Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The translational potential of cholesterol-based therapies for neurological disease

Abstract

Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood–brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.

Key points

  • Cholesterol homeostasis in the brain is essential for healthy neuronal physiology, and dyshomeostasis of the cholesterol pathway has been implicated in neurological diseases and age-related neuropathology.

  • Reduced cholesterol biosynthesis and levels are found in the brain of animal models of neurological diseases, including Huntington’s disease (HD), as well as in aged animals.

  • Strategies that increase cholesterol biosynthesis and/or levels in the brain, including adeno-associated viral delivery of genes involved in cholesterol homeostasis or direct delivery of exogenous cholesterol, restore neuronal physiology, cognitive decline and healthy behaviour in animal models of HD and ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bloch, Kandutsch–Russell and modified Kandutsch–Russell pathways of cholesterol synthesis.
Fig. 2: Cholesterol production and disposal in astrocytes and neurons.
Fig. 3: Different strategies used to counteract cholesterol defects in the brain of HD mouse models.

Similar content being viewed by others

References

  1. Jurevics, H. & Morell, P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64, 895–901 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Dietschy, J. M. & Turley, S. D. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Dietschy, J. M. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol. Chem. 390, 287–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maxfield, F. & Tabas, I. Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mauch, D. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Jia, J. Y. et al. Quantitative proteomics analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol. Cell. Proteom. 5, 2060–2071 (2006).

    Article  CAS  Google Scholar 

  7. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Dason, J. S., Smith, A. J., Marin, L. & Charlton, M. P. Vesicular sterols are essential for synaptic vesicle cycling. J. Neurosci. 30, 15856–15865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dotti, C. G., Esteban, J. A. & Ledesma, M. D. Lipid dynamics at dendritic spines. Front. Neuroanat. 8, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hering, H., Lin, C.-C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Björkhem, I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J. Int. Med. 260, 493–508 (2006).

    Article  Google Scholar 

  13. Radhakrishnan, A., Ikeda, Y., Joo Kwon, H., Brown, M. S. & Goldstein, J. L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl Acad. Sci. USA 104, 6511–6518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schumacher, M. et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol. 71, 3–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Björkhem, I., Leoni, V. & Meaney, S. Genetic connections between neurological disorders and cholesterol metabolism. J. Lipid Res. 51, 2489–2503 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin, M., Dotti, C. G. & Ledesma, M. D. Brain cholesterol in normal and pathological aging. Biochim. Biophys. Acta 1801, 934–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Saher, G. Cholesterol metabolism in aging and age-related disorders. Annu. Rev. Neurosci. 10, 59–78 (2023).

    Article  Google Scholar 

  18. Staurenghi, E. et al. Cholesterol dysmetabolism in Alzheimer’s disease: a starring role for astrocytes? Antioxidants 26, 1890 (2021).

    Article  Google Scholar 

  19. Fünfschilling, U., Saher, G., Xiao, L., Möbius, W. & Nave, K. A. Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci. 8, 1 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fünfschilling, U. et al. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J. Neurosci. 32, 7632–7645 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, J. & Liu, Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 6, 254–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, Q., Chen, J., Zou, X. & Tang, X. Intracellular cholesterol synthesis and transport. Front. Cell Dev. Biol. 21, 819281 (2022).

    Article  Google Scholar 

  23. Björkhem, I. et al. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39, 1594–1600 (1998).

    Article  PubMed  Google Scholar 

  24. Russell, D. W., Halford, R. W., Ramirez, D. M., Shah, R. & Kotti, T. Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu. Rev. Biochem. 78, 1017–1040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nieweg, K. et al. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J. Neurochem. 109, 125–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Mitsche, M. A., McDonald, J. G., Hobbs, H. H. & Cohen, J. C. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife 4, e07999 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hua, X. et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl Acad. Sci. USA 90, 1603–1607 (1993).

    Article  Google Scholar 

  28. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Camargo, N., Smit, A. B. & Verheijen, M. H. G. SREBPs: SREBP function in glia–neuron interactions. FEBS J. 276, 628–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Ferris, H. A. et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc. Natl Acad. Sci. USA 114, 1189–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valenza, M. et al. Disruption of astrocyte–neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ. 22, 690–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Camargo, N. et al. High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism. FASEB J. 26, 4302–4315 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. van Deijk, A. F. et al. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 65, 670–682 (2017).

    Article  PubMed  Google Scholar 

  34. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 3, 11929–11947 (2014).

    Article  Google Scholar 

  35. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 6, 37–53 (2016).

    Article  Google Scholar 

  36. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun. 8, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valenza, M. et al. Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J. Neurosci. 30, 10844–10850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benraiss, A. et al. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington’s disease. Cell Rep. 36, 109308 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Itoh, Y. & Voskuhl, R. R. Cell specificity dictates similarities in gene expression in multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. PLoS ONE 12, e0181349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Q. et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J. Neurosci. 30, 17068–17078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pfrieger, F. W. & Ungerer, N. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 4, 357–371 (2011).

    Article  Google Scholar 

  45. Björkhem, I., Lütjohann, D., Breuer, O., Sakinis, A. & Wennmalm, A. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J. Biol. Chem. 272, 30178–30184 (1997).

    Article  PubMed  Google Scholar 

  46. Qian, L., Chai, A. B., Gelissen, I. C. & Brown, A. J. Balancing cholesterol in the brain: from synthesis to disposal. Explor. Neuroprot. Ther. 2, 1–27 (2022).

    Article  Google Scholar 

  47. Petrov, A. M. & Pikuleva, I. A. Cholesterol 24-hydroxylation by CYP46A1: benefits of modulation for brain diseases. Neurotherapeutics 16, 635–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramirez, D. M. O., Andersson, S. & Russell, D. W. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507, 1676–1693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lund, E. G., Guileyardo, J. M. & Russell, D. W. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl Acad. USA 96, 7238–7243 (1999).

    Article  CAS  Google Scholar 

  50. Lutjohann, D. et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation (cerebrospinal fluid/oxysterols/plasma/stable isotopes). Med. Sci. 93, 9799–9804 (1996).

    CAS  Google Scholar 

  51. Lund, E. G. et al. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem. 278, 22980–22988 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Meaney, S., Lütjohann, D., Diczfalusy, U. & Björkhem, I. Formation of oxysterols from different pools of cholesterol as studied by stable isotope technique: cerebral origin of most circulating 24S-hydroxycholesterol in rats, but not in mice. Biochim. Biophys. Acta 1486, 293–298 (2020).

    Article  Google Scholar 

  53. Leoni, V. & Caccia, C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 95, 595–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Courtney, R. & Landreth, G. E. LXR regulation of brain cholesterol: from development to disease. Trends Endocrinol. Metab. 27, 404–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abildayeva, K. et al. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J. Biol. Chem. 281, 12799–12808 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Liang, Y. et al. A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J. Neurochem. 88, 623–634 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Shafaati, M. et al. Enhanced production of 24S-hydroxycholesterol is not sufficient to drive liver X receptor target genes in vivo. J. Intern. Med. 270, 377–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl Acad. Sci. USA 99, 13878–13883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mast, N. et al. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS ONE 12, e0187168 (2017). Erratum in: PLoS ONE 13, e0191058 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boussicault, L. et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 139, 953–970 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci. 60, 1158–1171 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Hussain, G. et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 18, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lu, F., Ferriero, M. D. & Jiang, X. Cholesterol in brain development and perinatal brain injury: more than a building block. Curr. Neuropharmacol. 20, 1400–1412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, F. et al. An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, A. J., Sugita, S. & Charlton, M. P. Cholesterol-dependent kinase activity regulates transmitter release from cerebellar synapses. J. Neurosci. 30, 6116–6121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Churchward, M. A. & Coorssen, J. R. Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem. J. 423, 1–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. White, D. N. & Stowell, M. H. B. Room for two: the synaptophysin/synaptobrevin complex. Front. Synaptic Neurosci. 13, 740318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Man, W. K. et al. The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nat. Commun. 12, 927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korinek, M. et al. Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Sci. Rep. 10, 12651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fantini, J. & Barrantes, F. J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Biophys. Acta Biomembranes 1788, 2345–2361 (2009).

    Article  CAS  Google Scholar 

  72. Postila, P. A. & Róg, T. A perspective: active role of lipids in neurotransmitter dynamics. Mol. Neurobiol. 57, 910–925 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Sodero, A. O. et al. Cholesterol loss during glutamate-mediated excitotoxicity. EMBO J. 31, 1764–1773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vanhoutte, P. & Bading, H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol. 13, 366–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Martin, M. G. et al. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. EMBO Mol. Med. 6, 902–917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klein, R. L. et al. Long-term actions of vector-derived nerve growth factor or brain-derived neurotrophic factor on choline acetyltransferase and Trk receptor levels in the adult rat basal forebrain. Neuroscience 90, 815–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Fantini, J., Epand, R. M., Barrantes, F. J. in Direct Mechanisms in Cholesterol Modulation of Protein Function (eds Rosenhouse-Dantsker, A. & Bukiya, A.) 3–25 (Springer, 2019).

  79. Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299–1313.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Platt, F. M. et al. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu. Rev. Genomics Hum. Genet. 15, 173–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martín, M. G., Pfrieger, F. & Dotti, C. G. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep. 15, 1036–1052 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arenas, F., Garcia-Ruiz, C. & Fernandez-Checa, J. C. Intracellular cholesterol trafficking and impact in neurodegeneration. Front. Mol. Neurosci. 10, 382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dai, L. et al. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol. Neurobiol. 58, 2183–2201 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Paulsen, J. S. et al. Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol. 13, 1193–1201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sipione, S. et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum. Mol. Genet. 11, 1953–1965 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Valenza, M. et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J. Neurosci. 25, 9932–9939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med. 11, eaaw8546 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Shankaran, M. et al. Early and brain region-specific decrease of de novo cholesterol biosynthesis in Huntington’s disease: a cross-validation study in Q175 knock-in mice. Neurobiol. Dis. 98, 66–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. di Pardo, A. et al. Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import. Hum. Mol. Genet. 29, 418–431 (2020).

    Article  PubMed  Google Scholar 

  91. Birolini, G. et al. SREBP2 gene therapy targeting striatal astrocytes ameliorates Huntington’s disease phenotypes. Brain 144, 3175–3190 (2021).

    Article  PubMed  Google Scholar 

  92. Valenza, M. et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum. Mol. Genet. 16, 2187–2198 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Valenza, M. et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 28, 133–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Birolini, G. et al. Striatal infusion of cholesterol promotes dose‐dependent behavioral benefits and exerts disease‐modifying effects in Huntington’s disease mice. EMBO Mol. Med. 12, e12519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Birolini, G. et al. Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington’s disease. J. Control. Rel. 330, 587–598 (2021).

    Article  CAS  Google Scholar 

  96. Birolini, G. et al. Chronic cholesterol administration to the brain supports complete and long-lasting cognitive and motor amelioration in Huntington’s disease. Pharmacol. Res. 17, 106823 (2023).

    Article  Google Scholar 

  97. Trushina, E. et al. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum. Mol. Genet. 15, 3578–3591 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. del Toro, D. et al. Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington’s disease. J. Neurochem. 115, 153–167 (2010).

    Article  PubMed  Google Scholar 

  99. Kacher, R. et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain 142, 2432–2450 (2019).

    Article  PubMed  Google Scholar 

  100. Valenza, M. & Cattaneo, E. Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci. 34, 474–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Marullo, M. et al. Pitfalls in the detection of cholesterol in Huntington’s disease models. PLoS Curr. 4, e505886e9a1968 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Yutuc, E. et al. Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc. Natl Acad. Sci. USA 117, 5749–5760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, T. et al. Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain. Nat. Commun. 12, 4343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Kreilaus, F., Spiro, A. S., McLean, C. A., Garner, B. & Jenner, A. M. Evidence for altered cholesterol metabolism in Huntington’s disease post mortem brain tissue. Neuropathol. Appl. Neurobiol. 42, 535–546 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Phillips, G. R. et al. Cholesteryl ester levels are elevated in the caudate and putamen of Huntington’s disease patients. Sci. Rep. 10, 20314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leoni, V. et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 131, 2851–2859 (2008).

    Article  PubMed  Google Scholar 

  108. Leoni, V. et al. Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci. Lett. 494, 245–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Leoni, V., Long, J. D., Mills, J. A., di Donato, S. & Paulsen, J. S. Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol. Dis. 55, 37–43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Katsuno, M., Adachi, H. & Sobue, G. Getting a handle on Huntington’s disease: the case for cholesterol. Nat. Med. 15, 253–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ledesma, M. D., Martin, M. G. & Dotti, C. G. Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog. Lipid Res. 51, 23–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Söderberg, M., Edlund, C., Kristensson, K. & Dallner, G. Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54, 415–423 (1990).

    Article  PubMed  Google Scholar 

  113. Svennerholm, L., Boström, K., Jungbjer, B. & Olsson, L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J. Neurochem. 63, 1802–1811 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Svennerholm, L., Boström, K. & Jungbjer, B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 94, 345–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Thelen, K. M., Falkai, P., Bayer, T. A. & Lütjohann, D. Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci. Lett. 403, 15–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Martin, M. G. et al. Cholesterol loss enhances TrkB signaling in hippocampal neurons aging in vitro. Mol. Biol. Cell 19, 2101–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sodero, A. O. et al. Regulation of tyrosine kinase B activity by the Cyp46/cholesterol loss pathway in mature hippocampal neurons: relevance for neuronal survival under stress and in aging. J. Neurochem. 116, 747–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Egawa, J., Pearn, M. L., Lemkuil, B. P., Patel, P. M. & Head, B. P. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. J. Physiol. 594, 4565–4579 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Colin, J. et al. Membrane raft domains and remodeling in aging brain. Biochimie 130, 178–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Díaz, M., Fabelo, N., Ferrer, I. & Marín, R. “Lipid raft aging” in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer’s disease. Neurobiol. Aging 67, 42–52 (2018).

    Article  PubMed  Google Scholar 

  121. Díaz, M. et al. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer’s disease. J. Alzheimers Dis. 43, 1185–1198 (2015).

    Article  PubMed  Google Scholar 

  122. Jick, H. et al. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Pikuleva, I. A. & Cartier, N. Cholesterol hydroxylating cytochrome P450 46A1: from mechanisms of action to clinical applications. Front. Aging Neurosci. 13, 696778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Martin, M. G. et al. Cyp46-mediated cholesterol loss promotes survival in stressed hippocampal neurons. Neurobiol. Aging 32, 933–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Trovo, L. et al. Low hippocampal PI(4,5)P2 contributes to reduced cognition in old mice as a result of loss of MARCKS. Nat. Neurosci. 16, 449–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Brudvig, J. J. & Weimer, J. M. X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease. Front. Cell. Neurosci. 9, 407 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mancini, A., de Iure, A. & Picconi, B. Chapter 2 – Basic mechanisms of plasticity and learning. Handb. Clin. Neurol. 184, 21–34 (2022).

    Article  PubMed  Google Scholar 

  128. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Frank, C. et al. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp. Neurol. 212, 407–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Palomer, E., Carretero, J., Benvegnù, S., Dotti, C. G. & Martin, M. G. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons. Nat. Commun. 7, 11081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Paul, S. M. et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-d-aspartate receptors. J. Neurosci. 33, 17290–17300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kotti, T. J., Ramirez, D. M., Pfeiffer, B. E., Huber, K. M. & Russell, D. W. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl Acad. Sci. USA 103, 3869–3874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Moutinho, M. et al. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci. Rep. 6, 30928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sodero, A. O. 24S-hydroxycholesterol: cellular effects and variations in brain diseases. J. Neurochem. 157, 899–918 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Williams, D. M., Finan, C., Schmidt, A. F., Burgess, S. & Hingorani, A. D. Lipid lowering and Alzheimer disease risk: a Mendelian randomization study. Ann. Neurol. 87, 30–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Rodriguez, G. A., Burns, M. P., Weeber, E. J. & Rebeck, G. W. Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn. Mem. 20, 256–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nunes, V. S., Cazita, P. M., Catanozi, S., Nakandakare, E. R. & Quintão, E. C. R. Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice. J. Bioenerg. Biomembr. 50, 283–287 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Lane-Donovan, C. et al. Genetic restoration of plasma apoe improves cognition and partially restores synaptic defects in ApoE-deficient mice. J. Neurosci. 36, 10141–10150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lane-Donovan, C. & Herz, J. ApoE, ApoE receptors, and the synapse in Alzheimer’s disease. Trends Endocrinol. Metab. 28, 273–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fuentes, D. et al. Age-related changes in the behavior of apolipoprotein E knockout mice. Behav. Sci. 8, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bourbon-Teles, J. et al. Myelin breakdown in human Huntington’s disease: multi-modal evidence from diffusion MRI and quantitative magnetization transfer. Neuroscience 403, 79–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Reading, S. A. et al. Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res. 140, 55–62 (2005).

    Article  PubMed  Google Scholar 

  144. Rosas, H. D. et al. Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov. Disord. 21, 1317–1325 (2006).

    Article  PubMed  Google Scholar 

  145. Rosas, H. D. et al. Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease. Neuroimage Clin. 20, 236–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ferrari Bardile, C. et al. Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc. Natl Acad. Sci. USA 116, 9622–9627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xiang, Z. et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington’s disease. J. Neurosci. 31, 9544–9553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cui, L. et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Weydt, P. et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab. 4, 349–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Weydt, P. et al. The gene coding for PGC-1α modifies age at onset in Huntington’s disease. Mol. Neurodegener. 4, 3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Menalled, L. B. et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE 7, e49838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Southwell, A. L. et al. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Hum. Mol. Genet. 25, 3654–3675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hudry, E. et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther. 18, 44–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Burlot, M. A. et al. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum. Mol. Genet. 24, 5965–5976 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Nóbrega, C. et al. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol. 138, 837–858 (2019).

    Article  PubMed  Google Scholar 

  157. Mast, N. et al. Pharmacologic stimulation of cytochrome P450 46A1 and cerebral cholesterol turnover in mice. J. Biol. Chem. 289, 3529–3538 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Anderson, K. W. et al. Mapping of the allosteric site in cholesterol hydroxylase CYP46A1 for efavirenz, a drug that stimulates enzyme activity. J. Biol. Chem. 291, 11876–11886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mast, N. et al. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology 123, 465–476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Petrov, A. M., Mast, N., Li, Y. & Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J. 33, 8782–8798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sabatino, D. E. et al. American Society of Gene and Cell Therapy (ASGCT) working group on AAV integration. Evaluating the state of the science for adeno-associated virus integration: an integrated perspective. Mol. Ther. 30, 2646–2663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Challis, R. C. et al. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 45, 447–469 (2022).

    Article  PubMed  Google Scholar 

  164. Huang, L. et al. Challenges in adeno-associated virus-based treatment of central nervous system diseases through systemic injection. Life Sci. 270, 119142 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Kang, L. et al. AAV vectors applied to the treatment of CNS disorders: clinical status and challenges. J. Control. Rel. 355, 458–473 (2023).

    Article  CAS  Google Scholar 

  166. Almoshari, Y. Osmotic pump drug delivery systems – a comprehensive review. Pharmaceuticals 15, 1430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dagdeviren, C. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 10, eaan2742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Spandana, K. M. A. et al. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J. Drug Deliv. Sci. Technol. 57, 101628 (2020).

    Article  Google Scholar 

  169. Abdellatif, A. A. H. et al. Nano-scale delivery: a comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnol. Rev. 10, 1493–1559 (2021).

    Article  CAS  Google Scholar 

  170. Tosi, G. et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J. Control. Rel. 122, 1–9 (2007).

    Article  CAS  Google Scholar 

  171. Valenza, M. et al. Cholesterol‐loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol. Med. 7, 1547–1564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Belletti, D. et al. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Int. J. Pharm. 543, 300–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Lammers, T. & Ferrari, M. The success of nanomedicine. Nano Today 31, 100853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vu, M. N., Kelly, H. G., Kent, S. J. & Wheatley, A. K. Current and future nanoparticle vaccines for COVID-19. EBioMedicine 74, 103699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee Ventola, C. Progress in nanomedicine: approved and investigational nanodrugs. P. T. 42, 742–755 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Friedrichs, S. & Bowman, D. M. COVID-19 may become nanomedicine’s finest hour yet. Nat. Nanotechnol. 16, 362–364 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Nikolova, M. P., Kumar, E. M. & Chavali, M. S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics 14, 2195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liu, Y. et al. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma. Acta Pharm. Sin. B 12, 2731–2739 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Safra, T. et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 11, 1029–1033 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Xing, M., Yan, F., Yu, S. & Shen, P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: a meta-analysis of ten randomized controlled trials. PLoS ONE 10, e0133569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Passoni, A. et al. Efficacy of cholesterol nose-to-brain delivery for brain targeting in huntington’s disease. ACS Chem. Neurosci. 11, 367–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Hong, S. S., Oh, K. T., Choi, H. G. & Lim, S. J. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 11, 540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jeong, S. H., Jang, J. H. & Lee, Y. B. Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. J. Pharm. Investig. 53, 119–152 (2023).

    Article  PubMed  Google Scholar 

  186. Birolini, G. Cholesterol Ddysfunction in Huntington’s Disease: Working Toward a Therapeutical Approach. Dissertation, Univ. Milan (2021).

  187. Lueptow, L. M. Novel object recognition test for the investigation of learning and memory in mice. J. Vis. Exp. 126, 55718 (2017).

    Google Scholar 

  188. Rodriguiz, R. M., Wetsel, W. C. in Animal Models of Cognitive Impairment (eds Levin, E. D. & Buccafusco, J. J.) Ch. 12 (CRC Press/Taylor & Francis, 2006).

  189. d’Isa, R., Comi, G. & Leocani, L. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Sci. Rep. 11, 21177 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kraeuter, A. K., Guest, P. C. & Sarnyai, Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol. Biol. 1916, 105–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Griffiths, W. J. & Wang, Y. Oxysterol research: a brief review. Biochem. Soc. Trans. 47, 517–526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Haider, A. Assessment of cholesterol homeostasis in the living human brain. Sci. Transl. Med. 14, eadc9967 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Sparrow, C. P. et al. A fluorescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J. Lipid Res. 40, 1747–1757 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Wüstner, D., Modzel, M., Lund, F. W. & Lomholt, M. A. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem. Phys. Lipids 199, 106–135 (2016).

    Article  PubMed  Google Scholar 

  196. Möbius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002).

    Article  PubMed  Google Scholar 

  197. Ohno-Iwashita, Y. et al. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell. Biochem. 51, 597–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Mitroi, D. N. et al. NPC 1 enables cholesterol mobilization during long‐term potentiation that can be restored in Niemann–Pick disease type C by CYP 46A1 activation. EMBO Rep. 20, e48143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Angelini, R. et al. Visualizing cholesterol in the brain by on-tissue derivatization and quantitative mass spectrometry imaging. Anal. Chem. 93, 4932–4943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Marta Valenza or Elena Cattaneo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Adult Astrocyte RNA-Seq Explorer: http://astrocyternaseq.org/

Brain RNA-Seq: http://brainrnaseq.org

HD single-nucleus RNA-seq explorer: https://vmenon.shinyapps.io/hd_sn_rnaseq/

Human Protein Atlas: https://www.proteinatlas.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenza, M., Birolini, G. & Cattaneo, E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 19, 583–598 (2023). https://doi.org/10.1038/s41582-023-00864-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00864-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing