Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases

Abstracts

TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.

Key points

  • In the two decades since the localization of TAR DNA-binding protein (TDP43) pathology in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, much information has become available regarding the tissue localization of TDP43 pathology in Alzheimer disease (AD) and other neurodegenerative disorders as well as in ageing.

  • Characterization of limbic-predominant age-related TDP43 encephalopathy (LATE, the clinical disease) and LATE neuropathological change (LATE-NC) is a relatively recent development and its importance lies in the finding that LATE-NC is a common pathology underlying amnestic dementia, especially in individuals aged 80 years or more.

  • LATE-NC can coexist with a variety of clinical and pathological conditions.

  • As the clinical and cognitive profile of LATE is not yet easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic.

  • Future research needs to focus on the pathogenesis of LATE-NC to form the basis for the development of preventive and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TDP43 structure.
Fig. 2: TDP43 pathology.
Fig. 3: Numbers of TDP43 inclusions by TDP43 stage.
Fig. 4: The ROSMAP five-stage LATE-NC scheme.

Similar content being viewed by others

References

  1. Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F. & Gaynor, R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Yokota, O. et al. Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathol. 120, 55–66 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brenowitz, W. D., Monsell, S. E., Schmitt, F. A., Kukull, W. A. & Nelson, P. T. Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer’s disease and non-tauopathic frontotemporal lobar degeneration. J. Alzheimers Dis. 39, 691–702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Josephs, K. A. et al. LATE to the PART-y. Brain 142, e47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abbasi, J. Debate sparks over LATE, a recently recognized dementia. J. Am. Med. Assoc. 322, 914–916 (2019).

    Article  Google Scholar 

  9. Nelson, P. T. et al. Reply: LATE to the PART-y. Brain 142, e48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montine, T. J. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 123, 1–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69, 918–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).

    Article  PubMed  Google Scholar 

  13. Sephton, C. F. et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mompean, M. et al. The TDP-43 N-terminal domain structure at high resolution. FEBS J. 283, 1242–1260 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. de Boer, E. M. J. et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92, 86–95 (2020).

    Article  PubMed  Google Scholar 

  19. Guo, L. & Shorter, J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb. Perspect. Med. 7, a024554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gao, J., Wang, L., Huntley, M. L., Perry, G. & Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. https://doi.org/10.1111/jnc.14327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. & Patel, B. K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12, 25 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lalmansingh, A. S., Urekar, C. J. & Reddi, P. P. TDP-43 is a transcriptional repressor: the testis-specific mouse acrv1 gene is a TDP-43 target in vivo. J. Biol. Chem. 286, 10970–10982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu-Yesucevitz, L. et al. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J. Neurosci. 34, 4167–4174 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Schmid, B. et al. Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc. Natl Acad. Sci. USA 110, 4986–4991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forman, M. S., Trojanowski, J. Q. & Lee, V. M. TDP-43: a novel neurodegenerative proteinopathy. Curr. Opin. Neurobiol. 17, 548–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nag, S. et al. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol. Commun. 6, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wilson, R. S. et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 70, 1418–1424 (2013).

    Article  PubMed  Google Scholar 

  36. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neumann, M. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 117, 137–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kinoshita, A., Tomimoto, H., Suenaga, T., Akiguchi, I. & Kimura, J. Ubiquitin-related cytoskeletal abnormality in frontotemporal dementia: immunohistochemical and immunoelectron microscope studies. Acta Neuropathol. 94, 67–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, W. L. & Dickson, D. W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 116, 205–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tarutani, A. et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 143, 613–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kwong, L. K., Uryu, K., Trojanowski, J. Q. & Lee, V. M. TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 16, 41–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Nag, S. et al. TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD. Neurology 88, 653–660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. James, B. D. et al. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139, 2983–2993 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nag, S. et al. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann. Neurol. 77, 942–952 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnold, S. J., Dugger, B. N. & Beach, T. G. TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol. 126, 51–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uchino, A. et al. Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol. Commun. 3, 35 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nelson, P. T. et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 145, 159–173 (2023).

    Article  PubMed  Google Scholar 

  53. Josephs, K. A. et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 127, 441–450 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Josephs, K. A. et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 131, 571–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Josephs, K. A. & Dickson, D. W. TDP-43 in the olfactory bulb in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 42, 390–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chio, A. et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41, 118–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Bersano, E. et al. Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 373–379 (2020).

    Article  PubMed  Google Scholar 

  59. Crockford, C. et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91, e1370–e1380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Phukan, J., Pender, N. P. & Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 6, 994–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Pasinelli, P. & Brown, R. H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Feldman, E. L. et al. Amyotrophic lateral sclerosis. Lancet 400, 1363–1380 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, R. H. & Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377, 162–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Chia, R., Chio, A. & Traynor, B. J. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Lattante, S., Rouleau, G. A. & Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum. Mutat. 34, 812–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Hawkes, C. H., Shephard, B. C., Geddes, J. F., Body, G. D. & Martin, J. E. Olfactory disorder in motor neuron disease. Exp. Neurol. 150, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Takeda, T. et al. TDP-43 pathology progression along the olfactory pathway as a possible substrate for olfactory impairment in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 74, 547–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Cykowski, M. D. et al. Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 6, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mori, F. et al. Phosphorylated TDP-43 aggregates in skeletal and cardiac muscle are a marker of myogenic degeneration in amyotrophic lateral sclerosis and various conditions. Acta Neuropathol. Commun. 7, 165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xu, Z. S. Does a loss of TDP-43 function cause neurodegeneration? Mol. Neurodegener. 7, 27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Austin, J. A. et al. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc. Natl Acad. Sci. USA 111, 4309–4314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barmada, S. J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanden Broeck, L., Callaerts, P. & Dermaut, B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol. Med. 20, 66–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Bentmann, E. et al. Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem. 287, 23079–23094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McGurk, L. et al. Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J. Neuropathol. Exp. Neurol. 73, 837–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Liu-Yesucevitz, L. et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5, e13250 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, W. et al. Motor-coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization. Mol. Ther. 25, 127–139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chio, A., Mazzini, L. & Mora, G. Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 167, 107986 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Le Gall, L. et al. Molecular and cellular mechanisms affected in ALS. J. Pers. Med. 10, 101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mejzini, R. et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front. Neurosci. 13, 1310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gao, J., Wang, L., Yan, T., Perry, G. & Wang, X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol. Cell Neurosci. 100, 103396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gendron, T. F., Josephs, K. A. & Petrucelli, L. Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol. Appl. Neurobiol. 36, 97–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Loganathan, S., Lehmkuhl, E. M., Eck, R. J. & Zarnescu, D. C. To be or not to be … toxic — is RNA association with TDP-43 complexes deleterious or protective in neurodegeneration? Front. Mol. Biosci. 6, 154 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).

    Article  PubMed  Google Scholar 

  90. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Sieben, A. et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 124, 353–372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 114, 5–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  94. Lashley, T., Rohrer, J. D., Mead, S. & Revesz, T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol. Appl. Neurobiol. 41, 858–881 (2015).

    Article  PubMed  Google Scholar 

  95. Rosso, S. M. et al. Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126, 2016–2022 (2003).

    Article  PubMed  Google Scholar 

  96. Onyike, C. U. & Huey, E. D. Frontotemporal dementia and psychiatry. Int. Rev. Psychiatry 25, 127–129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. McKhann, G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944 (1984).

    Article  CAS  PubMed  Google Scholar 

  98. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Snowden, J. S., Neary, D. & Mann, D. M. Frontotemporal dementia. Br. J. Psychiatry 180, 140–143 (2002).

    Article  PubMed  Google Scholar 

  101. Brettschneider, J. et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 127, 423–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burrell, J. R. et al. The frontotemporal dementia-motor neuron disease continuum. Lancet 388, 919–931 (2016).

    Article  PubMed  Google Scholar 

  103. Rohrer, J. D. et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75, 2204–2211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Whitwell, J. L. et al. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology 75, 2212–2220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lee, E. B. et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 134, 65–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neumann, M., Lee, E. B. & Mackenzie, I. R. Frontotemporal lobar degeneration TDP-43-immunoreactive pathological subtypes: clinical and mechanistic significance. Adv. Exp. Med. Biol. 1281, 201–217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234–239 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Finger, E. C. Frontotemporal dementias. Continuum 22, 464–489 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Robinson, J. L. et al. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 143, 2844–2857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Geser, F. et al. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch. Neurol. 67, 1238–1250 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. McAleese, K. E. et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 27, 472–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Oveisgharan, S. et al. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 136, 887–900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Besser, L. M. et al. The revised national Alzheimer’s coordinating center’s neuropathology form — available data and new analyses. J. Neuropathol. Exp. Neurol. 77, 717–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Katsumata, Y., Fardo, D. W., Kukull, W. A. & Nelson, P. T. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer’s disease and cerebrovascular disease pathologies. Acta Neuropathol. Commun. 6, 142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, L. et al. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology 84, 927–934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dugan, A. J. et al. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol. Commun. 9, 152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, H. S. et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 17, 773–781 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wennberg, A. M. et al. Association of apolipoprotein E ε4 with transactive response DNA-binding protein 43. JAMA Neurol. 75, 1347–1354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mormino, E. C. et al. Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82, 1760–1767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu, L., Boyle, P. A., Leurgans, S., Schneider, J. A. & Bennett, D. A. Disentangling the effects of age and APOE on neuropathology and late life cognitive decline. Neurobiol. Aging 35, 819–826 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Power, M. C. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 84, 10–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nelson, P. T. et al. Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol. 20, 66–79 (2010).

    Article  PubMed  Google Scholar 

  126. Kapasi, A. et al. Limbic-predominant age-related TDP-43 encephalopathy, ADNC pathology, and cognitive decline in aging. Neurology 95, e1951–e1962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Harrison, W. T. et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old. Acta Neuropathol. 142, 917–919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Robinson, J. L. et al. Non-Alzheimer’s contributions to dementia and cognitive resilience in the 90+ Study. Acta Neuropathol. 136, 377–388 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. James, B. D., Bennett, D. A., Boyle, P. A., Leurgans, S. & Schneider, J. A. Dementia from Alzheimer disease and mixed pathologies in the oldest old. J. Am. Med. Assoc. 307, 1798–1800 (2012).

    Article  CAS  Google Scholar 

  130. Nag, S. et al. Limbic-predominant age-related TDP-43 encephalopathy in Black and White decedents. Neurology 95, e2056–e2064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baker, D. W., Gazmararian, J. A., Sudano, J. & Patterson, M. The association between age and health literacy among elderly persons. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, S368–S374 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Sudore, R. L. et al. Limited literacy and mortality in the elderly: the health, aging, and body composition study. J. Gen. Intern. Med. 21, 806–812 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Boyle, P. A. et al. Cognitive decline impairs financial and health literacy among community-based older persons without dementia. Psychol. Aging 28, 614–624 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Han, S. D., Boyle, P. A., James, B. D., Yu, L. & Bennett, D. A. Poorer financial and health literacy among community-dwelling older adults with mild cognitive impairment. J. Aging Health 27, 1105–1117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wilson, R. S., Yu, L., James, B. D., Bennett, D. A. & Boyle, P. A. Association of financial and health literacy with cognitive health in old age. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 24, 186–197 (2017).

    Article  PubMed  Google Scholar 

  136. Yu, L., Wilson, R. S., Schneider, J. A., Bennett, D. A. & Boyle, P. A. Financial and health literacy predict incident Alzheimer’s disease dementia and pathology. J. Alzheimers Dis. 56, 1485–1493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kapasi, A. et al. Association of TDP-43 pathology with domain-specific literacy in older persons. Alzheimer Dis. Assoc. Disord. 33, 315–320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Besser, L. M., Teylan, M. A. & Nelson, P. T. Limbic predominant age-related TDP-43 encephalopathy (LATE): clinical and neuropathological associations. J. Neuropathol. Exp. Neurol. 79, 305–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Arvanitakis, Z., Wilson, R. S., Li, Y., Aggarwal, N. T. & Bennett, D. A. Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care 29, 560–565 (2006).

    Article  PubMed  Google Scholar 

  140. Kioumourtzoglou, M. A. et al. Diabetes mellitus, obesity, and diagnosis of amyotrophic lateral sclerosis: a population-based study. JAMA Neurol. 72, 905–911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mariosa, D., Kamel, F., Bellocco, R., Ye, W. & Fang, F. Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur. J. Neurol. 22, 1436–1442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oveisgharan, S. et al. Association of hemoglobin A1C with TDP-43 pathology in community-based elders. Neurology 96, e2694–e2703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Arai, T. et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 117, 125–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Josephs, K. A. et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70, 1850–1857 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Josephs, K. A. et al. TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann. Neurol. 78, 697–709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Josephs, K. A. et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 127, 811–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Josephs, K. A. et al. Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol. 137, 227–238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nelson, P. T. et al. Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 134, 1506–1518 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dawe, R. J., Bennett, D. A., Schneider, J. A. & Arfanakis, K. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 6, e26286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, L. et al. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology 94, e142–e152 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zarow, C., Weiner, M. W., Ellis, W. G. & Chui, H. C. Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav. 2, 435–442 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Josephs, K. A. & Dickson, D. W. Hippocampal sclerosis in tau-negative frontotemporal lobar degeneration. Neurobiol. Aging 28, 1718–1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Murray, M. E. et al. Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72. Acta Neuropathol. 126, 545–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Popkirov, S. et al. Progressive hippocampal sclerosis after viral encephalitis: potential role of NMDA receptor antibodies. Seizure 51, 6–8 (2017).

    Article  PubMed  Google Scholar 

  155. Thom, M. et al. Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. J. Neuropathol. Exp. Neurol. 68, 928–938 (2009).

    Article  PubMed  Google Scholar 

  156. Dickson, D. W. et al. Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans. Acta Neuropathol. 88, 212–221 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Nelson, P. T. et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 126, 161–177 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Neltner, J. H. et al. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing. Brain 137, 255–267 (2014).

    Article  PubMed  Google Scholar 

  159. Gauthreaux, K. M. et al. Limbic-predominant age-related TDP-43 encephalopathy: medical and pathologic factors associated with comorbid hippocampal sclerosis. Neurology 98, e1422–e1433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pao, W. C. et al. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis. Assoc. Disord. 25, 364–368 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hokkanen, S. R. K. et al. Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts. Brain Pathol. 30, 364–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Nelson, P. T. et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 127, 825–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nelson, P. T. et al. ABCC9/SUR2 in the brain: implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res. Rev. 24, 111–125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nelson, P. T. et al. TDP-43 proteinopathy in aging: associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol. Dis. 125, 67–76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Morte, B. & Bernal, J. Thyroid hormone action: astrocyte-neuron communication. Front. Endocrinol. 5, 82 (2014).

    Article  Google Scholar 

  166. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Higashi, S. et al. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Uemura, M. T. et al. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol. 143, 15–31 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Agrawal, S. et al. The association of Lewy bodies with limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes and their role in cognition and Alzheimer’s dementia in older persons. Acta Neuropathol. Commun. 9, 156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Blevins, B. L. et al. Brain arteriolosclerosis. Acta Neuropathol. 141, 1–24 (2021).

    Article  PubMed  Google Scholar 

  171. Ighodaro, E. T. et al. Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals. J. Cereb. Blood Flow. Metab. 37, 201–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Bourassa, P., Tremblay, C., Schneider, J. A., Bennett, D. A. & Calon, F. Brain mural cell loss in the parietal cortex in Alzheimer’s disease correlates with cognitive decline and TDP-43 pathology. Neuropathol. Appl. Neurobiol. 46, 458–477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Agrawal, S. et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol. 31, e12939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Josephs, K. A. et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133, 705–715 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, X. et al. Phosphorylated TDP-43 staging of primary age-related tauopathy. Neurosci. Bull. 35, 183–192 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Grothe, M. J. et al. Differential diagnosis of amnestic dementia patients based on an FDG-PET signature of autopsy-confirmed LATE-NC. Alzheimers Dement. 19, 1234–1244 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Makkinejad, N. et al. Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults. Neurobiol. Aging 77, 104–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, H. X., Tanji, K., Mori, F. & Wakabayashi, K. Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43. Neurosci. Lett. 434, 170–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Feneberg, E., Gray, E., Ansorge, O., Talbot, K. & Turner, M. R. Towards a TDP-43-based biomarker for ALS and FTLD. Mol. Neurobiol. 55, 7789–7801 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Majumder, V., Gregory, J. M., Barria, M. A., Green, A. & Pal, S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 18, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Foulds, P. et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol. 116, 141–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Foulds, P. G. et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol. 118, 647–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Prasad, A. et al. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci. Rep. 6, 39490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Parker, S. J. et al. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One 7, e42277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol. 132, 159–173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dormann, D. & Haass, C. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 34, 339–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Kim, H. J. & Taylor, J. P. Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96, 285–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ederle, H. et al. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep. 8, 7084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Amado, D. A. & Davidson, B. L. Gene therapy for ALS: a review. Mol. Ther. 29, 3345–3358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mullard, A. ALS antisense drug falters in phase III. Nat. Rev. Drug Discov. 20, 883–885 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Ding, H. et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Nishimura, A. L. et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One 9, e91269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Morata-Tarifa, C., Azkona, G., Glass, J., Mazzini, L. & Sanchez-Pernaute, R. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen. Med. 6, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Shorter, J. Engineering therapeutic protein disaggregases. Mol. Biol. Cell 27, 1556–1560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mack, K. L. & Shorter, J. Engineering and evolution of molecular chaperones and protein disaggregases with enhanced activity. Front. Mol. Biosci. 3, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Tariq, A. et al. Mining disaggregase sequence space to safely counter TDP-43, FUS, and α-synuclein proteotoxicity. Cell Rep. 28, 2080–2095.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Harris, E. Large autopsy study estimates prevalence of “LATE” neuropathologic change. J. Am. Med. Assoc. 328, 815–816 (2022).

    Article  Google Scholar 

  204. He, W., Goodkind, D. & Kowal, P. in Population Reports, P95/16-1 (eds. International US Census Bureau) (US Government Publication Office, 2016).

  205. Bigio, E. H. TDP-43 variants of frontotemporal lobar degeneration. J. Mol. Neurosci. 45, 390–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mackenzie, I. R. & Neumann, M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol. 134, 79–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Lukavsky, P. J. et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat. Struct. Mol. Biol. 20, 1443–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Geser, F. et al. Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol. 115, 133–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Mishima, T. et al. Perry syndrome: a distinctive type of TDP-43 proteinopathy. J. Neuropathol. Exp. Neurol. 76, 676–682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wider, C. et al. Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism Relat. Disord. 15, 281–286 (2009).

    Article  PubMed  Google Scholar 

  211. Davidson, Y. S. et al. TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol. 122, 703–713 (2011).

    Article  PubMed  Google Scholar 

  212. Lippa, C. F. et al. Transactive response DNA-binding protein 43 burden in familial Alzheimer disease and down syndrome. Arch. Neurol. 66, 1483–1488 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Freeman, S. H., Spires-Jones, T., Hyman, B. T., Growdon, J. H. & Frosch, M. P. TAR-DNA binding protein 43 in Pick disease. J. Neuropathol. Exp. Neurol. 67, 62–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  214. Fujishiro, H. et al. Accumulation of phosphorylated TDP-43 in brains of patients with argyrophilic grain disease. Acta Neuropathol. 117, 151–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Hasegawa, M. et al. TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130, 1386–1394 (2007).

    Article  PubMed  Google Scholar 

  216. Tan, C. F. et al. Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol. 118, 553–560 (2009).

    Article  PubMed  Google Scholar 

  217. Toyoshima, Y. et al. Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol. 122, 375–378 (2011).

    Article  PubMed  Google Scholar 

  218. Sakurai, A., Makioka, K., Fukuda, T., Takatama, M. & Okamoto, K. Accumulation of phosphorylated TDP-43 in the CNS of a patient with Cockayne syndrome. Neuropathology 33, 673–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Walker, A. K. et al. Astrocytic TDP-43 pathology in Alexander disease. J. Neurosci. 34, 6448–6458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Fleischman, D. A. et al. Regional brain cortical thinning and systemic inflammation in older persons without dementia. J. Am. Geriatr. Soc. 58, 1823–1825 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Nag, S. et al. Ex vivo MRI facilitates localization of cerebral microbleeds of different ages during neuropathology assessment. Free Neuropathol. 2, 2–35 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the participants of the Rush Memory and Aging Project, the Religious Orders Study, the Minority Aging Research Study, and the African American Core for making this research possible. The authors thank the late John Q. Trojanowski (Professor of Geriatric Medicine and Gerontology in the Department of Pathology and Laboratory Medicine, University of Pennsylvania) for encouragement and help at the initiation of these studies and for thought-provoking discussions. The authors also thank all the staff of Rush Alzheimer’s Disease Center. The authors’ work is supported by the NIH National Institute on Aging (R01AG042210, R01AG067482, R01AG017917, P30AG010161, P30AG072975, RF1AG022018).

Author information

Authors and Affiliations

Authors

Contributions

S.N. researched data for the article, contributed substantially to discussion of the content and wrote the article. Both authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Sukriti Nag or Julie A. Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks S. Murayama and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S., Schneider, J.A. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 19, 525–541 (2023). https://doi.org/10.1038/s41582-023-00846-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00846-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing