Google Scholar 

  14. Wall, M. et al. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol. 71, 693–701 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Bono, F. et al. Cerebrospinal fluid pressure-related features in chronic headache: a prospective study and potential diagnostic implications. Front. Neurol. 9, 1090 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Vieira, D. S. et al. Idiopathic intracranial hypertension with and without papilloedema in a consecutive series of patients with chronic migraine. Cephalalgia 28, 609–613 (2008).

    CAS  PubMed  Google Scholar 

  17. Wang, S. J., Silberstein, S. D., Patterson, S. & Young, W. B. Idiopathic intracranial hypertension without papilledema: a case-control study in a headache center. Neurology 51, 245–249 (1998).

    CAS  PubMed  Google Scholar 

  18. De Simone, R. et al. Intracranial pressure in unresponsive chronic migraine. J. Neurol. 261, 1365–1373 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Digre, K. B. et al. A comparison of idiopathic intracranial hypertension with and without papilledema. Headache 49, 185–193 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Mollan, S. P., Chong, Y. J., Grech, O., Sinclair, A. J. & Wakerley, B. R. Current perspectives on idiopathic intracranial hypertension without papilloedema. Life 11, 472 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Mollan, S. P., Tahrani, A. A. & Sinclair, A. J. The potentially modifiable risk factor in idiopathic intracranial hypertension: body weight. Neurol. Clin. Pract. 11, e504–e507 (2021).

    PubMed  PubMed Central  Google Scholar 

  22. Thaller, M. et al. The idiopathic intracranial hypertension prospective cohort study: evaluation of prognostic factors and outcomes. J. Neurol. 270, 851–863 (2022).

    PubMed  PubMed Central  Google Scholar 

  23. Adderley, N. J. et al. Headache, opiate use, and prescribing trends in women with idiopathic intracranial hypertension: a population-based matched cohort study. Neurology 99, e1968–e1978 (2022). Cohort study showing the challenges and difficulties of treating headache in IIH.

    PubMed  PubMed Central  Google Scholar 

  24. Biousse, V. & Newman, N. J. The expanding spectrum of idiopathic intracranial hypertension. Eye 37, 2361–2364 (2022).

    PubMed  Google Scholar 

  25. Thaller, M., Mytton, J., Wakerley, B. R., Mollan, S. P. & Sinclair, A. J. Idiopathic intracranial hypertension: evaluation of births and fertility through the hospital episode statistics dataset. BJOG 129, 2019–2027 (2022). Cohort study showing increased risk of pregnancy complications and reduced fertility in IIH.

    PubMed  PubMed Central  Google Scholar 

  26. Grech, O. et al. Cognitive performance in idiopathic intracranial hypertension and relevance of intracranial pressure. Brain Commun. 3, fcab202 (2021). Clinical study assessing the relationship between IIH and cognitive performance.

    PubMed  PubMed Central  Google Scholar 

  27. Yiangou, A. et al. Obstructive sleep apnoea in women with idiopathic intracranial hypertension: a sub-study of the idiopathic intracranial hypertension weight randomised controlled trial (IIH: WT). J. Neurol. 269, 1945–1956 (2022). Clinical study evaluating the relationship between IIH and OSA.

    PubMed  Google Scholar 

  28. Mollan, S. P. et al. Depression and anxiety in women with idiopathic intracranial hypertension compared to migraine: a matched controlled cohort study. Headache 63, 290–298 (2023). Cohort study highlighting co-morbid depression and anxiety in IIH.

    PubMed  Google Scholar 

  29. Thaller, M., Adderley, N. J., Subramanian, A., Mollan, S. P. & Sinclair, A. J. Co-morbid polycystic ovarian syndrome with idiopathic intracranial hypertension.Neuroophthalmology 47, 49–52 (2023).

    PubMed  Google Scholar 

  30. Sørensen, P. S., Thomsen, A. M. & Gjerris, F. Persistent disturbances of cognitive functions in patients with pseudotumor cerebri. Acta Neurol. Scand. 73, 264–268 (1986).

    PubMed  Google Scholar 

  31. Yri, H. M., Fagerlund, B., Forchhammer, H. B. & Jensen, R. H. Cognitive function in idiopathic intracranial hypertension: a prospective case-control study. BMJ Open 4, e004376 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Zur, D., Naftaliev, E. & Kesler, A. Evidence of multidomain mild cognitive impairment in idiopathic intracranial hypertension. J. Neuroophthalmol. 35, 26–30 (2015).

    PubMed  Google Scholar 

  33. Wang, W. et al. Detecting cognitive impairment in idiopathic intracranial hypertension using ocular motor and neuropsychological testing. Front. Neurol. 12, 772513 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Martins, I. P., Gil-Gouveia, R., Silva, C., Maruta, C. & Oliveira, A. G. Migraine, headaches, and cognition. Headache 52, 1471–1482 (2012).

    PubMed  Google Scholar 

  35. Begasse de Dhaem, O. & Robbins, M. S. Cognitive impairment in primary and secondary headache disorders. Curr. Pain Headache Rep. 26, 391–404 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F. & Gordon, E. Obesity is associated with memory deficits in young and middle-aged adults. Eat. Weight Disord. 11, e15–e19 (2006).

    CAS  PubMed  Google Scholar 

  37. Fitzpatrick, S., Gilbert, S. & Serpell, L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning. Neuropsychol. Rev. 23, 138–156 (2013).

    PubMed  Google Scholar 

  38. Butters, M. A. et al. The nature and determinants of neuropsychological functioning in late-life depression. Arch. Gen. Psychiatry 61, 587–595 (2004).

    PubMed  Google Scholar 

  39. Elbanhawy, I. A., Ramzy, G. M., Basheer, M. A. & Khedr, D. M. Neurophysiologic tests screening cognitive impairment in idiopathic intracranial hypertension patients. Egypt. J. Neurol. Psychiatr. Neurosurg. 54, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Thaller, M. et al. Managing idiopathic intracranial hypertension in pregnancy: practical advice. Pract. Neurol. 22, 295–300 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Joham, A. E., Teede, H. J., Ranasinha, S., Zoungas, S. & Boyle, J. Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study. J. Womens Health 24, 299–307 (2015).

    Google Scholar 

  42. Glueck, C. J., Iyengar, S., Goldenberg, N., Smith, L. S. & Wang, P. Idiopathic intracranial hypertension: associations with coagulation disorders and polycystic-ovary syndrome. J. Lab. Clin. Med. 142, 35–45 (2003).

    CAS  PubMed  Google Scholar 

  43. Glueck, C. J. et al. Changes in weight, papilledema, headache, visual field, and life status in response to diet and metformin in women with idiopathic intracranial hypertension with and without concurrent polycystic ovary syndrome or hyperinsulinemia. Transl. Res. 148, 215–222 (2006).

    CAS  PubMed  Google Scholar 

  44. Glueck, C. J. et al. Idiopathic intracranial hypertension, polycystic-ovary syndrome, and thrombophilia. J. Lab. Clin. Med. 145, 72–82 (2005).

    PubMed  Google Scholar 

  45. Avisar, I., Gaton, D. D., Dania, H. & Stiebel-Kalish, H. The prevalence of polycystic ovary syndrome in women with idiopathic intracranial hypertension. Scientifica 2012, 708042 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Lennon, C., Voss, K. & Vitek, W. S. Preconception health optimization in women with polycystic ovary syndrome — how to find the time? Curr. Opin. Endocrinol. Diabetes Obes. 29, 541–546 (2022).

    PubMed  Google Scholar 

  47. Joham, A. E. et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 10, 668–680 (2022).

    CAS  PubMed  Google Scholar 

  48. Marcus, D. M. et al. Sleep disorders: a risk factor for pseudotumor cerebri? J. Neuroophthalmol. 21, 121–123 (2001).

    CAS  PubMed  Google Scholar 

  49. Lee, A. G. et al. Sleep apnea and intracranial hypertension in men. Ophthalmology 109, 482–485 (2002).

    PubMed  Google Scholar 

  50. Purvin, V. A., Kawasaki, A. & Yee, R. D. Papilledema and obstructive sleep apnea syndrome. Arch. Ophthalmol. 118, 1626–1630 (2000).

    CAS  PubMed  Google Scholar 

  51. Thurtell, M. J. et al. Obstructive sleep apnea in idiopathic intracranial hypertension: comparison with matched population data. J. Neurol. 260, 1748–1751 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kapur, V. K. et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 13, 479–504 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Lee, J. J. & Sundar, K. M. Evaluation and management of adults with obstructive sleep apnea syndrome. Lung 199, 87–101 (2021).

    PubMed  Google Scholar 

  54. Patil, S. P. et al. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 15, 335–343 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Chung, F. et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology 108, 812–821 (2008).

    PubMed  Google Scholar 

  56. Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14, 540–545 (1991).

    CAS  PubMed  Google Scholar 

  57. Netzer, N. C., Stoohs, R. A., Netzer, C. M., Clark, K. & Strohl, K. P. Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann. Intern. Med. 131, 485–491 (1999).

    CAS  PubMed  Google Scholar 

  58. Kok, L. T. et al. Prevalence and utility of overnight pulse oximetry as a screening tool for obstructive sleep apnoea in newly diagnosed idiopathic intracranial hypertension. Eye 37, 537–542 (2023).

    PubMed  Google Scholar 

  59. Puustinen, T. et al. Psychiatric disorders are a common prognostic marker for worse outcome in patients with idiopathic intracranial hypertension. Clin. Neurol. Neurosurg. 186, 105527 (2019).

    PubMed  Google Scholar 

  60. Donaldson, L., Dezard, V., Chen, M. & Margolin, E. Depression and generalized anxiety symptoms in idiopathic intracranial hypertension: prevalence, under-reporting and effect on visual outcome. J. Neurol. Sci. 434, 120120 (2022).

    PubMed  Google Scholar 

  61. Korsbæk, J. J., Beier, D., Hagen, S. M., Molander, L. D. & Jensen, R. H. Psychiatric comorbidities in patients with idiopathic intracranial hypertension: a prospective cohort study. Neurology https://doi.org/10.1212/wnl.0000000000200548 (2022).

    Article  PubMed  Google Scholar 

  62. Kleinschmidt, J. J., Digre, K. B. & Hanover, R. Idiopathic intracranial hypertension: relationship to depression, anxiety, and quality of life. Neurology 54, 319–324 (2000).

    CAS  PubMed  Google Scholar 

  63. Ferrari, M. D. et al. Migraine. Nat. Rev. Dis. Prim. 8, 2 (2022).

    PubMed  Google Scholar 

  64. Amiri, P. et al. Migraine: a review on its history, global epidemiology, risk factors, and comorbidities. Front. Neurol. 12, 800605 (2021).

    PubMed  Google Scholar 

  65. Frisén, L. Swelling of the optic nerve head: a staging scheme. J. Neurol. Neurosurg. Psychiatry 45, 13–18 (1982).

    PubMed  PubMed Central  Google Scholar 

  66. Sinclair, A. J. et al. Rating papilloedema: an evaluation of the Frisén classification in idiopathic intracranial hypertension. J. Neurol. 259, 1406–1412 (2012).

    PubMed  Google Scholar 

  67. El-Dairi, M. A. et al. Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri. J. AAPOS 11, 564–570 (2007).

    PubMed  Google Scholar 

  68. Uysal, T. F., Cengiz, A., Reyhan, G. & Hatice, D. Retinal nerve fiber layer analysis in idiopathic intracranial hypertension. Neurol. India 54, 168–172 (2006).

    PubMed  Google Scholar 

  69. Scott, C. J., Kardon, R. H., Lee, A. G., Frisén, L. & Wall, M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch. Ophthalmol. 128, 705–711 (2010).

    PubMed  Google Scholar 

  70. Fard, M. A., Fakhree, S., Abdi, P., Hassanpoor, N. & Subramanian, P. S. Quantification of peripapillary total retinal volume in pseudopapilledema and mild papilledema using spectral-domain optical coherence tomography. Am. J. Ophthalmol. 158, 136–143 (2014).

    PubMed  Google Scholar 

  71. Costello, F., Malmqvist, L. & Hamann, S. The role of optical coherence tomography in differentiating optic disc drusen from optic disc edema. Asia Pac. J. Ophthalmol. 7, 271–279 (2018).

    Google Scholar 

  72. Hamann, S., Malmqvist, L. & Costello, F. Optic disc drusen: understanding an old problem from a new perspective. Acta Ophthalmol. 96, 673–684 (2018).

    PubMed  Google Scholar 

  73. Jivraj, I. et al. Utility of spectral-domain optical coherence tomography in differentiating papilledema from pseudopapilledema: a prospective longitudinal study. J. Neuroophthalmol. 41, e509–e515 (2021).

    PubMed  PubMed Central  Google Scholar 

  74. Fraser, J. A., Sibony, P. A., Petzold, A., Thaung, C. & Hamann, S. Peripapillary hyper-reflective ovoid mass-like structure (PHOMS): an optical coherence tomography marker of axoplasmic stasis in the optic nerve head. J. Neuroophthalmol. 41, 431–441 (2021).

    PubMed  PubMed Central  Google Scholar 

  75. Malhotra, K., Padungkiatsagul, T. & Moss, H. E. Optical coherence tomography use in idiopathic intracranial hypertension. Ann. Eye Sci. 5, 7 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. Patel, M. D., Malhotra, K., Shirazi, Z. & Moss, H. E. Methods for quantifying optic disc volume and peripapillary deflection volume using radial optical coherence tomography scans and association with intracranial pressure. Front. Neurol. 10, 798 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Auinger, P. et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest. Ophthalmol. Vis. Sci. 55, 8173–8179 (2014).

    PubMed  Google Scholar 

  78. Albrecht, P. et al. Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension. J. Neurol. 264, 1370–1380 (2017).

    PubMed  Google Scholar 

  79. Kaufhold, F. et al. Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One 7, e36965 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vijay, V. et al. Using optical coherence tomography as a surrogate of measurements of intracranial pressure in idiopathic intracranial hypertension. JAMA Ophthalmol. 138, 1264–1271 (2020). Data from three clinical studies demonstrating the advances and usefulness of OCT in IIH as a surrogate for disease activity.

    PubMed  Google Scholar 

  81. Mollan, S. P. et al. Visual field pointwise analysis of the Idiopathic intracranial hypertension weight trial (IIH:WT). Transl. Vis. Sci. Technol. 12, 1 (2023).

    PubMed  PubMed Central  Google Scholar 

  82. Sarica, A. et al. Periventricular white matter changes in idiopathic intracranial hypertension. Ann. Clin. Transl. Neurol. 6, 233–242 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Cello, K. E., Keltner, J. L., Johnson, C. A. & Wall, M. Factors affecting visual field outcomes in the idiopathic intracranial hypertension treatment trial. J. Neuroophthalmol. 36, 6–12 (2016).

    PubMed  Google Scholar 

  84. Junoy Montolio, F. G., Wesselink, C., Gordijn, M. & Jansonius, N. M. Factors that influence standard automated perimetry test results in glaucoma: test reliability, technician experience, time of day, and season. Invest. Ophthalmol. Vis. Sci. 53, 7010–7017 (2012).

    PubMed  Google Scholar 

  85. Qureshi, A., Virdee, J., Tsermoulas, G., Sinclair, A. J. & Mollan, S. P. Optical coherence tomography confirms shunt malfunction and recurrence of raised intracranial pressure in optic atrophy. Br. J. Neurosurg. 36, 185–191 (2022).

    PubMed  Google Scholar 

  86. Galloway, L. et al. Cerebrospinal fluid shunting protocol for idiopathic intracranial hypertension for an improved revision rate. J. Neurosurg. 136, 1790–1795 (2021).

    PubMed  Google Scholar 

  87. Omidbeigi, M. et al. Telemetric intracranial pressure monitoring: a systematic review. Neurocrit. Care 34, 291–300 (2021).

    PubMed  Google Scholar 

  88. Norager, N. H., Lilja-Cyron, A., Hansen, T. S. & Juhler, M. Deciding on appropriate telemetric intracranial pressure monitoring system. World Neurosurg. 126, 564–569 (2019).

    PubMed  Google Scholar 

  89. Lilja, A., Andresen, M., Hadi, A., Christoffersen, D. & Juhler, M. Clinical experience with telemetric intracranial pressure monitoring in a Danish neurosurgical center. Clin. Neurol. Neurosurg. 120, 36–40 (2014).

    PubMed  Google Scholar 

  90. Mitchell, J. L., Mollan, S. P., Vijay, V. & Sinclair, A. J. Novel advances in monitoring and therapeutic approaches in idiopathic intracranial hypertension. Curr. Opin. Neurol. 32, 422–431 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Mitchell, J. L., Mollan, S. P., Tsermoulas, G. & Sinclair, A. J. Telemetric monitoring in idiopathic intracranial hypertension demonstrates intracranial pressure in a case with sight-threatening disease. Acta Neurochir. 163, 725–731 (2021).

    PubMed  Google Scholar 

  92. Afshari, F. T. et al. Interpretation of telemetric intracranial pressure recordings in people with idiopathic intracranial hypertension after shunt implantation. Acta Neurochir. 165, 1523–1531 (2023).

    PubMed  Google Scholar 

  93. Mollan, S. P. et al. A neuro-ophthalmologist’s guide to advances in intracranial pressure measurements. Eye Brain 15, 113–124 (2023).

    PubMed  PubMed Central  Google Scholar 

  94. Rajagopal, V. & Lumsden, D. E. Best BETs from the Manchester Royal Infirmary. BET 4: does leg position alter cerebrospinal fluid opening pressure during lumbar puncture? Emerg. Med. J. 30, 771–773 (2013).

    PubMed  Google Scholar 

  95. Yiangou, A. et al. Therapeutic lumbar puncture for headache in idiopathic intracranial hypertension: minimal gain, is it worth the pain? Cephalalgia 39, 245–253 (2019).

    PubMed  Google Scholar 

  96. Mitchell, J. L. et al. Evaluation of diurnal and postural intracranial pressure employing telemetric monitoring in idiopathic intracranial hypertension. Fluids Barriers CNS 19, 85 (2022). Clinical study providing insights into ICP physiology in IIH.

    PubMed  PubMed Central  Google Scholar 

  97. Tsermoulas, G. et al. The Birmingham standardized idiopathic intracranial hypertension shunt protocol: technical note. World Neurosurg. 167, 147–151 (2022).

    PubMed  Google Scholar 

  98. Pennacchietti, V. et al. Single center experiences with telemetric intracranial pressure measurements in patients with CSF circulation disturbances. Acta Neurochir. 162, 2487–2497 (2020).

    PubMed  Google Scholar 

  99. Norager, N. H., Lilja-Cyron, A., Bjarkam, C. R., Duus, S. & Juhler, M. Telemetry in intracranial pressure monitoring: sensor survival and drift. Acta Neurochir. 160, 2137–2144 (2018).

    PubMed  Google Scholar 

  100. Velazquez Sanchez, V. F., Al Dayri, G. & Tschan, C. A. Long-term telemetric intracranial pressure monitoring for diagnosis and therapy optimisation of idiopathic intracranial hypertension. BMC Neurol. 21, 343 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kommer, M. et al. Telemetric intracranial pressure: a snapshot does not give the full story. Acta Neurochir. Suppl. 131, 323–324 (2021).

    PubMed  Google Scholar 

  102. D’Antona, L. et al. Effect of position on intracranial pressure and compliance: a cross-sectional study including 101 patients. J. Neurosurg. 136, 1781–1789 (2021).

    PubMed  Google Scholar 

  103. Czosnyka, M. & Pickard, J. D. Monitoring and interpretation of intracranial pressure. J. Neurol. Neurosurg. Psychiatry 75, 813–821 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pennacchietti, V., Schaumann, A. & Thomale, U. W. Maneuver protocol for outpatient telemetric intracranial pressure monitoring in hydrocephalus patients. Childs Nerv. Syst. 39, 185–195 (2023).

    PubMed  Google Scholar 

  105. Evensen, K. B. & Eide, P. K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 17, 34 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Czosnyka, M. et al. Monitoring and interpretation of intracranial pressure after head injury. Acta Neurochir. Suppl. 96, 114–118 (2006).

    CAS  PubMed  Google Scholar 

  107. Kawoos, U., McCarron, R. M., Auker, C. R. & Chavko, M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int. J. Mol. Sci. 16, 28979–28997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wagshul, M. E., Eide, P. K. & Madsen, J. R. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8, 5 (2011).

    PubMed  PubMed Central  Google Scholar 

  109. Mollan, S. P., Grech, O. & Sinclair, A. J. Headache attributed to idiopathic intracranial hypertension and persistent post-idiopathic intracranial hypertension headache: a narrative review. Headache 61, 808–816 (2021).

    PubMed  Google Scholar 

  110. Friedman, D. I. et al. Headache in idiopathic intracranial hypertension: findings from the idiopathic intracranial hypertension treatment trial. Headache 57, 1195–1205 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Mulla, Y. et al. Headache determines quality of life in idiopathic intracranial hypertension. J. Headache Pain 16, 521 (2015).

    PubMed  Google Scholar 

  112. Wang, M. T. M., Bhatti, M. T. & Danesh-Meyer, H. V. Idiopathic intracranial hypertension: pathophysiology, diagnosis and management. J. Clin. Neurosci. 95, 172–179 (2022).

    CAS  PubMed  Google Scholar 

  113. Souza, M. N. P., Costa, B. A. L., Santos, F. & Fortini, I. Update on idiopathic intracranial hypertension management. Arq. Neuropsiquiatr. 80, 227–231 (2022).

    PubMed  PubMed Central  Google Scholar 

  114. Yiangou, A. et al. Erenumab for headaches in idiopathic intracranial hypertension: a prospective open-label evaluation. Headache 61, 157–169 (2021). Clinical study suggesting the involvement of CGRP in IIH headache.

    PubMed  Google Scholar 

  115. Raggi, A. et al. Headache frequency and symptoms of depression as predictors of disability in patients with idiopathic intracranial hypertension. Neurol. Sci. 39, 139–140 (2018).

    PubMed  Google Scholar 

  116. Yri, H. M. & Jensen, R. H. Idiopathic intracranial hypertension: clinical nosography and field-testing of the ICHD diagnostic criteria. A case-control study. Cephalalgia 35, 553–562 (2015).

    PubMed  Google Scholar 

  117. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Google Scholar 

  118. Tassorelli, C. et al. The usefulness and applicability of a basic headache diary before first consultation: results of a pilot study conducted in two centres. Cephalalgia 28, 1023–1030 (2008).

    CAS  PubMed  Google Scholar 

  119. Gago-Veiga, A. B. et al. Headache: what to ask, how to examine, and which scales to use. Recommendations of the Spanish Society of Neurology’s Headache Study Group. Neurologia https://doi.org/10.1016/j.nrl.2018.12.006 (2019).

    Article  PubMed  Google Scholar 

  120. Eigenbrodt, A. K. et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 17, 501–514 (2021).

    PubMed  PubMed Central  Google Scholar 

  121. Zigmond, A. S. & Snaith, R. P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67, 361–370 (1983).

    CAS  PubMed  Google Scholar 

  122. Dowson, A. J. Assessing the impact of migraine. Curr. Med. Res. Opin. 17, 298–309 (2001).

    CAS  PubMed  Google Scholar 

  123. Mollan, S. P. et al. Intracranial pressure directly predicts headache morbidity in idiopathic intracranial hypertension. J. Headache Pain 22, 118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ware, J. E. Jr. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    PubMed  Google Scholar 

  125. Hays, R. D., Sherbourne, C. D. & Mazel, R. M. The RAND 36-Item Health Survey 1.0. Health Econ. 2, 217–227 (1993).

    CAS  PubMed  Google Scholar 

  126. Mollan, S. et al. What are the research priorities for idiopathic intracranial hypertension? A priority setting partnership between patients and healthcare professionals. BMJ Open 9, e026573 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Grech, O. et al. Emerging themes in idiopathic intracranial hypertension. J. Neurol. 267, 3776–3784 (2020).

    PubMed  PubMed Central  Google Scholar 

  128. Mollan, S. P. et al. Evolving evidence in adult idiopathic intracranial hypertension: pathophysiology and management. J. Neurol. Neurosurg. Psychiatry 87, 982–992 (2016).

    PubMed  Google Scholar 

  129. Brinker, T., Stopa, E., Morrison, J. & Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Tariq, K. et al. Cerebrospinal fluid production rate in various pathological conditions: a preliminary study. Acta Neurochir. 165, 2309–2319 (2023).

    PubMed  Google Scholar 

  131. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bothwell, S. W., Janigro, D. & Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 16, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Steinruecke, M., Tiefenbach, J., Park, J. J. & Kaliaperumal, C. Role of the glymphatic system in idiopathic intracranial hypertension. Clin. Neurol. Neurosurg. 222, 107446 (2022).

    PubMed  Google Scholar 

  134. Nicholson, P. et al. Idiopathic intracranial hypertension: glymphedema of the brain. J. Neuroophthalmol. 41, 93–97 (2021).

    PubMed  Google Scholar 

  135. Eide, P. K., Hasan-Olive, M. M., Hansson, H. A. & Enger, R. Increased occurrence of pathological mitochondria in astrocytic perivascular endfoot processes and neurons of idiopathic intracranial hypertension. J. Neurosci. Res. 99, 467–480 (2021).

    CAS  PubMed  Google Scholar 

  136. Wall, M. Idiopathic intracranial hypertension. Neurol. Clin. 9, 73–95 (1991).

    CAS  PubMed  Google Scholar 

  137. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 894, 1–253 (2000).

    Google Scholar 

  138. Subramaniam, S. & Fletcher, W. A. Obesity and weight loss in idiopathic intracranial hypertension: a narrative review. J. Neuroophthalmol. 37, 197–205 (2017).

    PubMed  Google Scholar 

  139. Kesler, A., Hadayer, A., Goldhammer, Y., Almog, Y. & Korczyn, A. D. Idiopathic intracranial hypertension: risk of recurrences. Neurology 63, 1737–1739 (2004).

    CAS  PubMed  Google Scholar 

  140. Yiangou, A. et al. Calcitonin gene related peptide monoclonal antibody treats headache in patients with active idiopathic intracranial hypertension. J. Headache Pain 21, 116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mollan, S. P. et al. Association of amount of weight lost after bariatric surgery with intracranial pressure in women with idiopathic intracranial hypertension. Neurology 14, 542 (2022).

    Google Scholar 

  142. Kesler, A., Kliper, E., Shenkerman, G. & Stern, N. Idiopathic intracranial hypertension is associated with lower body adiposity. Ophthalmology 117, 169–174 (2010).

    PubMed  Google Scholar 

  143. Klein, A., Stern, N., Osher, E., Kliper, E. & Kesler, A. Hyperandrogenism is associated with earlier age of onset of idiopathic intracranial hypertension in women. Curr. Eye Res. 38, 972–976 (2013).

    CAS  PubMed  Google Scholar 

  144. Hu, F. Measurements of Adiposity and Body Composition In Obesity Epidemiology 58-83 (Oxford University Press, 2008).

  145. Hornby, C. et al. Evaluating the fat distribution in idiopathic intracranial hypertension using dual-energy x-ray absorptiometry scanning. Neuroophthalmology 42, 99–104 (2018).

    PubMed  Google Scholar 

  146. Whiteley, W., Al-Shahi, R., Warlow, C. P., Zeidler, M. & Lueck, C. J. CSF opening pressure: reference interval and the effect of body mass index. Neurology 67, 1690–1691 (2006).

    CAS  PubMed  Google Scholar 

  147. Bono, F. et al. Obesity does not induce abnormal CSF pressure in subjects with normal cerebral MR venography. Neurology 59, 1641–1643 (2002).

    CAS  PubMed  Google Scholar 

  148. Wakerley, B. R. et al. Cerebrospinal fluid opening pressure: the effect of body mass index and body composition. Clin. Neurol. Neurosurg. 188, 105597 (2020).

    CAS  PubMed  Google Scholar 

  149. Wang, F. et al. Population-based evaluation of lumbar puncture opening pressures. Front. Neurol. 10, 899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Malm, J., Jacobsson, J., Birgander, R. & Eklund, A. Reference values for CSF outflow resistance and intracranial pressure in healthy elderly. Neurology 76, 903–909 (2011).

    PubMed  Google Scholar 

  151. Fleischman, D. et al. Cerebrospinal fluid pressure decreases with older age. PLoS One 7, e52664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Avery, R. A. et al. Reference range for cerebrospinal fluid opening pressure in children. N. Engl. J. Med. 363, 891–893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Avery, R. A. Reference range of cerebrospinal fluid opening pressure in children: historical overview and current data. Neuropediatrics 45, 206–211 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Westgate, C. S. et al. Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension. JCI Insight 6, e145346 (2021). Study showing increased insulin resistance, leptin secretion and dysfunctional adipose tissue in IIH.

    PubMed  PubMed Central  Google Scholar 

  155. Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

    CAS  PubMed  Google Scholar 

  156. Arner, P. & Rydén, M. Human white adipose tissue: a highly dynamic metabolic organ. J. Intern. Med. 291, 611–621 (2022).

    CAS  PubMed  Google Scholar 

  157. Kassubek, R. et al. Morphological alterations of the hypothalamus in idiopathic intracranial hypertension. Ther. Adv. Chronic Dis. 13, 20406223221141354 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kawwass, J. F., Sanders, K. M., Loucks, T. L., Rohan, L. C. & Berga, S. L. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum. Reprod. 32, 1450–1456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Taylor, A. E., Keevil, B. & Huhtaniemi, I. T. Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur. J. Endocrinol. 173, D1–D12 (2015).

    CAS  PubMed  Google Scholar 

  160. O’Reilly, M. W. et al. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI Insight 4, e125348 (2019). Study showing that people with IIH have a unique signature of androgen excess and that androgens can modulate CSF dynamics.

    PubMed  PubMed Central  Google Scholar 

  161. Wardman, J. H. et al. Modelling idiopathic intracranial hypertension in rats: contributions of high fat diet and testosterone to intracranial pressure and cerebrospinal fluid production.Fluids Barriers CNS 20, 44 (2023). IIH animal model study examining the effect of diet and testosterone on ICP and CSF dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hornby, C., Mollan, S. P., Botfield, H., OʼReilly, M. W. & Sinclair, A. J. Metabolic concepts in idiopathic intracranial hypertension and their potential for therapeutic intervention. J. Neuroophthalmol. 38, 522–530 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Hornby, C. et al. What do transgender patients teach us about idiopathic intracranial hypertension. Neuroophthalmology 41, 326–329 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Valcamonico, F. et al. Idiopathic intracranial hypertension: a possible complication in the natural history of advanced prostate cancer. Int. J. Urol. 21, 335–337 (2014).

    PubMed  Google Scholar 

  165. Mongraw-Chaffin, M. L. et al. Association between sex hormones and adiposity: qualitative differences in women and men in the multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 100, E596–E600 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Schiffer, L., Kempegowda, P., Arlt, W. & O’Reilly, M. W. Mechanisms in endocrinology: the sexually dimorphic role of androgens in human metabolic disease. Eur. J. Endocrinol. 177, R125–R143 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kesler, A., Goldhammer, Y. & Gadoth, N. Do men with pseudomotor cerebri share the same characteristics as women? A retrospective review of 141 cases. J. Neuroophthalmol. 21, 15–17 (2001).

    CAS  PubMed  Google Scholar 

  168. Digre, K. B. & Corbett, J. J. Pseudotumor cerebri in men. Arch. Neurol. 45, 866–872 (1988).

    CAS  PubMed  Google Scholar 

  169. Fraser, J. A. et al. Risk factors for idiopathic intracranial hypertension in men: a case-control study. J. Neurol. Sci. 290, 86–89 (2010).

    PubMed  Google Scholar 

  170. Gathercole, L. L. et al. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr. Rev. 34, 525–555 (2013).

    CAS  PubMed  Google Scholar 

  171. Westgate, C. S. J. et al. Increased systemic and adipose 11β-HSD1 activity in idiopathic intracranial hypertension. Eur. J. Endocrinol. 187, 323–333 (2022). Study showing a dysregulated glucocorticoid phenotype in IIH.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sinclair, A. J. et al. Cerebrospinal fluid corticosteroid levels and cortisol metabolism in patients with idiopathic intracranial hypertension: a link between 11β-HSD1 and intracranial pressure regulation? J. Clin. Endocrinol. Metab. 95, 5348–5356 (2010).

    CAS  PubMed  Google Scholar 

  173. Sinclair, A. J. et al. Corticosteroids, 11β-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. J. Neuroendocrinol. 19, 614–620 (2007).

    CAS  PubMed  Google Scholar 

  174. Alimajstorovic, Z. et al. Cerebrospinal fluid dynamics modulation by diet and cytokines in rats. Fluids Barriers CNS 17, 10 (2020). Metabolomics study highlighting perturbed metabolic pathways in IIH.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Alimajstorovic, Z. et al. Dysregulation of amino acid, lipid, and acylpyruvate metabolism in idiopathic intracranial hypertension: a non-targeted case control and longitudinal metabolomic study. J. Proteome Res. 22, 1127–1137 (2022).

    PubMed  PubMed Central  Google Scholar 

  176. Alimajstorovic, Z. et al. Determining the role of novel metabolic pathways in driving intracranial pressure reduction after weight loss.Brain Commun. https://doi.org/10.1093/braincomms/fcad272 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Buchwald, H. The evolution of metabolic/bariatric surgery. Obes. Surg. 24, 1126–1135 (2014).

    PubMed  Google Scholar 

  178. O’Brien, P. E. et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes. Surg. 29, 3–14 (2019).

    PubMed  Google Scholar 

  179. Iliou, A. et al. Metabolic phenotyping and cardiovascular disease: an overview of evidence from epidemiological settings. Heart 107, 1123–1129 (2021).

    CAS  PubMed  Google Scholar 

  180. Gambineri, A. et al. Female infertility: which role for obesity. Int. J. Obes. Suppl. 9, 65–72 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Visser, J. A. The importance of metabolic dysfunction in polycystic ovary syndrome. Nat. Rev. Endocrinol. 17, 77–78 (2021).

    CAS  PubMed  Google Scholar 

  182. Hu, M., Li, J., Baker, P. N. & Tong, C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J. 289, 336–354 (2022).

    CAS  PubMed  Google Scholar 

  183. Digre, K. B. et al. Quality of life in idiopathic intracranial hypertension at diagnosis: IIH treatment trial results. Neurology 84, 2449–2456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chavan, J. M. & Joseph, M. Clinical profile and ophthalmological manifestations of idiopathic intracranial hypertension in adults at a tertiary care center in India: a cross-sectional study. Indian J. Ophthalmol. 70, 3393–3397 (2022).

    PubMed  PubMed Central  Google Scholar 

  185. Ashina, H. et al. Post-traumatic headache: epidemiology and pathophysiological insights. Nat. Rev. Neurol. 15, 607–617 (2019).

    PubMed  Google Scholar 

  186. Friedman, D. I. Headaches in idiopathic intracranial hypertension. J. Neuroophthalmol. 39, 82–93 (2019).

    PubMed  Google Scholar 

  187. Markey, K. et al. 11β-Hydroxysteroid dehydrogenase type 1 inhibition in idiopathic intracranial hypertension: a double-blind randomized controlled trial. Brain Commun. 2, fcz050 (2020). Clinical trial assessing the effectiveness of 11β-HSD1 inhibition in IIH.

    PubMed  PubMed Central  Google Scholar 

  188. Westgate, C. S. J., Israelsen, I. M. E., Jensen, R. H. & Eftekhari, S. Understanding the link between obesity and headache — with focus on migraine and idiopathic intracranial hypertension. J. Headache Pain 22, 123 (2021).

    PubMed  PubMed Central  Google Scholar 

  189. Ashina, H. et al. CGRP-induced migraine-like headache in persistent post-traumatic headache attributed to mild traumatic brain injury. J. Headache Pain 23, 135 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ashina, M. et al. Migraine and the trigeminovascular system — 40 years and counting. Lancet Neurol. 18, 795–804 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. Suzuki, K., Suzuki, S., Shiina, T., Kobayashi, S. & Hirata, K. Central sensitization in migraine: a narrative review. J. Pain Res. 15, 2673–2682 (2022).

    PubMed  PubMed Central  Google Scholar 

  192. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    PubMed  PubMed Central  Google Scholar 

  193. Ekizoglu, E., Baykan, B., Orhan, E. K. & Ertas, M. The analysis of allodynia in patients with idiopathic intracranial hypertension. Cephalalgia 32, 1049–1058 (2012).

    PubMed  Google Scholar 

  194. Woolf, C. J. & Wall, P. D. Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J. Neurosci. 6, 1433–1442 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lipton, R. B. et al. Cutaneous allodynia in the migraine population. Ann. Neurol. 63, 148–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  196. Edvinsson, L., Haanes, K. A., Warfvinge, K. & Krause, D. N. CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat. Rev. Neurol. 14, 338–350 (2018).

    CAS  PubMed  Google Scholar 

  197. Wei, D. Y. & Goadsby, P. J. Cluster headache pathophysiology — insights from current and emerging treatments. Nat. Rev. Neurol. 17, 308–324 (2021).

    CAS  PubMed  Google Scholar 

  198. Ashina, H. et al. Low plasma levels of calcitonin gene-related peptide in persistent post-traumatic headache attributed to mild traumatic brain injury. Cephalalgia 40, 1276–1282 (2020).

    PubMed  Google Scholar 

  199. Ashina, H. & Dodick, D. W. Post-traumatic headache: pharmacologic management and targeting CGRP signaling. Curr. Neurol. Neurosci. Rep. 22, 105–111 (2022).

    PubMed  Google Scholar 

  200. Koumprentziotis, I. A. & Mitsikostas, D. D. Therapies targeting CGRP signaling for medication overuse headache. Curr. Opin. Neurol. 35, 353–359 (2022).

    CAS  PubMed  Google Scholar 

  201. Kopruszinski, C. M. et al. CGRP monoclonal antibody prevents the loss of diffuse noxious inhibitory controls (DNIC) in a mouse model of post-traumatic headache. Cephalalgia 41, 749–759 (2021).

    PubMed  Google Scholar 

  202. Navratilova, E. et al. CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice. Cephalalgia 39, 1762–1775 (2019).

    PubMed  Google Scholar 

  203. Grech, O. et al. Nuclear magnetic resonance spectroscopy metabolomics in idiopathic intracranial hypertension to identify markers of disease and headache. Neurology 99, e1702–e1714 (2022). Metabolomics study measuring changes in metabolism associated with IIH clinical markers.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kennedy, A. C., Linton, A. L. & Eaton, J. C. Urea levels in cerebrospinal fluid after haemodialysis. Lancet 1, 410–411 (1962).

    CAS  PubMed  Google Scholar 

  205. Mistry, K. Dialysis disequilibrium syndrome prevention and management. Int. J. Nephrol. Renovasc. Dis. 12, 69–77 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Maxwell, C. R., Spangenberg, R. J., Hoek, J. B., Silberstein, S. D. & Oshinsky, M. L. Acetate causes alcohol hangover headache in rats. PLoS One 5, e15963 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Mollan, S. P., Mytton, J., Tsermoulas, G. & Sinclair, A. J. Idiopathic intracranial hypertension: evaluation of admissions and emergency readmissions through the hospital episode statistic dataset between 2002-2020. Life 11, 417 (2021).

    PubMed  PubMed Central  Google Scholar 

  208. Mollan, S. P., Sinclair, A. J. & Tsermoulas, G. Letter: cerebrospinal fluid shunting for idiopathic intracranial hypertension: a systematic review, meta-analysis, and implications for a modern management protocol. Neurosurgery 19, e59–e60 (2022).

    Google Scholar 

  209. Sinclair, A. J. et al. Low energy diet and intracranial pressure in women with idiopathic intracranial hypertension: prospective cohort study. BMJ 341, c2701 (2010).

    PubMed  PubMed Central  Google Scholar 

  210. Newborg, B. Pseudotumor cerebri treated by rice reduction diet. Arch. Intern. Med. 133, 802–807 (1974).

    CAS  PubMed  Google Scholar 

  211. Mollan, S. P. et al. Effectiveness of bariatric surgery vs community weight management intervention for the treatment of idiopathic intracranial hypertension: a randomized clinical trial. JAMA Neurol. 78, 678–686 (2021). Clinical trial showing the effectiveness of bariatric surgery for weight loss and treatment of IIH.

    PubMed  PubMed Central  Google Scholar 

  212. Aguiar, M. et al. The health economic evaluation of bariatric surgery versus a community weight management intervention analysis from the idiopathic intracranial hypertension weight trial (IIH:WT). Life 11, 409 (2021).

    PubMed  PubMed Central  Google Scholar 

  213. Elliot, L. et al. Cost-effectiveness of bariatric surgery versus community weight management to treat obesity-related idiopathic intracranial hypertension: evidence from a single-payer healthcare system. Surg. Obes. Relat. Dis. 17, 1310–1316 (2021).

    PubMed  PubMed Central  Google Scholar 

  214. Kalyvas, A. et al. A systematic review of surgical treatments of idiopathic intracranial hypertension (IIH). Neurosurg. Rev. 44, 773–792 (2021).

    PubMed  Google Scholar 

  215. Welbourn, R. et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the fourth IFSO global registry report 2018. Obes. Surg. 29, 782–795 (2019).

    PubMed  Google Scholar 

  216. Piper, R. J. et al. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst. Rev. 2015, CD003434 (2015). Cochrane systematic review concluding that not enough evidence exists to establish an effective treatment in IIH.

    PubMed  PubMed Central  Google Scholar 

  217. Ball, A. K. et al. A randomised controlled trial of treatment for idiopathic intracranial hypertension. J. Neurol. 258, 874–881 (2011).

    CAS  PubMed  Google Scholar 

  218. Celebisoy, N., Gökçay, F., Sirin, H. & Akyürekli, O. Treatment of idiopathic intracranial hypertension: topiramate vs acetazolamide, an open-label study. Acta Neurol. Scand. 116, 322–327 (2007).

    CAS  PubMed  Google Scholar 

  219. Wakerley, B. R., Tan, M. H. & Ting, E. Y. Idiopathic intracranial hypertension. Cephalalgia 35, 248–261 (2015).

    CAS  PubMed  Google Scholar 

  220. Wall, M. et al. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 311, 1641–1651 (2014). Clinical trial assessing the effectiveness of acetazolamide for treatment of IIH.

    PubMed  Google Scholar 

  221. Wall, M. Idiopathic intracranial hypertension. Neurol. Clin. 28, 593–617 (2010).

    PubMed  PubMed Central  Google Scholar 

  222. Scotton, W. J. et al. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia 39, 209–218 (2019).

    PubMed  Google Scholar 

  223. Davson, H. & Segal, M. B. The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J. Physiol. 209, 131–153 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Panagopoulos, G. N. et al. Octreotide: a therapeutic option for idiopathic intracranial hypertension. Neurol. Neurophysiol. Neurosci.1 (2007).

  225. Pascarella, A., Manzo, L. & Bono, F. Effect of mannitol bolus administration on cerebrospinal fluid pressure in patients with idiopathic intracranial hypertension: a pilot study. J. Neurol. 269, 6158–6164 (2022).

    CAS  PubMed  Google Scholar 

  226. Scotton, W. J. et al. Characterising the patient experience of diagnostic lumbar puncture in idiopathic intracranial hypertension: a cross-sectional online survey. BMJ Open 8, e020445 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Lyons, H. S. et al. Multiple lumbar punctures aiming to relieve headache results in iatrogenic spinal hematoma: a case report. J. Med. Case Rep. 16, 464 (2022).

    PubMed  PubMed Central  Google Scholar 

  228. Hoffmann, J. et al. European Headache Federation guideline on idiopathic intracranial hypertension. J. Headache Pain 19, 93 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Ettinger, A. B. Psychotropic effects of antiepileptic drugs. Neurology 67, 1916–1925 (2006).

    CAS  PubMed  Google Scholar 

  230. deSouza, R. M., Toma, A. & Watkins, L. Medication overuse headache - an under-diagnosed problem in shunted idiopathic intracranial hypertension patients. Br. J. Neurosurg. 29, 30–34 (2015).

    PubMed  Google Scholar 

  231. Carlsen, L. N. et al. Comparison of 3 treatment strategies for medication overuse headache: a randomized clinical trial. JAMA Neurol. 77, 1069–1078 (2020).

    PubMed  Google Scholar 

  232. Lai, J. T. et al. Should we educate about the risks of medication overuse headache. J. Headache Pain 15, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  233. Frerichs, L., Nandy, K. & Friedman, D. I. Use of anti-CGRP monoclonal antibodies to treat headache in patients with idiopathic intracranial hypertension: a retrospective study (P10-2.006). Neurology 98, 2260 (2022).

    Google Scholar 

  234. Hardy, R. S. et al. 11βHSD1 inhibition with AZD4017 improves lipid profiles and lean muscle mass in idiopathic intracranial hypertension. J. Clin. Endocrinol. Metab. 106, 174–187 (2021).

    PubMed  Google Scholar 

  235. Andersen, A., Lund, A., Knop, F. K. & Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018).

    CAS  PubMed  Google Scholar 

  236. Rubino, D. et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 325, 1414–1425 (2021).

    CAS  PubMed  Google Scholar 

  237. Sarma, S. & Palcu, P. Weight loss between glucagon-like peptide-1 receptor agonists and bariatric surgery in adults with obesity: a systematic review and meta-analysis. Obesity 30, 2111–2121 (2022).

    PubMed  Google Scholar 

  238. Guo, X. et al. The antiobesity effect and safety of GLP1 receptor agonist in overweight/obese patients without diabetes: a systematic review and meta-analysis. Horm. Metab. Res. 54, 458–471 (2022).

    CAS  PubMed  Google Scholar 

  239. Botfield, H. F. et al. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus. Sci. Transl. Med. 9, eaan0972 (2017). Animal study showing the involvement of GLP1 in increased ICP.

    PubMed  Google Scholar 

  240. Pollay, M. et al. Choroid plexus Na+/K+-activated adenosine triphosphatase and cerebrospinal fluid formation. Neurosurgery 17, 768–772 (1985).

    CAS  PubMed  Google Scholar 

  241. Carraro-Lacroix, L. R., Malnic, G. & Girardi, A. C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 297, F1647–F1655 (2009).

    CAS  Google Scholar 

  242. Mitchell, J. L. et al. The effect of exenatide on intracranial pressure in idiopathic intracranial hypertension, IIH pressure: a randomised clinical trial. Brain 146, 1821–1830 (2023). Clinical trial assessing the effectiveness of a GLP1R agonist, exenatide, for the treatment of IIH.

    PubMed  PubMed Central  Google Scholar 

  243. Krajnc, N. et al. Treatment with GLP1 receptor agonists is associated with significant weight loss and favorable headache outcomes in idiopathic intracranial hypertension. J. Headache Pain 24, 89 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Gurney, S. P., Ramalingam, S., Thomas, A., Sinclair, A. J. & Mollan, S. P. Exploring the current management idiopathic intracranial hypertension, and understanding the role of dural venous sinus stenting. Eye Brain 12, 1–13 (2020).

    PubMed  PubMed Central  Google Scholar 

  245. Hyder, Y. F. et al. Defining the phenotype and prognosis of people with Idiopathic Intracranial Hypertension after cerebrospinal fluid diversion surgery. Am. J. Ophthalmol. 250, 70–81 (2023).

    PubMed  Google Scholar 

  246. Sinclair, A. J. et al. Is cerebrospinal fluid shunting in idiopathic intracranial hypertension worthwhile? A 10-year review. Cephalalgia 31, 1627–1633 (2011).

    PubMed  Google Scholar 

  247. Hagen, S. M. et al. Unilateral optic nerve sheath fenestration in idiopathic intracranial hypertension: a 6-month follow-up study on visual outcome and prognostic markers. Life 11, 778 (2021).

    PubMed  PubMed Central  Google Scholar 

  248. Thaller, M., Homer, V., Mollan, S. P. & Sinclair, A. J. Disease course and long-term outcomes in pregnant women with idiopathic intracranial hypertension: the IIH prospective maternal health study. Neurology 100, e1598–e1610 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Seay, M. D. & Digre, K. B. Idiopathic intracranial hypertension from benign to fulminant: diagnostic and management issues. Ann. Indian Acad. Neurol. 25, S59–S64 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alexandra J. Sinclair.

Ethics declarations

Competing interests

A.Y. declares speaker fees from TEVA UK, 2020; grants/funding for a fellowship from the Association of British Neurologists and Guarantors of the Brain. S.P.M. is a member of the advisory boards for Invex Therapeutics (2020/2021/2022) and Gensight (2022) and declares consultant fees from Invex Therapeutics (Trial Steering Group and Independent Adjudication Committee Fees 2022) and the Velux Foundation (2021), speaker fees from Heidelberg Engineering (2020/2021/2022), Chugai (2021/2022), and Chiesi (2020/2021), royalties/licenses from Springer Publishing: Neuro-OphthalmologyGlobal Trends in Diagnosis, Treatment and Management. S.P.M. also declares membership of the following organizational arms, without re-imbursement: North American Neuro-Ophthalmology Society (Abstract Committee, Membership Committee, International Relations Committee), UK Neuro-Ophthalmology Society (Secretary), British Isles Neuro-Ophthalmology Club (Treasurer), and United Kingdom Cerebrospinal Fluid Annual Meeting (Convener), and is a member of the editorial boards for Eye (Nature Portfolio) and Journal of Neuro-Ophthalmology (Springer). A.J.S. declares personal fees, share options and shareholding from Invex therapeutics, speaker fees from Allergan-AbbVie, Novartis and Teva UK, other fees from Amgen, Chiesi and Lundbeck, and grants/funding for research studies from the National Institute for Health Research, Medical Research Council, Sir Jules Thorn Trust, and the UK Space Agency.

Peer review

Peer review information

Nature Reviews Neurology thanks Francesco Bono and Steffen Hamann for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiangou, A., Mollan, S.P. & Sinclair, A.J. Idiopathic intracranial hypertension: a step change in understanding the disease mechanisms. Nat Rev Neurol 19, 769–785 (2023). https://doi.org/10.1038/s41582-023-00893-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00893-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing