Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenetic mechanisms and treatment targets in cerebral malaria

An Author Correction to this article was published on 06 November 2023

This article has been updated

Abstract

Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.

Key points

  • Cerebral malaria is an acute, life-threatening cerebrovascular complication characterized by unarousable coma; children <5 years are most at risk, although cerebral malaria can develop at any age.

  • Effective treatments for blood-stage malaria include antiparasite drugs such as artesunates and therapies that increase pitting, opsonization and phagocytic clearance of infected erythrocytes.

  • Host–parasite interactions result in sequestration of infected erythrocytes and immune cells on brain endothelial cells, which can lead to vascular disintegration, disruption of the blood–brain barrier and potentially neuropathology.

  • CD8+ T cell-mediated immune responses during cerebral malaria contribute to endothelial injury and blood–brain barrier disintegration, highlighting potential roles for therapies that target T cell recruitment, activation and cytotoxicity.

  • Host–parasite interactions result in the activation of microglia and astrocytes; thus, manipulation of these brain-resident cells might beneficially influence the neuropathology of cerebral malaria.

  • Cerebral malaria can be alleviated by combinations of therapies that clear infected cells and parasites, ideally complemented in the future by therapies that increase the resilience of the brain to tissue damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle of Plasmodium.
Fig. 2: Parasite clearance in the spleen.
Fig. 3: Host–parasite interactions at the cerebrovascular endothelium in cerebral malaria.
Fig. 4: The immunopathology of cerebral malaria.

Similar content being viewed by others

Change history

References

  1. WHO. World Malaria Report 2022 (WHO, 2022).

  2. Lindblade, K. A., Steinhardt, L., Samuels, A., Kachur, S. P. & Slutsker, L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev. Anti Infect. Ther. 11, 623–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Reyburn, H. et al. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. J. Am. Med. Assoc. 293, 1461–1470 (2005).

    Article  CAS  Google Scholar 

  4. Marsh, K. et al. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332, 1399–1404 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Tack, B. et al. Health itinerary-related survival of children under-five with severe malaria or bloodstream infection, DR Congo. PLoS Negl. Trop. Dis. 17, e0011156 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adeboye, M. A., Ojuawo, A., Ernest, S. K., Fadeyi, A. & Salisu, O. T. Mortality pattern within twenty-four hours of emergency paediatric admission in a resource-poor nation health facility. West Afr. J. Med. 29, 249–252 (2010).

    CAS  PubMed  Google Scholar 

  7. Chiabi, A. et al. Severe malaria in Cameroon: pattern of disease in children at the Yaounde Gynaeco-Obstetric and Pediatric Hospital. J. Infect. Public Health 13, 1469–1472 (2020).

    Article  PubMed  Google Scholar 

  8. Dondorp, A. M. et al. The relationship between age and the manifestations of and mortality associated with severe malaria. Clin. Infect. Dis. 47, 151–157 (2008).

    Article  PubMed  Google Scholar 

  9. Dondorp, A. M. et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376, 1647–1657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dondorp, A., Nosten, F., Stepniewska, K., Day, N. & White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366, 717–725 (2005).

    Article  PubMed  Google Scholar 

  11. Sahu, P. K. et al. Brain magnetic resonance imaging reveals different courses of disease in pediatric and adult cerebral malaria. Clin. Infect. Dis. 73, e2387–e2396 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, H. et al. Multiple organ dysfunction syndrome and Pediatric Logistic Organ Dysfunction-2 score in pediatric cerebral malaria. Am. J. Trop. Med. Hyg. 107, 820–826 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kochar, D. K. et al. Clinical features of children hospitalized with malaria—a study from Bikaner, northwest India. Am. J. Trop. Med. Hyg. 83, 981–989 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tembo, D. et al. Risk factors for acute kidney injury at presentation among children with CNS malaria: a case control study. Malar. J. 21, 310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. White, N. J. Severe malaria. Malar. J. 21, 284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 1608–1621 (2018).

    Article  PubMed  Google Scholar 

  17. World Health Organization. WHO Guidelines for Malaria, 14 March 2023. https://apps.who.int/iris/handle/10665/366432 (2023).

  18. White, N. J. The parasite clearance curve. Malar. J. 10, 278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conroy, A. L. et al. Parenteral artemisinins are associated with reduced mortality and neurologic deficits and improved long-term behavioral outcomes in children with severe malaria. BMC Med. 19, 168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flannery, E. L., Chatterjee, A. K. & Winzeler, E. A. Antimalarial drug discovery — approaches and progress towards new medicines. Nat. Rev. Microbiol. 11, 849–862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashley, E. A. & Phyo, A. P. Drugs in development for malaria. Drugs 78, 861–879 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riley, E. M. & Stewart, V. A. Immune mechanisms in malaria: new insights in vaccine development. Nat. Med. 19, 168–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Cockburn, I. A. & Seder, R. A. Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat. Immunol. 19, 1199–1211 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. De Koning-Ward, T. F., Dixon, M. W. A., Tilley, L. & Gilson, P. R. Plasmodium species: master renovators of their host cells. Nat. Rev. Microbiol. 14, 494–507 (2016).

    Article  PubMed  Google Scholar 

  25. White, N. J., Turner, G. D. H., Day, N. P. J. & Dondorp, A. M. Lethal malaria: Marchiafava and Bignami were right. J. Infect. Dis. 208, 192–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bignami, A., Felkin, R. W., Mannaberg, J., Marchiafava, E. & Thompson, J. H. Two monographs on malaria and the parasites of malarial fevers I. Marchiafava and Bignami. II. Mannaberg (New Sydenham Society, 1894).

  27. Varo, R., Erice, C., Johnson, S., Bassat, Q. & Kain, K. C. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar. J. 19, 268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wahlgren, M., Goel, S. & Akhouri, R. R. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat. Rev. Microbiol. 15, 479–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ndour, P. A. et al. Plasmodium falciparum clearance is rapid and pitting independent in immune Malian children treated with artesunate for malaria. J. Infect. Dis. 211, 290–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Newton, P. N. et al. A comparison of the in vivo kinetics of Plasmodium falciparum ring-infected erythrocyte surface antigen-positive and -negative erythrocytes. Blood 98, 450–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Angus, B. J., Chotivanich, K., Udomsangpetch, R. & White, N. J. In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria. Blood 90, 2037–2040 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Ayi, K. et al. CD47-SIRPα interactions regulate macrophage uptake of Plasmodium falciparum-infected erythrocytes and clearance of malaria in vivo. Infect. Immun. 84, 2002–2011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Torrez Dulgeroff, L. B. et al. CD47 blockade reduces the pathologic features of experimental cerebral malaria and promotes survival of hosts with Plasmodium infection. Proc. Natl Acad. Sci. USA 118, e1907653118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Banerjee, R., Khandelwal, S., Kozakai, Y., Sahu, B. & Kumar, S. CD47 regulates the phagocytic clearance and replication of the Plasmodium yoelii malaria parasite. Proc. Natl Acad. Sci. USA 112, 3062–3067 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, S. et al. A role of PIEZO1 in iron metabolism in mice and humans. Cell 184, 969–982.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, S. et al. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates Plasmodium infection. Cell 173, 443–455.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosa, T. F. A. et al. The Plasmodium falciparum blood stages acquire factor H family proteins to evade destruction by human complement. Cell. Microbiol. 18, 573–590 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy, A. T. et al. Recruitment of factor H as a novel complement evasion strategy for blood-stage Plasmodium falciparum infection. J. Immunol. 196, 1239–1248 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Kiyuka, P. K., Meri, S. & Khattab, A. Complement in malaria: immune evasion strategies and role in protective immunity. FEBS Lett. 594, 2502–2517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel, S. N. et al. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J. Exp. Med. 205, 1133–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, H. et al. Functional roles for C5a and C5aR but not C5L2 in the pathogenesis of human and experimental cerebral malaria. Infect. Immun. 82, 371–379 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Biryukov, S. & Stoute, J. A. Complement activation in malaria: friend or foe? Trends Mol. Med. 20, 293–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Schein, T. N. & Barnum, S. R. Role of complement in cerebral malaria. In Complement Activation in Malaria Immunity and Pathogenesis (ed. Stoute, J. A.) 65–90 (2018); https://doi.org/10.1007/978-3-319-77258-5_4.

  46. Lee, W. C. et al. Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. eLife 9, e51546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Albrecht, L. et al. Rosettes integrity protects Plasmodium vivax of being phagocytized. Sci. Rep. 10, 16706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, W. C. et al. Plasmodium falciparum rosetting protects schizonts against artemisinin. EBioMedicine 73, 103680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moles, E. et al. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J. Control. Release 241, 57–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Dorovini-Zis, K. et al. The neuropathology of fatal cerebral malaria in malawian children. Am. J. Pathol. 178, 2146–2158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Milner, D. A. Jr et al. The systemic pathology of cerebral malaria in African children. Front. Cell. Infect. Microbiol. 4, 104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moxon, C. A. et al. Persistent endothelial activation and inflammation after Plasmodium falciparum infection in Malawian children. J. Infect. Dis. 209, 610–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Nickerson, J. P., Tong, K. A. & Raghavan, R. Imaging cerebral malaria with a susceptibility-weighted MR sequence. AJNR Am. J. Neuroradiol. 30, e85–e86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kraemer, S. M. & Smith, J. D. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9, 374–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kessler, A. et al. Linking EPCR-binding PfEMP1 to brain swelling in pediatric cerebral malaria. Cell Host Microbe 22, 601–614.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wichers, J. S. et al. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 10, e69040 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lau, C. K. Y. et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria. Cell Host Microbe 17, 118–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C. I. & Marsh, K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341, 57–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Fonager, J. et al. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo. J. Exp. Med. 209, 93–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vogt, A. M. et al. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1α domain of PfEMP1. Blood 101, 2405–2411 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Robert, C. et al. Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. Res. Immunol. 146, 383–393 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Rogerson, S. J., Chaiyaroj, S. C., Ng, K., Reeder, J. C. & Brown, G. V. Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 182, 15–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Tuikue Ndam, N. et al. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1. J. Infect. Dis. 215, 1918–1925 (2017).

    Article  PubMed  Google Scholar 

  67. Lennartz, F. et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host Microbe 21, 403–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duffy, F. et al. Meta-analysis of Plasmodium falciparum var signatures contributing to severe malaria in African children and Indian adults. MBio 10, e00217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jensen, A. R., Adams, Y. & Hviid, L. Cerebral Plasmodium falciparum malaria: the role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol. Rev. 293, 230–252 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Avril, M. et al. A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc. Natl Acad. Sci. USA 109, E1782–E1790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Claessens, A. et al. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc. Natl Acad. Sci. USA 109, E1772–E1781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bernabeu, M. et al. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc. Natl Acad. Sci. USA 113, E3270–E3279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turner, G. D. H. et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol. 145, 1057–1069 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ochola, L. B. et al. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 6, e14741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Franke-Fayard, B. et al. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc. Natl Acad. Sci. USA 102, 11468–11473 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bernabeu, M. & Smith, J. D. EPCR and malaria severity: the center of a perfect storm. Trends Parasitol. 33, 295–308 (2017).

    Article  PubMed  Google Scholar 

  77. Utter, C., Serrano, A. E., Glod, J. W. & Leibowitz, M. J. Association of Plasmodium falciparum with human endothelial cells in vitro. Yale J. Biol. Med. 90, 183–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Khaw, L. T. et al. Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors. Exp. Parasitol. 145, 34–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Khoury, D. S. et al. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria. Infect. Immun. 82, 212–220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Adams, Y. et al. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood-brain barrier in cerebral malaria. J. Exp. Med. 218, e20201266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fens, M. H. A. M. et al. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica 97, 500–508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun, J. et al. Insights into the mechanisms of brain endothelial erythrophagocytosis. Front. Cell Dev. Biol. 9, 672009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chang, R. et al. Brain endothelial erythrophagocytosis and hemoglobin transmigration across brain endothelium: implications for pathogenesis of cerebral microbleeds. Front. Cell. Neurosci. 12, 279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A. & Carvalho, L. J. M. Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine. Am. J. Pathol. 176, 1306–1315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van Meer, G. & Simons, K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5, 1455–1464 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dragsten, P. R., Blumenthal, R. & Handler, J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294, 718–722 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Turner, G. D. H. et al. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am. J. Pathol. 152, 1477–1487 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tripathi, A. K., Sullivan, D. J. & Stins, M. F. Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect. Immun. 74, 3262–3270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Darling, T. K. et al. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog. 16, e1008261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conroy, A. L. et al. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One 5, e15291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yeo, T. W. et al. Glycocalyx breakdown is associated with severe disease and fatal outcome in Plasmodium falciparum malaria. Clin. Infect. Dis. 69, 1712–1720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lyimo, E. et al. In vivo imaging of the buccal mucosa shows loss of the endothelial glycocalyx and perivascular hemorrhages in pediatric Plasmodium falciparum malaria. Infect. Immun. 88, e00679–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jakobsen, P. H. et al. Increased plasma concentrations of sICAM-1, sVCAM-1 and sELAM-1 in patients with Plasmodium falciparum or P. vivax malaria and association with disease severity. Immunology 83, 665–669 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tchinda, V. H. M. et al. Severe malaria in Cameroonian children: correlation between plasma levels of three soluble inducible adhesion molecules and TNF-α. Acta Trop. 102, 20–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Gavard, J., Patel, V. & Gutkind, J. S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 14, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat. Med. 12, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Wallez, Y. et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26, 1067–1077 (2006).

    Article  PubMed  Google Scholar 

  99. Gallego-Delgado, J. et al. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria. J. Clin. Invest. 126, 4016–4029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dhangadamajhi, G., Mohapatra, B. N., Kar, S. K. & Ranjit, M. Gene polymorphisms in angiotensin I converting enzyme (ACE I/D) and angiotensin II converting enzyme (ACE2 C–>T) protect against cerebral malaria in Indian adults. Infect. Genet. Evol. 10, 337–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Saraiva, V. B. et al. Impairment of the Plasmodium falciparum erythrocytic cycle induced by angiotensin peptides. PLoS One 6, e17174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gallego-Delgado, J. et al. Angiotensin II moderately decreases Plasmodium infection and experimental cerebral malaria in mice. PLoS One 10, e0138191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Maciel, C. et al. Anti-Plasmodium activity of angiotensin II and related synthetic peptides. PLoS One 3, e3296 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gillrie, M. R. et al. Src-family kinase dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood 110, 3426–3435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kunkel, G. T., MacEyka, M., Milstien, S. & Spiegel, S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug Discov. 12, 688–702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Finney, C. A. M. et al. S1P is associated with protection in human and experimental cerebral malaria. Mol. Med. 17, 717–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nacer, A. et al. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog. 8, e1002982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nacer, A. et al. Experimental cerebral malaria pathogenesis—hemodynamics at the blood brain barrier. PLoS Pathog. 10, e1004528 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lovegrove, F. E. et al. Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS One 4, e4912 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Conroy, A. L. et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case-control study. Crit. Care Med. 40, 952–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wassmer, S. C. et al. Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am. J. Trop. Med. Hyg. 93 (Suppl), 42–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Papapetropoulos, A. et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J. Biol. Chem. 275, 9102–9105 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Higgins, S. J. et al. Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria. Sci. Transl. Med. 8, 358ra128 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ziegler, T. et al. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J. Clin. Invest. 123, 3436–3445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, S. et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci. Transl. Med. 8, 335ra55 (2016).

    Article  PubMed  Google Scholar 

  116. Rasmussen, A. L. et al. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346, 987–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Phanthanawiboon, S. et al. Acute systemic infection with dengue virus leads to vascular leakage and death through tumor necrosis factor-α and Tie2/angiopoietin signaling in mice lacking type I and II interferon receptors. PLoS One 11, e0148564 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stiehl, T. et al. Lung-targeted RNA interference against angiopoietin-2 ameliorates multiple organ dysfunction and death in sepsis. Crit. Care Med. 42, e654–e662 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Ghosh, C. C. et al. Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax. Proc. Natl Acad. Sci. USA 109, 10024–10029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Serghides, L. et al. Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria. J. Infect. Dis. 199, 1536–1545 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Serghides, L. et al. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog. 10, e1003980 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bopp, S. E. R. et al. Genome wide analysis of inbred mouse lines identifies a locus containing Ppar-gamma as contributing to enhanced malaria survival. PLoS One 5, e10903 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Boggild, A. K. et al. Use of peroxisome proliferator-activated receptor γ agonists as adjunctive treatment for Plasmodium falciparum malaria: a randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 49, 841–849 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Opitz, B., Eitel, J., Meixenberger, K. & Suttorp, N. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb. Haemost. 102, 1103–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Sisquella, X. et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 8, 1985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gowda, D. C. & Wu, X. Parasite recognition and signaling mechanisms in innate immune responses to malaria. Front. Immunol. https://doi.org/10.3389/fimmu.2018.03006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat. Med. 20, 47–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Gazzinelli, R. T., Kalantari, P., Fitzgerald, K. A. & Golenbock, D. T. Innate sensing of malaria parasites. Nat. Rev. Immunol. 14, 744–757 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Sharma, S. et al. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35, 194–207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pais, T. F. et al. Brain endothelial STING1 activation by Plasmodium-sequestered heme promotes cerebral malaria via type I IFN response. Proc. Natl Acad. Sci. USA 119, e2206327119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schrezenmeier, E. & Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. An, J., Woodward, J. J., Sasaki, T., Minie, M. & Elkon, K. B. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J. Immunol. 194, 4089–4093 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. He, X. et al. RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology. Proc. Natl Acad. Sci. USA 117, 19465–19474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dunst, J., Kamena, F. & Matuschewski, K. Cytokines and chemokines in cerebral malaria pathogenesis. Front. Cell. Infect. Microbiol. 7, 324 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yañez, D. M., Manning, D. D., Cooley, A. J., Weidanz, W. P. & van der Heyde, H. C. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J. Immunol. 157, 1620–1624 (1996).

    Article  PubMed  Google Scholar 

  138. Grau, G. E. et al. Monoclonal antibody against interferon γ can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc. Natl Acad. Sci. USA 86, 5572–5574 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Belnoue, E. et al. Control of pathogenic CD8+ T cell migration to the brain by IFN-γ during experimental cerebral malaria. Parasite Immunol. 30, 544–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Amani, V. et al. Involvement of IFN-γ receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur. J. Immunol. 30, 1646–1655 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Villegas-Mendez, A. et al. Gamma interferon mediates experimental cerebral malaria by signaling within both the hematopoietic and nonhematopoietic compartments. Infect. Immun. 85, e01035–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Torre, S. et al. USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nat. Immunol. 18, 54–63 (2016).

    Article  PubMed  Google Scholar 

  143. Vigário, A. M. et al. Recombinant human IFN-α inhibits cerebral malaria and reduces parasite burden in mice. J. Immunol. 178, 6416–6425 (2007).

    Article  PubMed  Google Scholar 

  144. Xu, S. et al. The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction. Signal Transduct. Target. Ther. 6, 266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Waknine-Grinberg, J. H., McQuillan, J. A., Hunt, N., Ginsburg, H. & Golenser, J. Modulation of cerebral malaria by fasudil and other immune-modifying compounds. Exp. Parasitol. 125, 141–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Wilson, N. O. et al. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS One 8, e60898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bienvenu, A. L. & Picot, S. Statins alone are ineffective in cerebral malaria but potentiate artesunate. Antimicrob. Agents Chemother. 52, 4203–4204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Souraud, J. B. et al. Atorvastatin treatment is effective when used in combination with mefloquine in an experimental cerebral malaria murine model. Malar. J. 11, 13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dormoi, J. et al. Improvement of the efficacy of dihydroartemisinin with atorvastatin in an experimental cerebral malaria murine model. Malar. J. 12, 302 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Reis, P. A. et al. Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog. 8, e1003099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parihar, S. P., Guler, R. & Brombacher, F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat. Rev. Immunol. 19, 104–117 (2018).

    Article  Google Scholar 

  152. Kopp, E. & Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956–959 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. & Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25, 1939–1948 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Rodriguez-Muñoz, D. et al. Hypothyroidism confers tolerance to cerebral malaria. Sci. Adv. 8, eabj7110 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Abdrabou, W. et al. Upregulation of steroidogenesis is associated with coma in human cerebral malaria. Preprint at bioRxiv https://doi.org/10.1101/2023.05.01.538900 (2023).

  156. Warrell, D. A. et al. Dexamethasone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients. N. Engl. J. Med. 306, 313–319 (1982).

    Article  CAS  PubMed  Google Scholar 

  157. Abdrabou, W. et al. Metabolome modulation of the host adaptive immunity in human malaria. Nat. Metab. 3, 1001–1016 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Hoffman, S. L. et al. High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial. J. Infect. Dis. 158, 325–331 (1988).

    Article  CAS  PubMed  Google Scholar 

  159. Prasad, K. & Garner, P. Steroids for treating cerebral malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000972 (2000).

  160. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Moreira, D. R. et al. Dexamethasone increased the survival rate in Plasmodium berghei-infected mice. Sci. Rep. 11, 2623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sanni, L. A. et al. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Am. J. Pathol. 152, 611–619 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Farah, C., Michel, L. Y. M. & Balligand, J. L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15, 292–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Yeo, T. W. et al. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J. Exp. Med. 204, 2693–2704 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Conroy, A. L. et al. Methemoglobin and nitric oxide therapy in Ugandan children hospitalized for febrile illness: results from a prospective cohort study and randomized double-blind placebo-controlled trial. BMC Pediatr. 16, 177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mwanga-Amumpaire, J. et al. Inhaled nitric oxide as an adjunctive treatment for cerebral malaria in children: a phase II randomized open-label clinical trial. Open Forum Infect. Dis. 2, ofv111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hawkes, M. T. et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malar. J. 14, 421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bangirana, P. et al. Inhaled nitric oxide and cognition in pediatric severe malaria: A randomized double-blind placebo controlled trial. PLoS One 13, e0191550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gramaglia, I. et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat. Med. 12, 1417–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A. & Carvalho, L. J. M. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis. 203, 1454–1463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zanini, G. M., Cabrales, P., Barkho, W., Frangos, J. A. & Carvalho, L. J. M. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J. Neuroinflammation 8, 66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martins, Y. C., Zanini, G. M., Frangos, J. A. & Carvalho, L. J. M. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA. PLoS One 7, e32048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Serghides, L. et al. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 6, e27714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lopansri, B. K. et al. Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 361, 676–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Olszewski, K. L. et al. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5, 191–199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gramaglia, I. et al. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak. PLoS One 14, e0213428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Elphinstone, R. E. et al. S-Nitrosoglutathione reductase deficiency confers improved survival and neurological outcome in experimental cerebral malaria. Infect. Immun. 85, e00371–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rubach, M. P. et al. Cerebrospinal fluid pterins, pterin-dependent neurotransmitters, and mortality in pediatric cerebral malaria. J. Infect. Dis. 224, 1432–1441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Grootaert, M. O. J. & Bennett, M. R. Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets. Nat. Rev. Cardiol. 19, 668–683 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Jeney, V. et al. Control of disease tolerance to malaria by nitric oxide and carbon monoxide. Cell Rep. 8, 126–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Pena, A. C. & Pamplona, A. Heme oxygenase-1, carbon monoxide, and malaria – the interplay of chemistry and biology. Coord. Chem. Rev. 453, 214285 (2022).

    Article  CAS  Google Scholar 

  185. Campbell, N. K., Fitzgerald, H. K. & Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 21, 411–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Motterlini, R. & Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Pena, A. C. et al. A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob. Agents Chemother. 56, 1281–1290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Mita-Mendoza, N. K. et al. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar. J. 19, 376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2012 13:1 13, 34–45 (2012).

    Google Scholar 

  191. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Grau, G. E. et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J. Infect. Dis. 187, 461–466 (2003).

    Article  PubMed  Google Scholar 

  193. Grau, G. E. & Tacchini-Cottier, F. TNF-induced microvascular pathology: active role for platelets and importance of the LFA-1/ICAM-1 interaction. Eur. Cytokine Netw. 4, 415–419 (1992).

    Google Scholar 

  194. von Zur Muhlen, C. et al. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J. Clin. Invest. 118, 1198–1207 (2008).

    Google Scholar 

  195. Darling, T. K. et al. Platelet α-granules contribute to organ-specific pathologies in a mouse model of severe malaria. Blood Adv. 4, 1–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Srivastava, K. et al. Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4, 179–187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. van der Heyde, H. C., Gramaglia, I., Sun, G. & Woods, C. Platelet depletion by anti-CD41 (alphaIIb) mAb injection early but not late in the course of disease protects against Plasmodium berghei pathogenesis by altering the levels of pathogenic cytokines. Blood 105, 1956–1963 (2005).

    Article  PubMed  Google Scholar 

  198. Sun, G. et al. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect. Immun. 71, 6553–6561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gramaglia, I. et al. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response. Blood 129, 1669–1679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chapman, L. M. et al. Platelets present antigen in the context of MHC class I. J. Immunol. 189, 916–923 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Gaertner, F. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 171, 1368–1382.e23 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Miu, J. et al. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J. Immunol. 180, 1217–1230 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Van Den Ham, K. M., Smith, L. K., Richer, M. J. & Olivier, M. Protein tyrosine phosphatase inhibition prevents experimental cerebral malaria by precluding CXCR3 expression on T cells. Sci. Rep. 7, 5478 (2017).

    Article  PubMed  Google Scholar 

  204. Sachais, B. S. et al. Rational design and characterization of platelet factor 4 antagonists for the study of heparin-induced thrombocytopenia. Blood 119, 5955–5962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. McMorran, B. J. et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323, 797–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Moxon, C. A. et al. Parasite histones are toxic to brain endothelium and link blood barrier breakdown and thrombosis in cerebral malaria. Blood Adv. 4, 2851–2864 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rodrigues, D. A. S. et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. PLoS Pathog. 16, e1008230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Knackstedt, S. L. et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci. Immunol. 4, 336 (2019).

    Article  Google Scholar 

  211. Kho, S. et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria. J. Infect. Dis. 219, 1994–2004 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Vera, I. M. et al. Plasma cell-free DNA predicts pediatric cerebral malaria severity. JCI Insight 5, e136279 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Armah, H. B. et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar. J. 6, 147 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Feintuch, C. M. et al. Activated neutrophils are associated with pediatric cerebral malaria vasculopathy in Malawian children. MBio 7, e01300–e01315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Dhanesha, N. et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 139, 1234–1245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang, A. et al. Glucose metabolism mediates disease tolerance in cerebral malaria. Proc. Natl Acad. Sci. USA 115, 11042–11047 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Amulic, B., Moxon, C. A. & Cunnington, A. J. A more granular view of neutrophils in malaria. Trends Parasitol. 36, 501–503 (2020).

    Article  PubMed  Google Scholar 

  218. Branco, A. C. C. C., Yoshikawa, F. S. Y., Pietrobon, A. J. & Sato, M. N. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm. 2018, 9524075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Enwonwu, C. O., Afolabi, B. M., Salako, L. O., Idigbe, E. O. & Bashirelah, N. Increased plasma levels of histidine and histamine in falciparum malaria: relevance to severity of infection. J. Neural Transm. (Vienna) 107, 1273–1287 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Beghdadi, W. et al. Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. J. Exp. Med. 205, 395–408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Tiligada, E. & Ennis, M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br. J. Pharmacol. 177, 469–489 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Beghdadi, W. et al. Histamine H(3) receptor-mediated signaling protects mice from cerebral malaria. PLoS One 4, e6004 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Teuscher, C. et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc. Natl Acad. Sci. USA 104, 10146–10151 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Huang, B. et al. Activation of mast cells promote Plasmodium berghei ANKA infection in murine model. Front. Cell. Infect. Microbiol. 9, 322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Porcherie, A. et al. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J. Exp. Med. 208, 2225–2236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Royo, J. et al. Kinetics of monocyte subpopulations during experimental cerebral malaria and its resolution in a model of late chloroquine treatment. Front. Cell. Infect. Microbiol. 12, 952993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Niewold, P. et al. Experimental severe malaria is resolved by targeting newly-identified monocyte subsets using immune-modifying particles combined with artesunate. Commun. Biol. 1, 227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hansen, D. S., Bernard, N. J., Nie, C. Q. & Schofield, L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J. Immunol. 178, 5779–5788 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Hermsen, C., van de Wiel, T., Mommers, E., Sauerwein, R. & Eling, W. Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease. Parasitology 114, 7–12 (1997).

    Article  PubMed  Google Scholar 

  230. Grau, G. E. et al. L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J. Immunol. 137, 2348–2354 (1986).

    Article  CAS  PubMed  Google Scholar 

  231. Belnoue, E. et al. On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. J. Immunol. 169, 6369–6375 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Finley, R. W., Mackey, L. J. & Lambert, P. H. Virulent P. berghei malaria: prolonged survival and decreased cerebral pathology in cell-dependent nude mice. J. Immunol. 129, 2213–2218 (1982).

    Article  CAS  PubMed  Google Scholar 

  233. Wright, D. H. The effect of neonatal thymectomy on the survival of golden hamsters infected with Plasmodium berghei. Br. J. Exp. Pathol. 49, 379–384 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Gramaglia, I. et al. Cell- rather than antibody-mediated immunity leads to the development of profound thrombocytopenia during experimental Plasmodium berghei malaria. J. Immunol. 175, 7699–7707 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Nitcheu, J. et al. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J. Immunol. 170, 2221–2228 (2003).

    Article  CAS  PubMed  Google Scholar 

  236. Wright, D. H., Masembe, R. M. & Bazira, E. R. The effect of antithymocyte serum on golden hamsters and rats infected with Plasmodium berghei. Br. J. Exp. Pathol. 52, 465–477 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Riggle, B. A. et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria. J. Clin. Invest. 130, 1128–1138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kurup, S. P., Butler, N. S. & Harty, J. T. T cell-mediated immunity to malaria. Nat. Rev. Immunol. 19, 457–471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Campanella, G. S. V. et al. Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc. Natl Acad. Sci. USA 105, 4814–4819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Swanson, P. A. II et al. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature. PLoS Pathog. 12, e1006022 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Shaw, T. N. et al. Perivascular arrest of CD8+ T cells is a signature of experimental cerebral malaria. PLoS Pathog. 11, e1005210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Van Braeckel-Budimir, N. et al. A T cell receptor locus harbors a malaria-specific immune response gene. Immunity 47, 835–847.e4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Heide, J., Vaughan, K. C., Sette, A., Jacobs, T. & Schulze Zur Wiesch, J. Comprehensive review of human Plasmodium falciparum-specific CD8+ T cell epitopes. Front. Immunol. 10, 397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Junqueira, C. et al. Cytotoxic CD8+ T cells recognize and kill Plasmodium vivax–infected reticulocytes. Nat. Med. 24, 1330–1336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Pober, J. S., Merola, J., Liu, R. & Manes, T. D. Antigen presentation by vascular cells. Front. Immunol. 8, 1907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Howland, S. W., Poh, C. M. & Rénia, L. Activated brain endothelial cells cross-present malaria antigen. PLoS Pathog. 11, e1004963 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Howland, S. W. et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol. Med. 5, 984–999 (2013).

    Article  PubMed  Google Scholar 

  248. Fain, C. et al. Discrete class I molecules on brain endothelium differentially regulate neuropathology in experimental cerebral malaria. Brain https://doi.org/10.1093/brain/awad319 (2023).

  249. Geppert, T. D. & Lipsky, P. E. Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J. Immunol. 135, 3750–3762 (1985).

    Article  CAS  PubMed  Google Scholar 

  250. Murata, S., Takahama, Y., Kasahara, M. & Tanaka, K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19, 923–931 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Howland, S. W., Ng, G. X. P., Chia, S. K. & Rénia, L. Investigating proteasome inhibitors as potential adjunct therapies for experimental cerebral malaria. Parasite Immunol. 37, 599–604 (2015).

    Article  CAS  PubMed  Google Scholar 

  252. Basler, M. et al. The immunoproteasome: a novel drug target for autoimmune diseases. Clin. Exp. Rheumatol. 33, 74–79 (2015).

    Google Scholar 

  253. Baeza Garcia, A. et al. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria. FASEB J. 35, e21997 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Andrews, S. P. & Cox, R. J. Small molecule CXCR3 antagonists. J. Med. Chem. 59, 2894–2917 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Nie, C. Q. et al. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog. 5, e1000369 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Wilson, N. O. et al. CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis. Markers 30, 39–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Lebwohl, M. et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl. J. Med. 349, 2004–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  258. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  259. Fauconnier, M. et al. Protein kinase C-theta is required for development of experimental cerebral malaria. Am. J. Pathol. 178, 212–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  261. Monks, C. R. F., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-Θ during T-cell activation. Nature 385, 83–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  262. Potter, S. et al. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int. J. Parasitol. 36, 485–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  263. Haque, A. et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J. Immunol. 186, 6148–6156 (2011).

    Article  CAS  PubMed  Google Scholar 

  264. Huggins, M. A. et al. Perforin expression by CD8 T cells is sufficient to cause fatal brain edema during experimental cerebral malaria. Infect. Immun. 85, e00985–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hermsen, C. C. et al. Circulating concentrations of soluble granzyme A and B increase during natural and experimental Plasmodium falciparum infections. Clin. Exp. Immunol. 132, 467–472 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Kaminski, L.-C. et al. Cytotoxic T cell-derived granzyme B is increased in severe Plasmodium falciparum malaria. Front. Immunol. 10, 2917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Barrera, V. et al. Comparison of CD8+ T cell accumulation in the brain during human and murine cerebral malaria. Front. Immunol. 10, 1747 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Skaro, A. I. et al. CD8+ T cells mediate aortic allograft vasculopathy by direct killing and an interferon-γ-dependent indirect pathway. Cardiovasc. Res. 65, 283–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  269. Gross, C. C. et al. CD8+ T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. Nat. Commun. 10, 5779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Bongfen, S. E. et al. An N-ethyl-N-nitrosourea (ENU)-induced dominant negative mutation in the JAK3 kinase protects against cerebral malaria. PLoS One 7, e31012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H. & Berg, L. J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  272. Torre, S. et al. THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect. Immun. 83, 759–768 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Kennedy, J. M. et al. ZBTB7B (ThPOK) is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect. Immun. 88, e00845–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kennedy, J. M. et al. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. J. Exp. Med. 211, 2519–2535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lesourne, R. et al. Themis, a T cell–specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  277. Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat. Med. 13, 1035–1041 (2007).

    Article  CAS  PubMed  Google Scholar 

  278. Radtke, A. J. et al. Lymph-node resident CD8α+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses. PLoS Pathog. 11, e1004637 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Lundie, R. J. et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells. Proc. Natl Acad. Sci. USA 105, 14509–14514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Salem, S., Salem, D. & Gros, P. Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum. Genet. 139, 707–721 (2020).

    Article  CAS  PubMed  Google Scholar 

  282. Berghout, J. et al. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog. 9, e1003491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kuehlwein, J. M. et al. Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology 159, 193–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  284. Piva, L. et al. Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J. Immunol. 189, 1128–1132 (2012).

    Article  CAS  PubMed  Google Scholar 

  285. Raulf, M. K. et al. The C-type lectin receptor CLEC12A recognizes plasmodial hemozoin and contributes to cerebral malaria development. Cell Rep. 28, 30–38.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wiese, L., Hempel, C., Penkowa, M., Kirkby, N. & Kurtzhals, J. A. L. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria. Malar. J. 7, 3 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Kaiser, K. et al. Recombinant human erythropoietin prevents the death of mice during cerebral malaria. J. Infect. Dis. 193, 987–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  288. Casals-Pascual, C. et al. High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc. Natl Acad. Sci. USA 105, 2634–2639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Wei, X. et al. Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity. Infect. Immun. 82, 165–173 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Guermonprez, P. et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 19, 730–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Mejia, P. et al. A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malar. J. 16, 455 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Burrack, K. S. et al. Interleukin-15 complex treatment protects mice from cerebral malaria by inducing interleukin-10-producing natural killer cells. Immunity 48, 760–772.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wang, J. et al. PDL1 fusion protein protects against experimental cerebral malaria via repressing over-reactive CD8+ T cell responses. Front. Immunol. 9, 3157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Shen, Y. et al. The immunomodulatory effect of microglia on ECM neuroinflammation via the PD-1/PD-L1 pathway. CNS Neurosci. Ther. 28, 46–63 (2022).

    Article  CAS  PubMed  Google Scholar 

  295. Gordon, E. B. et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proc. Natl Acad. Sci. USA 112, 13075–13080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Riggle, B. A. et al. MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proc. Natl Acad. Sci. USA 115, E12024–E12033 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  298. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2019).

    Article  PubMed  Google Scholar 

  299. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Edington, G. M. Pathology of malaria in West Africa. BMJ 1, 715–718 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Mejia, P. et al. Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria. Sci. Adv. 7, eabe2484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Mejia, P. et al. Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression. Nat. Commun. 6, 6050 (2015).

    Article  PubMed  Google Scholar 

  303. Robert, V. et al. Malaria and obesity: obese mice are resistant to cerebral malaria. Malar. J. 7, 81 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Gordon, E. B. et al. Inhibiting the mammalian target of rapamycin blocks the development of experimental cerebral malaria. mBio 6, e00725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  306. O’Sullivan, D. & Pearce, E. L. Targeting T cell metabolism for therapy. Trends Immunol. 36, 71–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Schluesener, H. J., Kremsner, P. G. & Meyermann, R. Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathologica 96, 575–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  309. Guha, S. K. et al. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav. Immun. 42, 123–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  310. Medana, I. M., Hunt, N. H. & Chan-Ling, T. Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19, 91–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  311. Capuccini, B. et al. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Sci. Rep. 6, 39258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Talavera-López, C., Capuccini, B., Mitter, R., Lin, J. W. & Langhorne, J. Transcriptomes of microglia in experimental cerebral malaria in mice in the presence and absence of Type I Interferon signaling. BMC Res. Notes 11, 913 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Pais, T. F. & Chatterjee, S. Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation. J. Neuroimmunol. 163, 73–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  314. Goddery, E. N. et al. Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T cell infiltration of the brain. Front. Immunol. 12, 726421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Goddery, E. et al. Antigen presentation by CNS-resident microglia and macrophages regulates CD8 T cell infiltration of the brain during central nervous system (CNS) infection. J. Immunol. 206 (Suppl. 1), 11.18 https://doi.org/10.4049/jimmunol.206.Supp.11.18 (2021).

  316. Velagapudi, R., Kosoko, A. M. & Olajide, O. A. Induction of neuroinflammation and neurotoxicity by synthetic hemozoin. Cell. Mol. Neurobiol. 39, 1187–1200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Strangward, P. et al. Targeting the IL33-NLRP3 axis improves therapy for experimental cerebral malaria. Proc. Natl Acad. Sci. USA 115, 7404–7409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Reimer, T. et al. Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur. J. Immunol. 40, 764–769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Reverchon, F. et al. IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria. PLoS Pathog. 13, e1006322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Besnard, A. G. et al. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 11, e1004607 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Palomo, J. et al. Critical role of IL-33 receptor ST2 in experimental cerebral malaria development. Eur. J. Immunol. 45, 1354–1365 (2015).

    Article  CAS  PubMed  Google Scholar 

  322. Shibui, A. et al. IL-25, IL-33 and TSLP receptor are not critical for development of experimental murine malaria. Biochem. Biophys. Rep. 5, 191–195 (2015).

    PubMed  PubMed Central  Google Scholar 

  323. Ayimba, E. et al. Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clin. Exp. Immunol. 166, 218–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Fernander, E. M. et al. Elevated plasma soluble ST2 levels are associated with neuronal injury and neurocognitive impairment in children with cerebral malaria. Pathog. Immun. 7, 60–80 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Belum, G. R., Belum, V. R., Chaitanya Arudra, S. K. & Reddy, B. S. N. The Jarisch-Herxheimer reaction: revisited. Travel Med. Infect. Dis. 11, 231–237 (2013).

    Article  PubMed  Google Scholar 

  326. Kofoed, P. E. Jarisch-Herxheimer reaction in falciparum malaria? Br. Med. J. (Clin. Res. Ed.) 289, 161 (1984).

    Article  CAS  PubMed  Google Scholar 

  327. Jerusalem, C., Polder, T., Kubat, K., Wijers-Rouw, M. & Trinh, P. Brain edema in cerebral malaria: a comparative clinical and experimental, ultrastructural and histochemical study. In Recent Progress in the Study and Therapy of Brain Edema 127–135 (Springer US, 1984).

  328. Seydel, K. B. et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 372, 1126–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Mohanty, S. et al. Evidence of brain alterations in noncerebral falciparum malaria. Clin. Infect. Dis. 75, 11–18 (2022).

    Article  PubMed  Google Scholar 

  330. Kampondeni, S. et al. Amount of brain edema correlates with neurologic recovery in pediatric cerebral malaria. Pediatr. Infect. Dis. J. 39, 277–282 (2020).

    Article  PubMed  Google Scholar 

  331. Moghaddam, S. M. et al. Diffusion-weighted MR imaging in a prospective cohort of children with cerebral malaria offers insights into pathophysiology and prognosis. AJNR Am. J. Neuroradiol. 40, 1575–1580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Maude, R. J. et al. Magnetic resonance imaging of the brain in adults with severe falciparum malaria. Malar. J. 13, 177 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Mohanty, S. et al. Magnetic resonance imaging of cerebral malaria patients reveals distinct pathogenetic processes in different parts of the brain. MSphere 2, e00193–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Jha, R. M. et al. Emerging therapeutic targets for cerebral edema. Expert Opin. Ther. Targets 25, 917–938 (2021).

    Article  CAS  PubMed  Google Scholar 

  335. Mestre, H., Mori, Y. & Nedergaard, M. The brain’s glymphatic system: current controversies. Trends Neurosci. 43, 458–466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 and brain edema. Pediatr. Nephrol. 22, 778–784 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Ampawong, S. et al. Quantitation of brain edema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria. Int. J. Clin. Exp. Pathol. 4, 566–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Promeneur, D., Lunde, L. K., Amiry-Moghaddam, M. & Agre, P. Protective role of brain water channel AQP4 in murine cerebral malaria. Proc. Natl Acad. Sci. USA 110, 1035–1040 (2013).

    Article  CAS  PubMed  Google Scholar 

  339. de Souza, J. B., Hafalla, J. C. R., Riley, E. M. & Couper, K. N. Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 137, 755–772 (2010).

    Article  PubMed  Google Scholar 

  340. Shikani, H. J. et al. Cerebral malaria: we have come a long way. Am. J. Pathol. 181, 1484–1492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Craig, A. G. et al. The role of animal models for research on severe malaria. PLoS Pathog. 8, e1002401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. White, N. J., Turner, G. D. H., Medana, I. M., Dondorp, A. M. & Day, N. P. J. The murine cerebral malaria phenomenon. Trends Parasitol. 26, 11–15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Georgiadou, A. et al. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 11, e70763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Hajal, C. et al. Engineered human blood-brain barrier microfluidic model for vascular permeability analyses. Nat. Protocols 17, 95–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  345. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Lippmann, E. S. et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Krasemann, S. et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article  CAS  Google Scholar 

  348. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  350. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Venugopal, K., Hentzschel, F., Valkiūnas, G. & Marti, M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 18, 177–189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Schuepbach, R. A., Madon, J., Ender, M., Galli, P. & Riewald, M. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. J. Thromb. Haemost. 10, 1675–1684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Sinha, R. K. et al. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood 131, 1163–1171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Moxon, C. A. et al. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 122, 842–851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Mohan Rao, L. V., Esmon, C. T. & Pendurthi, U. R. Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood 124, 1553–1562 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Griffin, J. H., Zlokovic, B. V. & Mosnier, L. O. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 132, 159–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. O’Regan, N. et al. Hemostatic and protein C pathway dysfunction in the pathogenesis of experimental cerebral malaria. Haematologica 107, 1950–1954 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Gillrie, M. R. et al. Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. Am. J. Pathol. 180, 1028–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Petersen, J. E. V. et al. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb. Haemost. 114, 1038–1048 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  360. Storm, J., Wu, Y., Davies, J., Moxon, C. A. & Craig, A. G. Testing the effect of PAR1 inhibitors on Plasmodium falciparum-induced loss of endothelial cell barrier function. Wellcome Open Res. 5, 34 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.H. was supported by an MD/PhD stipend (TI 07.001_Hadjilaou) and is currently supported by a Clinical Leave stipend of the Bundesministerium für Bildung und Forschung/Deutsches Zentrum für Infektionsforschung (TI 07.002_Hadjilaou).

Author information

Authors and Affiliations

Authors

Contributions

A.H. outlined the content of the manuscript, wrote the first draft of the manuscript and figures and researched data for the article. All authors contributed substantially to discussions of the article content, reviewed and/or edited the manuscript and figures before submission.

Corresponding author

Correspondence to Alexandros Hadjilaou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Terrie Taylor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anaphylatoxins

Potent, low-molecular-weight molecules produced during immune responses that stimulate inflammation, attract white blood cells and modulate immune responses to infection or disease.

Efferocytosis

The clearance of damaged cells by phagocytosis.

Glymphatic system

A paravascular system thought to be responsible for waste clearance in the central nervous system, similar to the lymphatic system in other organs.

Howell–Jolly bodies

Small, round, basophilic, nuclear remnants of DNA within mature erythrocytes, which are typically removed in the spleen through a process called ‘pitting’.

Immunoproteasomes

Proteasomes in the cytoplasm of immune cells, especially antigen-presenting ones, formation of which is induced by pro-inflammatory cytokines or oxidative stress.

Malarial retinopathy

A collection of changes in the retina that can occur during Plasmodium infection.

Metabolic reprogramming

Cellular metabolic changes that address increased bioenergetic and biosynthetic demands, such as those needed in the transition from a quiescent to an activated phenotype.

Opsonization

The process by which circulating, soluble proteins (opsonins) bind to a cell membrane, thereby marking those cells for phagocytosis.

Prenylation

A chemical modification that enables anchoring of a protein to the cell membrane.

Reticulocytes

Immature erythrocytes characterized by a reticular network of ribosomal RNA.

Rosetting

The increased cytoadhesion of erythrocytes infected with mature, asexual Plasmodium falciparum causes these cells to stick to uninfected erythrocytes, forming flower-like cell clusters.

Sequestration

The cytoadherence of Plasmodium-infected erythrocytes to the vascular endothelium, a feature predominantly seen in Plasmodium falciparum infections.

S-nitrosylation

A post-translational peptide modification in which a nitrosyl group is added to the sulfur atom of a cysteine residue.

Statins

3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors approved for the treatment of hypercholesterolaemia.

Transmission intensity

A measure of the frequency of malaria spread in a specific area, which is dictated by mosquito population density, local climate conditions and the level of human immunity (which shapes individual exposure to malaria antigens and the development of protective immunity).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjilaou, A., Brandi, J., Riehn, M. et al. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 19, 688–709 (2023). https://doi.org/10.1038/s41582-023-00881-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00881-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing