Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tau-targeting therapies for Alzheimer disease: current status and future directions

Abstract

Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.

Key points

  • The limited success of amyloid-β-targeting therapies for Alzheimer disease (AD) has led to a shift in focus towards the tau protein — the main component of the neurofibrillary tangles that comprise the other major pathological hallmark of AD.

  • Therapies targeting the expression, post-translational modifications, aggregation and clearance of tau have advanced to testing in humans. These therapies have been largely safe and well tolerated.

  • The clinical efficacy of tau-targeting therapies has yet to be established and some trials have failed; however, multiple trials are ongoing and new candidates continue to enter trials.

  • Antisense oligonucleotides have shown promising results in testing in humans for reducing tau expression, and larger studies will determine whether these findings translate into clinical benefits.

  • Most of the tau-targeting therapies in ongoing trials are immunotherapies, which can target tau intracellularly and/or extracellularly, although extracellular targeting alone is less likely to be effective.

  • The choice of epitope, the antibody subclass and its charge, the patient population and the mechanism of action must all be carefully considered when selecting antibodies and vaccines for clinical trials. Ideally, antibodies should be thoroughly retested after humanization, as this process might alter their properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tau-related therapeutic targets.
Fig. 2: Current status of clinical trials of tau-targeting drugs.
Fig. 3: Proposed modes of action of anti-tau antibodies.
Fig. 4: Modified immunotherapy strategies.

Similar content being viewed by others

References

  1. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. [No authors listed] 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789 (2022).

    Google Scholar 

  3. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public. Health 7, e105–e125 (2022).

    Google Scholar 

  4. Panza, F., Lozupone, M., Logroscino, G. & Imbimbo, B. P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 15, 73–88 (2019).

    PubMed  Google Scholar 

  5. Jeremic, D., Jimenez-Diaz, L. & Navarro-Lopez, J. D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Res. Rev. 72, 101496 (2021).

    CAS  PubMed  Google Scholar 

  6. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    PubMed  Google Scholar 

  7. Alzforum. U.S. FDA gives green light to Leqembi, aka lecanemab. Alzforum https://www.alzforum.org/news/research-news/us-fda-gives-green-light-leqembi-aka-lecanemab (2023).

  8. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease. JAMA 330, 512–527 (2023).

    CAS  PubMed  Google Scholar 

  9. Lilly. Lilly’s donanemab significantly slowed cognitive and functional decline in phase 3 study of early Alzheimer’s disease. Lilly https://investor.lilly.com/news-releases/news-release-details/lillys-donanemab-significantly-slowed-cognitive-and-functional (2023).

  10. Tissot, C. et al. Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer’s disease. Alzheimers Dement. 7, e12154 (2021).

    Google Scholar 

  11. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Ge, X. et al. Association of tau pathology with clinical symptoms in the subfields of hippocampal formation. Front. Aging Neurosci. 13, 672077 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639 (1992).

    CAS  PubMed  Google Scholar 

  14. Arriagada, P. V., Marzloff, K. & Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42, 1681–1688 (1992).

    CAS  PubMed  Google Scholar 

  15. Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

    PubMed  Google Scholar 

  16. Dronse, J. et al. In vivo patterns of tau pathology, amyloid-β burden, and neuronal dysfunction in clinical variants of Alzheimer’s disease. J. Alzheimers Dis. 55, 465–471 (2017).

    CAS  PubMed  Google Scholar 

  17. Robinson, J. L. et al. Primary tau pathology, not copathology, correlates with clinical symptoms in PSP and CBD. J. Neuropathol. Exp. Neurol. 79, 296–304 (2020).

    CAS  PubMed  Google Scholar 

  18. Chung, D. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular and pathological heterogeneity of primary tauopathies. Mol. Neurodegener. 16, 57 (2021).

    PubMed Central  Google Scholar 

  19. Zhang, Y., Wu, K. M., Yang, L., Dong, Q. & Yu, J. T. Tauopathies: new perspectives and challenges. Mol. Neurodegener. 17, 28 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. Ferreira, D. et al. The hippocampal sparing subtype of Alzheimer’s disease assessed in neuropathology and in vivo tau positron emission tomography: a systematic review. Acta Neuropathol. Commun. 10, 166 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. Neurology 94, 436–448 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Arima, K. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies. Neuropathology 26, 475–483 (2006).

    PubMed  Google Scholar 

  25. Jin, N. et al. Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci. Rep. 5, 8187 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Leroy, K., Yilmaz, Z. & Brion, J. P. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33, 43–55 (2007).

    CAS  PubMed  Google Scholar 

  27. Pei, J. J. et al. Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration. Brain Res. 797, 267–277 (1998).

    CAS  PubMed  Google Scholar 

  28. Tseng, H. C., Zhou, Y., Shen, Y. & Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett. 523, 58–62 (2002).

    CAS  PubMed  Google Scholar 

  29. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    CAS  PubMed  Google Scholar 

  30. Yarza, R., Vela, S., Solas, M. & Ramirez, M. J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol. 6, 321 (2015).

    PubMed  Google Scholar 

  31. Sontag, J. M. & Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front. Mol. Neurosci. 7, 16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taleski, G. & Sontag, E. Protein phosphatase 2A and tau: an orchestrated ‘pas de deux’. FEBS Lett. 592, 1079–1095 (2018).

    CAS  PubMed  Google Scholar 

  33. Frautschy, S. A., Baird, A. & Cole, G. M. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc. Natl Acad. Sci. USA 88, 8362–8366 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kowall, N. W., McKee, A. C., Yankner, B. A. & Beal, M. F. In vivo neurotoxicity of beta-amyloid [β(1-40)] and the β(25-35) fragment. Neurobiol. Aging 13, 537–542 (1992).

    CAS  PubMed  Google Scholar 

  35. Hernandez, P., Lee, G., Sjoberg, M. & Maccioni, R. B. Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: involvement of lipid rafts. J. Alzheimers Dis. 16, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  36. Kirouac, L., Rajic, A. J., Cribbs, D. H. & Padmanabhan, J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro 4, ENEURO.0149-16.2017 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Ma, Q. L. et al. β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nassif, M. et al. β-Amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3β, and PTEN. Neurochem. Int. 50, 229–235 (2007).

    CAS  PubMed  Google Scholar 

  39. Otth, C. et al. AβPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J. Alzheimers Dis. 4, 417–430 (2002).

    CAS  PubMed  Google Scholar 

  40. Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J. & Lorens, S. A. Bilateral injections of amyloid-β 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol. Aging 18, 591–608 (1997).

    CAS  PubMed  Google Scholar 

  41. Sigurdsson, E. M., Lorens, S. A., Hejna, M. J., Dong, X. W. & Lee, J. M. Local and distant histopathological effects of unilateral amyloid-β 25-35 injections into the amygdala of young F344 rats. Neurobiol. Aging 17, 893–901 (1996).

    CAS  PubMed  Google Scholar 

  42. Takashima, A. et al. Exposure of rat hippocampal neurons to amyloid β peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β. Neurosci. Lett. 203, 33–36 (1996).

    CAS  PubMed  Google Scholar 

  43. Terwel, D. et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol. 172, 786–798 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Town, T. et al. p35/Cdk5 pathway mediates soluble amyloid-β peptide-induced tau phosphorylation in vitro. J. Neurosci. Res. 69, 362–372 (2002).

    CAS  PubMed  Google Scholar 

  45. Augustinack, J. C., Schneider, A., Mandelkow, E. M. & Hyman, B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 103, 26–35 (2002).

    CAS  PubMed  Google Scholar 

  46. Luna-Munoz, J., Chavez-Macias, L., Garcia-Sierra, F. & Mena, R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J. Alzheimers Dis. 12, 365–375 (2007).

    CAS  PubMed  Google Scholar 

  47. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713.e13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moloney, C. M. et al. Phosphorylated tau sites that are elevated in Alzheimer’s disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain. Alzheimers Dement. https://doi.org/10.1002/alz.12749 (2022).

    Article  PubMed  Google Scholar 

  49. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    CAS  PubMed  Google Scholar 

  50. Neddens, J. et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun. 6, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Kimura, S. & Shiota, K. Sequential changes of programmed cell death in developing fetal mouse limbs and its possible roles in limb morphogenesis. J. Morphol. 229, 337–346 (1996).

    CAS  PubMed  Google Scholar 

  52. Mair, W. et al. FLEXITau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal. Chem. 88, 3704–3714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Regalado-Reyes, M. et al. Phospho-tau changes in the human CA1 during Alzheimer’s disease progression. J. Alzheimers Dis. 69, 277–288 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Samimi, N. et al. Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiol. Aging 108, 72–79 (2021).

    CAS  PubMed  Google Scholar 

  55. Falcon, B. et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Noble, W., Hanger, D. P., Miller, C. C. & Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4, 83 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xia, Y., Prokop, S. & Giasson, B. I. “Don’t phos over tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol. Neurodegener. 16, 37 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Caballero, B. et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 12, 2238 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Alquezar, C. et al. TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. Sci. Adv. 7, eabg3897 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Alquezar, C., Arya, S. & Kao, A. W. Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 11, 595532 (2020).

    PubMed  Google Scholar 

  61. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, M. K. et al. Reducing acetylated tau is neuroprotective in brain injury. Cell 184, 2715–2732 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vlad, S. C., Miller, D. R., Kowall, N. W. & Felson, D. T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70, 1672–1677 (2008).

    CAS  PubMed  Google Scholar 

  64. de Craen, A. J., Gussekloo, J., Vrijsen, B. & Westendorp, R. G. Meta-analysis of nonsteroidal antiinflammatory drug use and risk of dementia. Am. J. Epidemiol. 161, 114–120 (2005).

    PubMed  Google Scholar 

  65. Camu, F., Van de Velde, A. & Vanlersberghe, C. Nonsteroidal anti-inflammatory drugs and paracetamol in children. Acta Anaesthesiol. Belg. 52, 13–20 (2001).

    CAS  PubMed  Google Scholar 

  66. Quinn, J. P., Corbett, N. J., Kellett, K. A. B. & Hooper, N. M. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J. Alzheimers Dis. 63, 13–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Plouffe, V. et al. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS ONE 7, e36873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Noble, W. et al. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J. 23, 739–750 (2009).

    CAS  PubMed  Google Scholar 

  69. Tan, M. S., Liu, Y., Hu, H., Tan, C. C. & Tan, L. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. Metab. Brain Dis. 37, 1197–1205 (2022).

    CAS  PubMed  Google Scholar 

  70. Flores, J., Noel, A., Foveau, B., Beauchet, O. & LeBlanc, A. C. Pre-symptomatic caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat. Commun. 11, 4571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Flores, J. et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 9, 3916 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Cantrelle, F. X. et al. Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-terminus and modulate tau self-assembly into fibrillar aggregates. Front. Mol. Neurosci. 14, 661368 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Oakley, S. S. et al. Tau filament self-assembly and structure: tau as a therapeutic target. Front. Neurol. 11, 590754 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ferrer, I., Andres-Benito, P., Carmona, M. & Del Rio, J. A. Common and specific marks of different tau strains following intra-hippocampal injection of AD, PiD, and GGT inoculum in hTau transgenic mice. Int. J. Mol. Sci. 23, 15940 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Weitzman, S. A. et al. Insoluble tau from human FTDP-17 cases exhibit unique transmission properties in vivo. J. Neuropathol. Exp. Neurol. 79, 941–949 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Niewiadomska, G., Niewiadomski, W., Steczkowska, M. & Gasiorowska, A. Tau oligomers neurotoxicity. Life 11, 28 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gerson, J. E., Mudher, A. & Kayed, R. Potential mechanisms and implications for the formation of tau oligomeric strains. Crit. Rev. Biochem. Mol. Biol. 51, 482–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shafiei, S. S., Guerrero-Munoz, M. J. & Castillo-Carranza, D. L. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci. 9, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Cardenas-Aguayo Mdel, C., Gomez-Virgilio, L., DeRosa, S. & Meraz-Rios, M. A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 5, 1178–1191 (2014).

    PubMed  Google Scholar 

  84. Guerrero-Munoz, M. J., Gerson, J. & Castillo-Carranza, D. L. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front. Cell. Neurosci. 9, 464 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Cheng, Y. & Bai, F. The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front. Neurosci. 12, 163 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Montalbano, M. et al. Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. Aging Cell 18, e13035 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948.e8 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vazquez, A. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS ONE 8, e63822 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. & Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003).

    CAS  PubMed  Google Scholar 

  90. Brion, J. P. & Flament-Durand, J. Distribution and expression of the α-tubulin mRNA in the hippocampus and the temporal cortex in Alzheimer’s disease. Pathol. Res. Pract. 191, 490–498 (1995).

    CAS  PubMed  Google Scholar 

  91. Cisek, K., Cooper, G. L., Huseby, C. J. & Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res. 11, 918–927 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dominguez-Meijide, A., Vasili, E. & Outeiro, T. F. Pharmacological modulators of tau aggregation and spreading. Brain Sci. 10, 858 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Aillaud, I. & Funke, S. A. Tau aggregation inhibiting peptides as potential therapeutics for Alzheimer disease. Cell. Mol. Neurobiol. 43, 951–961 (2023).

    CAS  PubMed  Google Scholar 

  94. Martinez-Hernandez, J. et al. Crosstalk between acetylation and the tyrosination/detyrosination cycle of α-tubulin in Alzheimer’s disease. Front. Cell Dev. Biol. 10, 926914 (2022).

    PubMed  PubMed Central  Google Scholar 

  95. Zhang, F. et al. Posttranslational modifications of α-tubulin in alzheimer disease. Transl. Neurodegener. 4, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Rajaei, S. et al. Conformational change and GTPase activity of human tubulin: a comparative study on Alzheimer’s disease and healthy brain. J. Neurochem. 155, 207–224 (2020).

    CAS  PubMed  Google Scholar 

  97. Peris, L. et al. Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer’s disease. Brain 145, 2486–2506 (2022).

    PubMed  PubMed Central  Google Scholar 

  98. Vu, H. T., Akatsu, H., Hashizume, Y., Setou, M. & Ikegami, K. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease. Sci. Rep. 7, 40205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Caponio, D. et al. Compromised autophagy and mitophagy in brain ageing and Alzheimer’s diseases. Aging Brain 2, 100056 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Filippone, A., Esposito, E., Mannino, D., Lyssenko, N. & Pratico, D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol. Ther. 238, 108178 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nixon, R. A. The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom. 1868, 140443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Urbanelli, L. et al. Cathepsin D expression is decreased in Alzheimer’s disease fibroblasts. Neurobiol. Aging 29, 12–22 (2008).

    CAS  PubMed  Google Scholar 

  105. Mori, H., Kondo, J. & Ihara, Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235, 1641–1644 (1987).

    CAS  PubMed  Google Scholar 

  106. Keller, J. N., Hanni, K. B. & Markesbery, W. R. Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439 (2000).

    CAS  PubMed  Google Scholar 

  107. Perry, G., Friedman, R., Shaw, G. & Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl Acad. Sci. USA 84, 3033–3036 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Perez, M. et al. Tau – an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109, 1756–1766 (2009).

    CAS  PubMed  Google Scholar 

  109. Li, M. Z. et al. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil. Med. Res. 9, 38 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Feng, Q. et al. MAPT/tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy 16, 641–658 (2020).

    CAS  PubMed  Google Scholar 

  111. Funk, K. E., Mrak, R. E. & Kuret, J. Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol. Appl. Neurobiol. 37, 295–306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Midani-Kurcak, J. S., Dinekov, M., Puladi, B., Arzberger, T. & Kohler, C. Effect of tau-pathology on charged multivesicular body protein 2b (CHMP2B). Brain Res. 1706, 224–236 (2019).

    CAS  PubMed  Google Scholar 

  113. Yamazaki, Y. et al. Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci. Lett. 477, 86–90 (2010).

    CAS  PubMed  Google Scholar 

  114. Jones, E. M. et al. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry 51, 2539–2550 (2012).

    CAS  PubMed  Google Scholar 

  115. Calafate, S., Flavin, W., Verstreken, P. & Moechars, D. Loss of Bin1 promotes the propagation of tau pathology. Cell Rep. 17, 931–940 (2016).

    CAS  PubMed  Google Scholar 

  116. Caballero, B. et al. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17, e12692 (2018).

    PubMed  Google Scholar 

  117. Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Gotz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Flavin, W. P. et al. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathol. 134, 629–653 (2017).

    CAS  PubMed  Google Scholar 

  119. Chen, J. J. et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J. Biol. Chem. 294, 18952–18966 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Scoles, D. R., Minikel, E. V. & Pulst, S. M. Antisense oligonucleotides: a primer. Neurol. Genet. 5, e323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Alzforum. Antisense therapy stifles CSF tau in mild Alzheimer’s disease. Alzforum https://www.alzforum.org/news/conference-coverage/antisense-therapy-stifles-csf-tau-mild-alzheimers-disease-0 (2021).

  122. Alzforum. First hit on aggregated tau: antisense oligonucleotide lowers tangles. Alzforum https://www.alzforum.org/news/conference-coverage/first-hit-aggregated-tau-antisense-oligonucleotide-lowers-tangles (2023).

  123. Mummery, C. J. et al. Tau-targeting antisense oligonucleotide MAPT(Rx) in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat. Med. 29, 1437–1447 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chohan, M. O., Khatoon, S., Iqbal, I. G. & Iqbal, K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by memantine. FEBS Lett. 580, 3973–3979 (2006).

    CAS  PubMed  Google Scholar 

  125. Corcoran, N. M. et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci. 17, 1025–1033 (2010).

    CAS  PubMed  Google Scholar 

  126. Rueli, R. H. L. H. et al. Selenprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential selenate mitigation of tau pathology. J. Alzheimers Dis. 55, 749–762 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    PubMed  PubMed Central  Google Scholar 

  128. Malpas, C. B. et al. A phase IIa randomized control trial of VEL015 (sodium selenate) in mild-moderate Alzheimer’s disease. J. Alzheimers Dis. 54, 223–232 (2016).

    CAS  PubMed  Google Scholar 

  129. Vivash, L. et al. A phase 1b open-label study of sodium selenate as a disease-modifying treatment for possible behavioral variant frontotemporal dementia. Alzheimers Dement. 8, e12299 (2022).

    Google Scholar 

  130. Vivash, L. et al. A study protocol for a phase II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying treatment for behavioural variant frontotemporal dementia. BMJ Open. 10, e040100 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Vivash, L. et al. Sodium selenate as a disease-modifying treatment for progressive supranuclear palsy: protocol for a phase 2, randomised, double-blind, placebo-controlled trial. BMJ Open. 11, e055019 (2021).

    PubMed  PubMed Central  Google Scholar 

  132. Muñoz-B, S., Tornero-Écija, A. R., Vincent, O. & Escalante, R. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis. Model. Mech. 12, dmm036681 (2019).

    Google Scholar 

  133. Fu, Z.-Q. et al. LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3β in vivo and in vitro. J. Alzheimers Dis. 21, 1107–1117 (2010).

    CAS  PubMed  Google Scholar 

  134. Duthie, A. et al. Recruitment, retainment, and biomarkers of response; a pilot trial of lithium in humans with mild cognitive impairment. Front. Mol. Neurosci. 12, 163 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. VandeVrede, L. et al. Open‐label phase 1 futility studies of salsalate and young plasma in progressive supranuclear palsy. Mov. Disord. Clin. Pract. 7, 440–447 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Robertson, L. A., Moya, K. L. & Breen, K. C. The potential role of tau protein O-glycosylation in Alzheimer’s disease. J. Alzheimers Dis. 6, 489–495 (2004).

    CAS  PubMed  Google Scholar 

  137. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C.-X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Alzforum. Therapeutics: ASN90. Alzforum https://www.alzforum.org/therapeutics/asn90 (2022).

  139. Ryan, J. M. et al. Phase 1 study in healthy volunteers of the O-GlcNAcase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies [abstract O1-12-05]. Alzheimers Dement. 14 (7S Part 4), 251 (2018).

    Google Scholar 

  140. Shcherbinin, S. et al. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme: translation from rat to human: neuroimaging/evaluating treatments. Alzheimers Dement. 16, e040558 (2020).

    Google Scholar 

  141. Alzforum. Therapeutics: LY3372689. Alzforum https://www.alzforum.org/therapeutics/ly3372689 (2022).

  142. Kielbasa, W. et al. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme, following administration of single and multiple doses to healthy volunteers. Alzheimers Dement. 17, e057774 (2021).

    Google Scholar 

  143. Kielbasa, W. et al. A single ascending dose study in healthy volunteers to assess the safety and PK of LY3372689, an inhibitor of O‐GlcNAcase (OGA) enzyme. Human/human trials: anti‐tau. Alzheimers Dement. 16, e040473 (2020).

    Google Scholar 

  144. Lowe, S. L. et al. Single and multiple ascending dose studies in healthy volunteers to assess the safety and PK of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme. Alzheimers Dement. 17, e057728 (2021).

    Google Scholar 

  145. Howard, R. et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 77, 164–174 (2020).

    PubMed  Google Scholar 

  146. Ma, Q.-L. et al. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem. 288, 4056–4065 (2013).

    CAS  PubMed  Google Scholar 

  147. Rane, J. S., Bhaumik, P. & Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis. 60, 999–1014 (2017).

    CAS  PubMed  Google Scholar 

  148. Goel, A., Kunnumakkara, A. B. & Aggarwal, B. B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75, 787–809 (2008).

    CAS  PubMed  Google Scholar 

  149. Small, G. W. et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 26, 266–277 (2018).

    PubMed  Google Scholar 

  150. Hosokawa, M. et al. Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS ONE 7, e52389 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hochgräfe, K. et al. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol. Commun. 3, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilcock, G. K. et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J. Alzheimers Dis. 61, 435–457 (2018).

    CAS  PubMed  Google Scholar 

  154. Alzforum. Tau inhibitor fails again – subgroup analysis irks clinicians at CTAD. Alzforum https://www.alzforum.org/news/conference-coverage/tau-inhibitor-fails-again-subgroup-analysis-irks-clinicians-ctad (2016).

  155. Alzforum. In first phase 3 trial, the Tau drug LMTM did not work. Period. Alzforum http://www.alzforum.org/news/conference-coverage/first-phase-3-trial-tau-drug-lmtm-did-not-work-period#show-more (2016).

  156. Alzforum. First round of FTD therapeutics fell short, but many more are up and running. Alzforum https://www.alzforum.org/news/conference-coverage/first-round-ftd-therapeutics-fell-short-many-more-are-and-running (2016).

  157. Alzforum. Therapeutics: ACI-3024. Alzforum https://www.alzforum.org/therapeutics/aci-3024 (2021).

  158. Fitzgerald, D. P. et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther. 11, 1959–1967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Tsai, R. M. et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol. 77, 215–224 (2020).

    PubMed  Google Scholar 

  160. Magen, I. & Gozes, I. Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides 47, 489–495 (2013).

    CAS  PubMed  Google Scholar 

  161. Asuni, A. A., Quartermain, D. & Sigurdsson, E. M. Tau-based immunotherapy for dementia. Alzheimers Dement. 2, S40–S41 (2006).

    Google Scholar 

  162. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive tau immuntherapy diminishes functional decline and clears tau aggregates in a mouse model of tauopathy [abstract P3-427]. Alzheimers Dement. 6 (4S Part 19), S578 (2010).

    Google Scholar 

  164. Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118, 658–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bittar, A., Bhatt, N. & Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis. 134, 104707 (2020).

    CAS  PubMed  Google Scholar 

  166. Colin, M. et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 139, 3–25 (2020).

    CAS  PubMed  Google Scholar 

  167. Congdon, E. E., Jiang, Y. & Sigurdsson, E. M. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin. Cell Dev. Biol. 126, 125–137 (2022).

    CAS  PubMed  Google Scholar 

  168. Ji, C. & Sigurdsson, E. M. Current status of clinical trials on tau immunotherapies. Drugs 81, 1135–1152 (2021).

    PubMed  PubMed Central  Google Scholar 

  169. Sandusky-Beltran, L. A. & Sigurdsson, E. M. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology 175, 108104 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ng, P. Y., Chang, I. S., Koh, R. Y. & Chye, S. M. Recent advances in tau-directed immunotherapy against Alzheimer’s disease: an overview of pre-clinical and clinical development. Metab. Brain Dis. 35, 1049–1066 (2020).

    CAS  PubMed  Google Scholar 

  171. Karimi, N., Bayram, C. F., Arslan, E., Saghazadeh, A. & Rezaei, N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int. Immunopharmacol. 113, 109445 (2022).

    CAS  PubMed  Google Scholar 

  172. Guo, Y., Li, S., Zeng, L.-H. & Tan, J. Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing Neurodegener. Dis. 2, 11 (2022).

    CAS  Google Scholar 

  173. Rosenmann, H. et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63, 1459–1467 (2006).

    PubMed  Google Scholar 

  174. Rozenstein-Tsalkovich, L. et al. Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp. Neurol. 248, 451–456 (2013).

    CAS  PubMed  Google Scholar 

  175. Rajamohamedsait, H., Rasool, S., Rajamohamedsait, W., Lin, Y. & Sigurdsson, E. M. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci. Rep. 7, 17034 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Nicholls, S. B. et al. Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS ONE 12, e0177914 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Nobuhara, C. K. et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am. J. Pathol. 187, 1399–1412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Roberts, M. et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol. Commun. 8, 13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Rosenqvist, N. et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement. 4, 521–534 (2018).

    Google Scholar 

  180. Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Funk, K. E., Mirbaha, H., Jiang, H., Holtzman, D. M. & Diamond, M. I. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J. Biol. Chem. 290, 21652–21662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Congdon, E. E. et al. Tau antibody chimerization alters its charge and binding, thereby reduces its cellular uptake and efficacy. eBioMedicine 42, 157–173 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Congdon, E. E. et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol. Neurodegener. 11, 62–86 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Shamir, D. B. et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front. Neurol. 11, 602292 (2020).

    PubMed  PubMed Central  Google Scholar 

  185. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).

    CAS  PubMed  Google Scholar 

  187. Castillo-Carranza, D. L. et al. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. d’Abramo, C. et al. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment. Neurobiol. Aging 37, 58–65 (2016).

    PubMed  Google Scholar 

  189. Yanamandra, K. et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl. Neurol. 2, 278–288 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Luo, W. et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci. Rep. 5, 11161 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Andersson, C. R. et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci. Rep. 9, 4658 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Zilkova, M. et al. Humanized tau antibodies promote tau uptake by human microglia without any increase of inflammation. Acta Neuropathol. Commun. 8, 74 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Lee, S. H. et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 16, 1690–1700 (2016).

    CAS  PubMed  Google Scholar 

  194. Mukadam, A. S. et al. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science 379, 1336–1341 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim, B. et al. Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathol. 142, 243–257 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Leyns, C. E. G. & Holtzman, D. M. Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener. 12, 50 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    PubMed  Google Scholar 

  198. Uddin, M. S. & Lim, L. W. Glial cells in Alzheimer’s disease: from neuropathological changes to therapeutic implications. Ageing Res. Rev. 78, 101622 (2022).

    CAS  PubMed  Google Scholar 

  199. Serrano-Pozo, A. et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 179, 1373–1384 (2011).

    PubMed  PubMed Central  Google Scholar 

  200. Dani, M. et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141, 2740–2754 (2018).

    PubMed  Google Scholar 

  201. Ismail, R. et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J. Neuroinflammation 17, 151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Maeda, J. et al. In vivo positron emission tomographic imaging of glial responses to amyloid-β and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J. Neurosci. 31, 4720–4730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Appleton, J. et al. Neuroinflammation co-localizes highly with tau in amnestic mild cognitive impairment. Alzheimers Dement. 18, e068025 (2022).

    Google Scholar 

  204. Hamelin, L. et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139, 1252–1264 (2016).

    PubMed  Google Scholar 

  205. Hamelin, L. et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141, 1855–1870 (2018).

    PubMed  Google Scholar 

  206. Fan, Z., Brooks, D. J., Okello, A. & Edison, P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 140, 792–803 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Femminella, G. D. et al. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume. Neurology 92, e1331–e1343 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Congdon, E. E., Gu, J., Sait, H. B. & Sigurdsson, E. M. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J. Biol. Chem. 288, 35452–35465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Gu, J., Congdon, E. E. & Sigurdsson, E. M. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J. Biol. Chem. 288, 33081–33095 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu, Q., Lin, Y., Gu, J. & Sigurdsson, E. M. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. eBioMedicine 35, 270–278 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Collin, L. et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137, 2834–2846 (2014).

    PubMed  Google Scholar 

  212. McEwan, W. A. et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc. Natl Acad. Sci. USA 114, 574–579 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Krishnamurthy, P. K., Deng, Y. & Sigurdsson, E. M. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front. Psychiatry 2, 59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015).

    PubMed  PubMed Central  Google Scholar 

  215. Krishnaswamy, S. et al. Antibody-derived in vivo imaging of tau pathology. J. Neurosci. 34, 16835–16850 (2014).

    PubMed  PubMed Central  Google Scholar 

  216. Shamir, D. B., Rosenqvist, N., Rasool, S., Pedersen, J. T. & Sigurdsson, E. M. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 12, 1098–1107 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Fuller, J. P., Stavenhagen, J. B. & Teeling, J. L. New roles for Fc receptors in neurodegeneration – the impact on immunotherapy for Alzheimer’s disease. Front. Neurosci. 8, 235 (2014).

    PubMed  PubMed Central  Google Scholar 

  218. van der Kleij, H. et al. Evidence for neuronal expression of functional Fc (ε and γ) receptors. J. Allergy Clin. Immunol. 125, 757–760 (2010).

    PubMed  PubMed Central  Google Scholar 

  219. Nakamura, K. et al. CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol. Cell. Biol. 27, 5128–5134 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Stamou, M., Grodzki, A. C., van Oostrum, M., Wollscheid, B. & Lein, P. J. Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J. Neuroinflammation 15, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. Suemitsu, S. et al. Fcγ receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 166, 819–831 (2010).

    CAS  PubMed  Google Scholar 

  222. Andoh, T. & Kuraishi, Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 18, 182–184 (2004).

    CAS  PubMed  Google Scholar 

  223. Andoh, T. & Kuraishi, Y. Expression of Fc epsilon receptor I on primary sensory neurons in mice. Neuroreport 15, 2029–2031 (2004).

    CAS  PubMed  Google Scholar 

  224. Qu, L., Zhang, P., LaMotte, R. H. & Ma, C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain. Behav. Immun. 25, 1399–1407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Jiang, H. et al. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat. Brain. Behav. Immun. 62, 351–361 (2017).

    CAS  PubMed  Google Scholar 

  226. Wang, L. et al. Neuronal FcγRI mediates acute and chronic joint pain. J. Clin. Invest. 129, 3754–3769 (2019).

    PubMed  PubMed Central  Google Scholar 

  227. Chandupatla, R. R., Flatley, A., Feederle, R., Mandelkow, E. M. & Kaniyappan, S. Novel antibody against low-n oligomers of tau protein promotes clearance of tau in cells via lysosomes. Alzheimers Dement. 6, e12097 (2020).

    Google Scholar 

  228. Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46, 857–868 (2005).

    CAS  PubMed  Google Scholar 

  229. Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Pozzi, S. et al. Monoclonal full-length antibody against TAR DNA binding protein 43 reduces related proteinopathy in neurons. JCI Insight 5, e140420 (2020).

    PubMed  PubMed Central  Google Scholar 

  231. Karpiak, S. E. & Mahadik, S. P. Selective uptake by Purkinje neurons of antibodies to S-100 protein. Exp. Neurol. 98, 453–457 (1987).

    CAS  PubMed  Google Scholar 

  232. Fabian, R. H. & Ritchie, T. C. Intraneuronal IgG in the central nervous system. J. Neurol. Sci. 73, 257–267 (1986).

    CAS  PubMed  Google Scholar 

  233. Greenlee, J. E., Burns, J. B., Rose, J. W., Jaeckle, K. A. & Clawson, S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol. 89, 341–345 (1995).

    CAS  PubMed  Google Scholar 

  234. Graus, F. et al. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J. Neurol. Sci. 106, 82–87 (1991).

    CAS  PubMed  Google Scholar 

  235. Hill, K. E., Clawson, S. A., Rose, J. W., Carlson, N. G. & Greenlee, J. E. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J. Neuroinflammation 6, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  236. Greenlee, J. E. et al. Neuronal uptake of anti-Hu antibody, but not anti-Ri antibody, leads to cell death in brain slice cultures. J. Neuroinflammation 11, 160 (2014).

    PubMed  PubMed Central  Google Scholar 

  237. Greenlee, J. E. et al. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J. Neuropathol. Exp. Neurol. 69, 997–1007 (2010).

    CAS  PubMed  Google Scholar 

  238. Rocchi, A. et al. Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death Dis. 10, 864 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Goldwaser, E. L. et al. Evidence that brain-reactive autoantibodies contribute to chronic neuronal internalization of exogenous amyloid-β1-42 and key cell surface proteins during Alzheimer’s disease pathogenesis. J. Alzheimers Dis. 74, 345–361 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Gustafsson, G. et al. Cellular uptake of α-synuclein oligomer-selective antibodies is enhanced by the extracellular presence of α-synuclein and mediated via Fcγ receptors. Cell. Mol. Neurobiol. 37, 121–131 (2017).

    CAS  PubMed  Google Scholar 

  241. Nguyen, L. et al. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model. Neuron 105, 645–662.e11 (2020).

    CAS  PubMed  Google Scholar 

  242. Benkler, C. et al. Aggregated SOD1 causes selective death of cultured human motor neurons. Sci. Rep. 8, 16393 (2018).

    PubMed  PubMed Central  Google Scholar 

  243. Zaretsky, D. V., Zaretskaia, M. V. & Molkov, Y. I. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci. Lett. 770, 136338 (2022).

    CAS  PubMed  Google Scholar 

  244. Umeda, T. et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J. Neurosci. Res. 89, 1031–1042 (2011).

    CAS  PubMed  Google Scholar 

  245. Yang, A. J., Chandswangbhuvana, D., Margol, L. & Glabe, C. G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis. J. Neurosci. Res. 52, 691–698 (1998).

    CAS  PubMed  Google Scholar 

  246. Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Ling, D., Song, H. J., Garza, D., Neufeld, T. P. & Salvaterra, P. M. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE 4, e4201 (2009).

    PubMed  PubMed Central  Google Scholar 

  248. Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Zehner, M. et al. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42, 850–863 (2015).

    CAS  PubMed  Google Scholar 

  250. Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. Gros, M. & Amigorena, S. Regulation of antigen export to the cytosol during cross-presentation. Front. Immunol. 10, 41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Abskharon, R. et al. Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer’s disease. J. Biol. Chem. 295, 10662–10676 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Li, S. et al. A single-chain variable fragment antibody inhibits aggregation of phosphorylated tau and ameliorates tau toxicity in vitro and in vivo. J. Alzheimers Dis. 79, 1613–1629 (2021).

    CAS  PubMed  Google Scholar 

  254. Krishnaswamy, S., Huang, H. W., Marchal, I. S., Ryoo, H. D. & Sigurdsson, E. M. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol. Dis. 137, 104770 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Kontsekova, E., Zilka, N., Kovacech, B., Novak, P. & Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther. 6, 44 (2014).

    PubMed  PubMed Central  Google Scholar 

  256. Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2017).

    CAS  PubMed  Google Scholar 

  257. Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol. 11, 545–555 (2012).

    PubMed  PubMed Central  Google Scholar 

  258. Novak, P. et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res. Ther. 10, 108 (2018).

    PubMed  PubMed Central  Google Scholar 

  259. Axon Neuroscience. Axon announces positive results from phase II ADAMANT trial for Aadvac1 in Alzheimer’s disease. Axon Neuroscience https://www.axon-neuroscience.eu/docs/press_release_Axon_announces_positive_result_9-9-2019.pdf (2019).

  260. Novak, P. et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat. Aging 1, 521–534 (2021).

    PubMed  Google Scholar 

  261. Alzforum. Active tau vaccine: hints of slowing neurodegeneration. Alzforum https://www.alzforum.org/news/conference-coverage/active-tau-vaccine-hints-slowing-neurodegeneration (2020).

  262. Hickman, D. T. et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J. Biol. Chem. 286, 13966–13976 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. AC Immune. AC Immune announces interim phase 1b/2a data showing that its ACI-35.030 anti-Ptau Alzheimer’s vaccine generates a potent immune response. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-announces-interim-phase-1b2a-data-showing-its-aci (2021).

  264. AC Immune. AC Immune ACI-35.030 phase 1b/2a trial interim data confirm consistent safety and potent immunogenicity of pTau Alzheimer’s vaccine in high-dose cohort. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-aci-35030-phase-1b2a-trial-interim-data-confirm (2022).

  265. AC Immune. AC Immune advances phospho-Tau Alzheimer’s vaccine in phase 1b/2a study. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-advances-phospho-tau-alzheimers-vaccine-phase-1b2a (2020).

  266. AC Immune. AC Immune announces expansion of phase 1b/2a phospho-Tau Alzheimer’s vaccine trial and provides a program update. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-announces-expansion-phase-1b2a-phospho-tau-alzheimers (2021).

  267. AC Immune. AC Immune’s Alzheimer’s vaccine generates potent anti-Ptau antibody response in a phase 1b/2a study. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immunes-alzheimers-vaccine-generates-potent-anti-ptau (2021).

  268. AC Immune. AC Immune’s Alzheimer’s disease vaccine-candidate ACI-35.030 selected for further development. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immunes-alzheimers-disease-vaccine-candidate-aci-35030 (2022).

  269. Tai, H. C. et al. The tau oligomer antibody APNmAb005 detects early-stage pathological tau enriched at synapses and rescues neuronal loss in long-term treatments. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.06.24.497452v1 (2022).

  270. Courade, J. P. et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 136, 729–745 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Albert, M. et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142, 1736–1750 (2019).

    PubMed  PubMed Central  Google Scholar 

  272. Buchanan, T. et al. A randomised, placebo-controlled, first-in-human study with a central Tau epitope antibody – UCB0107 [abstract LBA3]. International Congress of the Parkinson’s Disease and Movement Disorders: 2019 Late-Breaking Abstracts (International Parkinson and Movement Disorder Society, 2019).

  273. UCB. UCB presents UCB0107 anti-Tau immunotherapy Phase I study Results at World Movement Disorders Conference®. UCB https://www.ucb.com/stories-media/Press-Releases/article/UCB-presents-UCB0107-anti-Tau-immunotherapy-Phase-I-study-results-at-World-Movement-Disorders-Conference (2019).

  274. Alzforum. N-terminal tau antibodies fade, mid-domain ones push to the fore. Alzforum https://www.alzforum.org/news/conference-coverage/n-terminal-tau-antibodies-fade-mid-domain-ones-push-fore (2021).

  275. Alzforum. More tau antibodies bid adieu; semorinemab keeps foot in door. Alzforum https://www.alzforum.org/news/conference-coverage/more-tau-antibodies-bid-adieu-semorinemab-keeps-foot-door (2021).

  276. Alzforum. Therapeutics: BIIB076. Alzforum https://www.alzforum.org/therapeutics/biib076 (2022).

  277. Motley Fool Transcribing. Biogen (BIIB) Q2 2022 earnings call transcript. The Motley Fool https://www.fool.com/earnings/call-transcripts/2022/07/20/biogen-biib-q2-2022-earnings-call-transcript/ (2022).

  278. Eisai. Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody E2814 at Alzheimer’s Association International Conference (AAIC) 2019. Eisai https://www.eisai.com/news/2019/news201955.html (2019).

  279. Talma, S. et al. Efficacy of the murine version of E2814 in a validated AD brain seed-injection model in hTau mice [abstract P4-673]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  280. Horie, K., Barthelemy, N. R., Sato, C. & Bateman, R. J. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144, 515–527 (2021).

    PubMed  Google Scholar 

  281. Horie, K. et al. Quantification of the tau microtubule binding region (MTBR) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. Alzheimers Dement. 15(7S Part 31), 1598–1599 (2019).

    Google Scholar 

  282. Alzforum. Aiming at the tangle’s heart? DIAN-TU trial to torpedo tau’s core. Alzforum https://www.alzforum.org/news/research-news/aiming-tangles-heart-dian-tu-trial-torpedo-taus-core (2021).

  283. Zhou, J. et al. E2814: an anti-tau therapy engages its CNS target and affects the downstream tangle-specific biomarker MTBR-tau243 in dominantly inherited Alzheimer’s disease [abstract]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online 2023 (2023).

  284. Rawal, S. et al. Safety, pharmacokinetics and immunogenicity of single and multiple ascending doses of the anti-tau therapeutic antibody E2814: a phase 1, first-in-human (FIH) study in healthy subjects [abstract P1-909]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  285. Horie, K. et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat. Med. 29, 1954–1963 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Sopko, R. et al. Characterization of tau binding by gosuranemab. Neurobiol. Dis. 146, 105120 (2020).

    CAS  PubMed  Google Scholar 

  287. Alzforum. Therapeutics: Gosuranemab. Alzforum https://www.alzforum.org/therapeutics/gosuranemab (2022).

  288. Qureshi, I. A. et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 4, 746–755 (2018).

    Google Scholar 

  289. Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).

    CAS  PubMed  Google Scholar 

  290. Dam, T. et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat. Med. 27, 1451–1457 (2021).

    CAS  PubMed  Google Scholar 

  291. Biogen. Biogen reports top-line results from phase 2 study in progressive supranuclear palsy. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-reports-top-line-results-phase-2-study-progressive (2019).

  292. Alzforum. Gosuranemab, Biogen’s anti-tau immunotherapy, does not fly for PSP. Alzforum https://www.alzforum.org/news/research-news/gosuranemab-biogens-anti-tau-immunotherapy-does-not-fly-psp (2019).

  293. Biogen. Biogen announces topline results from phase 2 study of gosuranemab, an anti-tau antibody, for Alzheimer’s disease. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-phase-2-study-gosuranemab-anti (2021).

  294. Alzforum. Therapeutics: JNJ-63733657. Alzforum https://www.alzforum.org/therapeutics/jnj-63733657 (2022).

  295. Galpern, W. R. et al. A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects [abstract P1-052]. Alzheimers Dement. 15 (7S Part 5), 252–253 (2019).

    Google Scholar 

  296. Helboe, L. et al. Highly specific and sensitive target binding by the humanized pS396-tau antibody hC10.2 across a wide spectrum of Alzheimer’s disease and primary tauopathy postmortem brains. J. Alzheimers Dis. 88, 207–228 (2022).

    CAS  PubMed  Google Scholar 

  297. Umeda, T. et al. Passive immunothrapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann. Clin. Transl. Neurol. 2, 241–255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Alzforum. Therapeutics: MK-2214. Alzforum https://www.alzforum.org/therapeutics/mk-2214 (2023).

  299. Naserkhaki, R. et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem. Neurosci. 10, 1214–1221 (2019).

    CAS  PubMed  Google Scholar 

  300. Albayram, O. et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat. Commun. 8, 1000 (2017).

    PubMed  PubMed Central  Google Scholar 

  301. Mohsenian Sisakht, A. et al. Pathogenic cis p-tau levels in CSF reflects severity of traumatic brain injury. Neurol. Res. 44, 496–502 (2022).

    CAS  PubMed  Google Scholar 

  302. Nakamura, K. et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149, 232–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Qiu, C. et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci. Transl. Med. 13, eaaz7615 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Alzforum. Therapeutics: PRX005. Alzforum https://www.alzforum.org/therapeutics/prx005 (2023).

  305. Prothena. Prothena reports topline phase 1 single ascending dose study results of PRX005, a novel anti-MTBR-tau antibody for the potential treatment of Alzheimer’s disease. Prothena https://ir.prothena.com/investors/press-releases/news-details/2023/Prothena-Reports-Topline-Phase-1-Single-Ascending-Dose-Study-Results-of-PRX005-a-Novel-Anti-MTBR-Tau-Antibody-for-the-Potential-Treatment-of-Alzheimers-Disease/default.aspx (2023).

  306. Martenyi, F. et al. PRX005, a novel anti-MTBR tau monoclonal antibody: results from a first-in-human double-blind, placebo-controlled, single ascending dose phase 1 study [abstract P1-727]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  307. Hasegawa, M. et al. Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett. 384, 25–30 (1996).

    CAS  PubMed  Google Scholar 

  308. Bussiere, T. et al. Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol. 97, 221–230 (1999).

    CAS  PubMed  Google Scholar 

  309. Alzforum. Therapeutics: RG7345. Alzforum https://www.alzforum.org/therapeutics/rg7345 (2015).

  310. Ayalon, G. et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci. Transl. Med. 13, eabb2639 (2021).

    CAS  PubMed  Google Scholar 

  311. Kerchner, G. A. et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2017.07.243 (2017).

    Article  Google Scholar 

  312. AC Immune. AC Immune reports top line results from TAURIEL phase 2 trial evaluating semorinemab in early Alzheimer’s disease. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-reports-top-line-results-tauriel-phase-2-trial (2020).

  313. Alzforum. First cognitive signal that tau immunotherapy works? Alzforum https://www.alzforum.org/news/research-news/first-cognitive-signal-tau-immunotherapy-works (2021).

  314. Monteiro, C. et al. Randomized phase II study of the safety and efficacy of semorinemab in participants with mild-to-moderate Alzheimer disease: Lauriet. Neurology 101, e1391–e1401 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Alzforum. Therapeutics: Tilvonemab. Alzforum https://www.alzforum.org/therapeutics/tilavonemab (2023).

  316. West, T. et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis. 4, 236–241 (2017).

    CAS  PubMed  Google Scholar 

  317. Hoglinger, G. U. et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 20, 182–192 (2021).

    PubMed  Google Scholar 

  318. Koga, S., Dickson, D. W. & Wszolek, Z. K. Neuropathology of progressive supranuclear palsy after treatment with tilavonemab. Lancet Neurol. 20, 786–787 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Alzforum. AbbVie’s tau antibody flops in progressive supranuclear palsy. Alzforum https://www.alzforum.org/news/research-news/abbvies-tau-antibody-flops-progressive-supranuclear-palsy (2019).

  320. Florian, H. et al. Tilavonemab in early Alzheimer’s disease: results from a phase 2, randomized, double-blind study. Brain 146, 2275–2284 (2023).

    PubMed  PubMed Central  Google Scholar 

  321. Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Jicha, G. A., Bowser, R., Kazam, I. G. & Davies, P. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J. Neurosci. Res. 48, 128–132 (1997).

    CAS  PubMed  Google Scholar 

  323. Vitale, F. et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol. Commun. 6, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  324. Lilly. Q3 2021 earnings call. Lilly https://investor.lilly.com/events/event-details/q3-2021-earnings-call (2021).

  325. Sigurdsson, E. M. Alzheimer’s therapy development: a few points to consider. Prog. Mol. Biol. Transl. Sci. 168, 205–217 (2019).

    CAS  PubMed  Google Scholar 

  326. Han, P. et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J. Neuropathol. Exp. Neurol. 76, 44–51 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Barthelemy, N. R. et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J. Alzheimers Dis. 51, 1033–1043 (2016).

    CAS  PubMed  Google Scholar 

  329. Barthelemy, N. R. et al. Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity. J. Proteome Res. 15, 667–676 (2016).

    CAS  PubMed  Google Scholar 

  330. Barthelemy, N. R., Mallipeddi, N., Moiseyev, P., Sato, C. & Bateman, R. J. Tau phosphorylation rates measured by mass spectrometry differ in the intracellular brain vs. extracellular cerebrospinal fluid compartments and are differentially affected by Alzheimer’s disease. Front. Aging Neurosci. 11, 121 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Wagshal, D. et al. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).

    PubMed  Google Scholar 

  332. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    PubMed  Google Scholar 

  333. Hu, W. T., Trojanowski, J. Q. & Shaw, L. M. Biomarkers in frontotemporal lobar degenerations – progress and challenges. Prog. Neurobiol. 95, 636–648 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    CAS  PubMed  Google Scholar 

  335. Bian, H. et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70, 1827–1835 (2008).

    CAS  PubMed  Google Scholar 

  336. Grossman, M. et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann. Neurol. 57, 721–729 (2005).

    PubMed  Google Scholar 

  337. Horie, K. et al. CSF tau microtubule-binding region identifies pathological changes in primary tauopathies. Nat. Med. 28, 2547–2554 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Kanmert, D. et al. C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J. Neurosci. 35, 10851–10865 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Jadhav, S. et al. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 7, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  340. Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).

    CAS  PubMed  Google Scholar 

  343. Wu, L., Gilyazova, N., Ervin, J. F., Wang, S. J. & Xu, B. Site-specific phospho-tau aggregation-based biomarker discovery for AD diagnosis and differentiation. ACS Chem. Neurosci. 13, 3281–3290 (2022).

    CAS  PubMed  Google Scholar 

  344. Reid, M. J., Beltran-Lobo, P., Johnson, L., Perez-Nievas, B. G. & Noble, W. Astrocytes in tauopathies. Front. Neurol. 11, 572850 (2020).

    PubMed  PubMed Central  Google Scholar 

  345. Kahlson, M. A. & Colodner, K. J. Glial tau pathology in tauopathies: functional consequences. J. Exp. Neurosci. 9, 43–50 (2015).

    CAS  PubMed  Google Scholar 

  346. Ferrer, I. et al. Involvement of oligodendrocytes in tau seeding and spreading in tauopathies. Front. Aging Neurosci. 11, 112 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Narasimhan, S. et al. Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. J. Exp. Med. 217, e20190783 (2020).

    PubMed  Google Scholar 

  348. Congdon, E. E. et al. Single domain antibodies targeting pathological tau protein: influence of four IgG subclasses on efficacy and toxicity. eBioMedicine 84, 104249 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  350. Handlogten, M. W. et al. Prevention of Fab-arm exchange and antibody reduction via stabilization of the IgG4 hinge region. MAbs 12, 1779974 (2020).

    PubMed  PubMed Central  Google Scholar 

  351. Heads, J. T. et al. Electrostatic interactions modulate the differential aggregation propensities of IgG1 and IgG4P antibodies and inform charged residue substitutions for improved developability. Protein Eng. Des. Sel. 32, 277–288 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Pepinsky, R. B. et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci. 19, 954–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Cooper, L. J. et al. Role of heavy chain constant domains in antibody–antigen interaction. Apparent specificity differences among streptococcal IgG antibodies expressing identical variable domains. J. Immunol. 150, 2231–2242 (1993).

    CAS  PubMed  Google Scholar 

  354. Pritsch, O. et al. Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies? J. Clin. Invest. 98, 2235–2243 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  355. Pritsch, O. et al. Can isotype switch modulate antigen-binding affinity and influence clonal selection? Eur. J. Immunol. 30, 3387–3395 (2000).

    CAS  PubMed  Google Scholar 

  356. Hovenden, M. et al. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog. 9, e1003306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  357. Motley, M. P., Diago-Navarro, E., Banerjee, K., Inzerillo, S. & Fries, B. C. The role of IgG subclass in antibody-mediated protection against carbapenem-resistant Klebsiella pneumoniae. mBio 11, e02059-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  358. Tudor, D. et al. Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody. Proc. Natl Acad. Sci. USA 109, 12680–12685 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Xia, Y., Janda, A., Eryilmaz, E., Casadevall, A. & Putterman, C. The constant region affects antigen binding of antibodies to DNA by altering secondary structure. Mol. Immunol. 56, 28–37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Dam, T. K., Torres, M., Brewer, C. F. & Casadevall, A. Isothermal titration calorimetry reveals differential binding thermodynamics of variable region-identical antibodies differing in constant region for a univalent ligand. J. Biol. Chem. 283, 31366–31370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Janda, A. & Casadevall, A. Circular dichroism reveals evidence of coupling between immunoglobulin constant and variable region secondary structure. Mol. Immunol. 47, 1421–1425 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  362. Kato, K. et al. Carbon-13 NMR study of switch variant anti-dansyl antibodies: antigen binding and domain–domain interactions. Biochemistry 30, 6604–6610 (1991).

    CAS  PubMed  Google Scholar 

  363. McLean, G. R., Torres, M., Elguezabal, N., Nakouzi, A. & Casadevall, A. Isotype can affect the fine specificity of an antibody for a polysaccharide antigen. J. Immunol. 169, 1379–1386 (2002).

    CAS  PubMed  Google Scholar 

  364. Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. J. Biol. Chem. 282, 13917–13927 (2007).

    CAS  PubMed  Google Scholar 

  365. Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS ONE 2, e1310 (2007).

    PubMed  PubMed Central  Google Scholar 

  366. Torres, M., May, R., Scharff, M. D. & Casadevall, A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. J. Immunol. 174, 2132–2142 (2005).

    CAS  PubMed  Google Scholar 

  367. Xia, Y. et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J. Autoimmun. 39, 398–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  368. Yuan, R. R. et al. Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect. Immun. 66, 1057–1062 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Labrijn, A. F. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 27, 767–771 (2009).

    CAS  PubMed  Google Scholar 

  370. Young, E. et al. Estimation of polyclonal IgG4 hybrids in normal human serum. Immunology 142, 406–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  371. Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  372. d’Abramo, C., Acker, C. M., Jimenez, H. T. & Davies, P. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8, e62402 (2013).

    PubMed  PubMed Central  Google Scholar 

  373. Hintersteiner, B. et al. Charge heterogeneity: basic antibody charge variants with increased binding to Fc receptors. MAbs 8, 1548–1560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  374. Schoch, A. et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc. Natl Acad. Sci. USA 112, 5997–6002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  375. Khawli, L. A., Glasky, M. S., Alauddin, M. M. & Epstein, A. L. Improved tumor localization and radioimaging with chemically modified monoclonal antibodies. Cancer Biother. Radiopharm. 11, 203–215 (1996).

    CAS  PubMed  Google Scholar 

  376. Kobayashi, H. et al. The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. Cancer Res. 59, 422–430 (1999).

    CAS  PubMed  Google Scholar 

  377. Datta-Mannan, A. et al. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. MAbs 7, 483–493 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  378. Li, B. et al. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. MAbs 6, 1255–1264 (2014).

    PubMed  PubMed Central  Google Scholar 

  379. Chatterjee, D. et al. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model. NPJ Parkinsons Dis. 4, 25 (2018).

    PubMed  PubMed Central  Google Scholar 

  380. Butler, D. C. et al. Bifunctional anti-non-amyloid component α-synuclein nanobodies are protective in situ. PLoS ONE 11, e0165964 (2016).

    PubMed  PubMed Central  Google Scholar 

  381. Lim, S. et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc. Natl Acad. Sci. USA 117, 5791–5800 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  382. Ibrahim, A. F. M. et al. Antibody RING-mediated destruction of endogenous proteins. Mol. Cell 79, 155–166.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  383. Roth, S. et al. Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system. Cell Chem. Biol. 27, 1151–1163.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. Wang, W. et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics 11, 5279–5295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Silva et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 8, e45457 (2019).

    PubMed  PubMed Central  Google Scholar 

  386. Chu, T. T. et al. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol. 23, 453–461 (2016).

    CAS  PubMed  Google Scholar 

  387. Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    CAS  PubMed  Google Scholar 

  388. Bhatia, S., Singh, M., Singh, T. & Singh, V. Scrutinizing the therapeutic potential of PROTACs in the management of Alzheimer’s disease. Neurochem. Res. 48, 13–25 (2023).

    CAS  PubMed  Google Scholar 

  389. Gallardo, G. et al. Targeting tauopathy with engineered tau-degrading intrabodies. Mol. Neurodegener. 14, 38 (2019).

    PubMed  PubMed Central  Google Scholar 

  390. Butler, D. C. & Messer, A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS ONE 6, e29199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  391. Igawa, T., Haraya, K. & Hattori, K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol. Rev. 270, 132–151 (2016).

    CAS  PubMed  Google Scholar 

  392. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

    CAS  PubMed  Google Scholar 

  395. Takahashi, D. & Arimoto, H. Targeting selective autophagy by AUTAC degraders. Autophagy 16, 765–766 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Sawa, T. et al. Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat. Chem. Biol. 3, 727–735 (2007).

    CAS  PubMed  Google Scholar 

  397. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  398. Cha-Molstad, H. et al. p62/SQSTM1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun. 8, 102 (2017).

    PubMed  PubMed Central  Google Scholar 

  399. Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  400. Song, W. et al. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 8, 10328–10342 (2014).

    CAS  PubMed  Google Scholar 

  401. Sun, H. et al. A tauopathy-homing and autophagy-activating nanoassembly for specific clearance of pathogenic tau in Alzheimer’s disease. ACS Nano 15, 5263–5275 (2021).

    CAS  PubMed  Google Scholar 

  402. Zheng, J. et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal. Transduct. Target. Ther. 6, 269 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  403. Krishnaswamy, S. et al. In vivo imaging of tauopathy in mice. Methods Mol. Biol. 1779, 513–526 (2018).

    CAS  PubMed  Google Scholar 

  404. Ising, C. et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J. Exp. Med. 214, 1227–1238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  405. Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1230 (2017).

    PubMed  PubMed Central  Google Scholar 

  406. Spencer, B. et al. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 136, 69–87 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  407. Jiang, Y. et al. Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology. Sci. Adv. 9, eadf3775 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  408. Danis, C. et al. Inhibition of Tau seeding by targeting Tau nucleation core within neurons with a single domain antibody fragment. Mol. Ther. 30, 1484–1499 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  409. Li, T. et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J. Control. Rel. 243, 1–10 (2016).

    Google Scholar 

  410. Marino, M. & Holt, M. G. AAV vector-mediated antibody delivery (A-MAD) in the central nervous system. Front. Neurol. 13, 870799 (2022).

    PubMed  PubMed Central  Google Scholar 

  411. Chen, Y. H. et al. Administration of AAV-alpha synuclein NAC antibody improves locomotor behavior in rats overexpressing alpha synuclein. Genes 12, 948 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  412. Butler, Y. R. et al. α-Synuclein fibril-specific nanobody reduces prion-like α-synuclein spreading in mice. Nat. Commun. 13, 4060 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  413. Chen, Y. H. et al. Downregulation of α-synuclein protein levels by an intracellular single-chain antibody. J. Parkinsons Dis. 10, 573–590 (2020).

    CAS  PubMed  Google Scholar 

  414. Zhou, C., Emadi, S., Sierks, M. R. & Messer, A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed α-synuclein. Mol. Ther. 10, 1023–1031 (2004).

    CAS  PubMed  Google Scholar 

  415. Wang, J. et al. Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front. Immunol. 12, 838082 (2021).

    CAS  PubMed  Google Scholar 

  416. Jovcevska, I. & Muyldermans, S. The therapeutic potential of nanobodies. Biodrugs 34, 11–26 (2020).

    CAS  PubMed  Google Scholar 

  417. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).

    CAS  PubMed  Google Scholar 

  418. Gary-Bobo, M., Nirde, P., Jeanjean, A., Morere, A. & Garcia, M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr. Med. Chem. 14, 2945–2953 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Kyttala, A., Heinonen, O., Peltonen, L. & Jalanko, A. Expression and endocytosis of lysosomal aspartylglucosaminidase in mouse primary neurons. J. Neurosci. 18, 7750–7756 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  420. Hawkes, C. & Kar, S. Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. J. Comp. Neurol. 458, 113–127 (2003).

    CAS  PubMed  Google Scholar 

  421. Couce, M. E., Weatherington, A. J. & McGinty, J. F. Expression of insulin-like growth factor-II (IGF-II) and IGF-II/mannose-6-phosphate receptor in the rat hippocampus: an in situ hybridization and immunocytochemical study. Endocrinology 131, 1636–1642 (1992).

    CAS  PubMed  Google Scholar 

  422. Jabbari, E. & Duff, K. E. Tau-targeting antibody therapies: too late, wrong epitope or wrong target? Nat. Med. 27, 1341–1342 (2021).

    CAS  PubMed  Google Scholar 

  423. Bespalov, A., Courade, J. P., Khiroug, L., Terstappen, G. C. & Wang, Y. A call for better understanding of target engagement in Tau antibody development. Drug. Discov. Today 27, 103338 (2022).

    CAS  PubMed  Google Scholar 

  424. Sigurdsson, E. M. T. Immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J. Alzheimers Dis. 64, S555–S565 (2018).

    PubMed  PubMed Central  Google Scholar 

  425. Wu, Q. et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol. Dis. 147, 105165 (2021).

    CAS  PubMed  Google Scholar 

  426. Giacobini, E. & Gold, G. Alzheimer disease therapy – moving from amyloid-β to tau. Nat. Rev. Neurol. 9, 677–686 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by NIH grants R01 AG032611, NS077239, RF1 NS120488, R21 AG069475 and T32 AG052909, and Alzheimer’s Association grants AARF-22-926735 and AARF-22-924783.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Einar M. Sigurdsson.

Ethics declarations

Competing interests

E.M.S. in an inventor on various patents related to the topic of this review that are assigned to New York University. Some of the patents on tau immunotherapies are licensed to H. Lundbeck. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks S. Fowler, who co-reviewed with S. Bez; R. Kayed; and L. Vivash for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Congdon, E.E., Ji, C., Tetlow, A.M. et al. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 19, 715–736 (2023). https://doi.org/10.1038/s41582-023-00883-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00883-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing