Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 5-HT1F receptor as the target of ditans in migraine — from bench to bedside

Abstract

Migraine is a leading cause of disability in more than one billion people worldwide, yet it remains universally underappreciated, even by individuals with the condition. Among other shortcomings, current treatments (often repurposed agents) have limited efficacy and potential adverse effects, leading to low treatment adherence. After the introduction of agents that target the calcitonin gene-related peptide pathway, another new drug class, the ditans — a group of selective serotonin 5-HT1F receptor agonists — has just reached the international market. Here, we review preclinical studies from the late 1990s and more recent clinical research that contributed to the development of the ditans and led to their approval for acute migraine treatment by the US Food and Drug Administration and the European Medicines Agency.

Key points

  • Various animal studies have shown that selective agonists for the serotonin 5-HT1F receptor can reduce signals from an activated trigeminovascular system, thereby highlighting the receptor as an attractive target for symptomatic treatment of migraine.

  • Long-term clinical studies involving two ditans — a group of 5-HT1F agonists — have provided class I evidence that lasmiditan, the first ditan, is both effective and safe in the symptomatic treatment of migraine.

  • The 5-HT1F receptor is expressed by cells within the brain parenchyma, as well as by the trigeminal neurons, but not in vascular smooth muscle, suggesting that ditans act through neuropeptide release leading to acute headache relief, rather than via potential vasoactive properties, such as vasodilatation.

  • Dizziness is the most common adverse event of lasmiditan; thus people should not drive for 8 h after taking lasmiditan.

  • Development of novel ditans that do not cross the blood–brain barrier is expected to result in better tolerability and improved clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The trigeminovascular system and cephalic pain neurotransmission.
Fig. 2: Timeline of ditan development.
Fig. 3: Chemical formulae of serotonin and ditans.
Fig. 4: Capsaicin induced c-fos immunoreactivity in the trigeminal nucleus caudalis.
Fig. 5: Phase III clinical trials of lasmiditan for acute treatment of migraine.
Fig. 6: Number needed to treat for symptomatic treatment of migraine with different drug classes.

References

  1. GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 954–976 (2018); erratum 20, e7 (2021).

    Article  Google Scholar 

  2. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Article  Google Scholar 

  3. Mitsikostas, D. D. et al. European Hedache Federation consensus on technical investigation for primary headache disorders. J. Headache Pain. 17, 5 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ashina, S. et al. Medication overuse headache. Nat. Rev. Dis. Prim. 9, 5 (2023).

    Article  PubMed  Google Scholar 

  5. Diener, H. C. et al. European Academy of Neurology guideline on the management of medication-overuse headache. Eur. J. Neurol. 27, 1102–1116 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Deligianni, C. I., Vikelis, M. & Mitsikostas, D. D. Depression in headaches: chronification. Curr. Opin. Neurol. 25, 277–283 (2012).

    Article  PubMed  Google Scholar 

  7. Caponnetto, V. et al. Comorbidities of primary headache disorders: a literature review with meta-analysis. J. Headache Pain. 22, 71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moskowitz, M. A., Reinhard, J. F. Jr, Romero, J., Melamed, E. & Pettibone, D. J. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet 2, 883–885 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Ashina, M. et al. Migraine and the trigeminovascular system – 40 years and counting. Lancet Neurol. 18, 795–804 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pietrobon, D. & Moskowitz, M. A. Pathophysiology of migraine. Annu. Rev. Physiol. 75, 365–391 (2012).

    Article  PubMed  Google Scholar 

  11. Mitsikostas, D. D., Sanchez & del Rio, M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res. Brain Res. Rev. 35, 20–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Andreou, A. P., Holland, P. R. & Goadsby, P. J. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br. J. Pharmacol. 157, 464–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andreou, A. P., Holland, P. R., Lasalandra, M. P. & Goadsby, P. J. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain 156, 439–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitsikostas, D. D., Sanchez del Rio, M., Waeber, C., Moskowitz, M. A. & Cutrer, F. M. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76, 239–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Mitsikostas, D. D. et al. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br. J. Pharmacol. 127, 623–630 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goadsby, P. J. et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97, 553–622 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Durham, P. L., Sharma, R. V. & Russo, A. F. Repression of the calcitonin gene-related peptide promoter by 5-HT1 receptor activation. J. Neurosci. 17, 9545–9553 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amrutkar, D. V. et al. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain 153, 830–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari, M. D., Goadsby, P. J., Roon, K. I. & Lipton, R. B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 22, 633–658 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Thorlund, K. et al. Comparative tolerability of treatments for acute migraine: a network meta-analysis. Cephalalgia 37, 965–978 (2016).

    Article  PubMed  Google Scholar 

  21. Ishida, T. et al. Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries. Cardiovasc. Res. 41, 267–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Phebus, L. A. et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci. 61, 2117–2126 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, K. W. et al. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 8, 2237–2240 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Mitsikostas, D. D., Sanchez del Rio, M., Moskowitz, M. A. & Waeber, C. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur. J. Pharmacol. 369, 271–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Mitsikostas, D. D., Sanchez del Rio, M. & Waeber, C. 5-Hydroxytryptamine1B/1D and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis. Cephalalgia 22, 384–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ramadan, N. M., Skljarevski, V., Phebus, L. A. & Johnson, K. W. 5-HT1F receptor agonists in acute migraine treatment: a hypothesis. Cephalalgia 23, 776–785 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tfelt-Hansen, P. C., Pihl, T., Hougaard, A. & Mitsikostas, D. D. Drugs targeting 5-hydroxytryptamine receptors in acute treatments of migraine attacks. A review of new drugs and new administration forms of established drugs. Expert. Opin. Investig. Drugs 23, 375–385 (2013).

    Article  PubMed  Google Scholar 

  28. de Vries, T., Villalón, C. M. & MaassenVanDenBrink, A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol. Ther. 211, 107528 (2020).

    Article  PubMed  Google Scholar 

  29. Edvinsson, L. & Goadsby, P. J. Neuropeptides in migraine and cluster headache. Cephalalgia 14, 320–327 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Boni, L. J., Ploug, K. B., Olesen, J., Jansen-Olesen, I. & Gupta, S. The in vivo effect of VIP, PACAP-38 and PACAP-27 and mRNA expression of their receptors in rat middle meningeal artery. Cephalalgia 29, 837–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Edvinsson, L. et al. Neuropeptide Y: cerebrovascular innervation and vasomotor effects in the cat. Neurosci. Lett. 43, 79–84 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Edvinsson, L., Rosendal-Helgesen, S. & Uddman, R. Substance P: localization, concentration and release in cerebral arteries, choroid plexus and dura mater. Cell Tissue Res. 234, 1–7 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Schytz, H. W., Olesen, J. & Ashina, M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 7, 191–196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vikelis, M. & Mitsikostas, D. D. The role of glutamate and its receptors in migraine. CNS Neurol. Disord. Drug Targets 6, 251–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Storer, R. J., Akerman, S. & Goadsby, P. J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol. 142, 1171–1181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edvinsson, J. C. A. et al. Lasmiditan and 5-hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT1 receptors. J. Headache Pain. 23, 26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deka, S., Bania, R., Borah, P., Das, S. & Deb, P. K. in Frontiers in Pharmacology of Neurotransmitters (eds Kumar, P. & Deb, P. K.) 183–212 (Springer, 2020).

  38. Göthert, M. Serotonin discovery and stepwise disclosure of 5-HT receptor complexity over four decades. Part I. General background and discovery of serotonin as a basis for 5-HT receptor identification. Pharmacol. Rep. 65, 771–786 (2013).

    Article  PubMed  Google Scholar 

  39. Shine, J. M. et al. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 145, 2967–2981 (2022).

    Article  PubMed  Google Scholar 

  40. Humphrey, P. P. et al. Serotonin and migraine. Ann. N. Y. Acad. Sci. 600, 587–598 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Deen, M. et al. Serotonergic mechanisms in the migraine brain – a systematic review. Cephalalgia 37, 251–264 (2016).

    Article  PubMed  Google Scholar 

  42. Curran, D. A., Hinterberger, H. & Lance, J. W. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain 88, 997–1010 (1965).

    Article  CAS  PubMed  Google Scholar 

  43. Tandon, R. N., Sur, B. K. & Nath, K. Effect of reserpine injections in migrainous and normal control subjects, with estimations of urinary 5-hydroxyindoleacetic acid. Neurology 19, 1073–1079 (1969).

    Article  CAS  PubMed  Google Scholar 

  44. Kimball, R. W., Friedman, A. P. & Vallejo, E. Effect of serotonin in migraine patients. Neurology 10, 107–111 (1960).

    Article  CAS  PubMed  Google Scholar 

  45. Ostfeld A. M., Chapman L. F., Goodell H. & Wolff H. G. Studies in headache: a summary of evidence implicating a locally active chemical agent in migraine. Trans. Am. Neurol. Assoc. 81st Meeting, 35–36 (1956).

  46. Pytliak, M., Vargová, V., Mechírová, V. & Felšöci, M. Serotonin receptors – from molecular biology to clinical applications. Physiol. Res. 60, 15–25 (2010).

    PubMed  Google Scholar 

  47. Giniatullin, R. 5-hydroxytryptamine in migraine: the puzzling role of ionotropic 5-HT3 receptor in the context of established therapeutic effect of metabotropic 5-HT1 subtypes. Br. J. Pharmacol. 179, 400–415 (2021).

    Article  PubMed  Google Scholar 

  48. Ryan, R. E. Double-blind clinical evaluation of the efficacy and safety of ergostine-caffeine, ergotamine-caffeine, and placebo in migraine headache. Headache 9, 212–220 (1970).

    Article  CAS  PubMed  Google Scholar 

  49. Humphrey, P. P. 5-Hydroxytryptamine and the pathophysiology of migraine. J. Neurol. 238, S38–S44 (1991).

    Article  PubMed  Google Scholar 

  50. Agnoli, A. & De Marinis, M. Vascular headaches and cerebral circulation: an overview. Cephalalgia 5, 9–15 (1985).

    Article  PubMed  Google Scholar 

  51. Pascual, J. et al. Rizatriptan 10-mg wafer versus usual nontriptan therapy for migraine: analysis of return to function and patient preference. Headache 45, 1140–1150 (2005).

    Article  PubMed  Google Scholar 

  52. Cady, R. K. et al. Effect of early intervention with sumatriptan on migraine pain: retrospective analyses of data from three clinical trials. Clin. Ther. 22, 1035–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Buzzi, M. G. & Moskowitz, M. A. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br. J. Pharmacol. 99, 202–206 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buzzi, M. G., Carter, W. B., Shimizu, T., Heath, H. 3rd & Moskowitz, M. A. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30, 1193–1200 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Reducha, P. V., Edvinsson, L. & Haanes, K. A. Could experimental inflammation provide better understanding of migraines? Cells 11, 2444 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waeber, C. & Moskowitz, M. A. [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch. Pharmacol. 352, 263–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Bhalla, P. et al. Molecular cloning, pharmacological properties and tissue distribution of the porcine 5-HT1B receptor. Br. J. Pharmacol. 133, 891–901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jamieson, D. G. The safety of triptans in the treatment of patients with migraine. Am. J. Med. 112, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Bouchelet, I., Case, B., Olivier, A. & Hamel, E. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery. Br. J. Pharmacol. 129, 501–508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van den Broek, R. W. et al. Characterization of sumatriptan-induced contractions in human isolated blood vessels using selective 5-HT1B and 5-HT1D receptor antagonists and in situ hybridization. Cephalalgia 22, 83–93 (2002).

    Article  PubMed  Google Scholar 

  61. Longmore, J. et al. Comparison of the vasoconstrictor effects of the selective 5-HT1D-receptor agonist L-775,606 with the mixed 5-HT1B/1D-receptor agonist sumatriptan and 5-HT in human isolated coronary artery. Br. J. Clin. Pharmacol. 49, 126–131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ennis, M. D. et al. Isochroman-6-carboxamides as highly selective 5-HT1D agonists: potential new treatment for migraine without cardiovascular side effects. J. Med. Chem. 41, 2180–2183 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Cutrer, F. M., Yu, X. J., Ayata, G., Moskowitz, M. A. & Waeber, C. Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis. Neuropharmacology 38, 1043–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Bergerot, A. et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur. J. Neurosci. 24, 1517–1534 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Gomez-Mancilla, B. et al. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia 21, 727–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Shepheard, S. et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 19, 851–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Amlaiky, N., Ramboz, S., Boschert, U., Plassat, J. L. & Hen, R. Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus. J. Biol. Chem. 267, 19761–19764 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Adham, N. et al. Cell-specific coupling of the cloned human 5-HT1F receptor to multiple signal transduction pathways. Naunyn Schmiedebergs Arch. Pharmacol. 348, 566–575 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Adham, N. et al. Cloning and characterization of the guinea pig 5-HT1F receptor subtype: a comparison of the pharmacological profile to the human species homolog. Neuropharmacology 36, 569–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Erdmann, J. et al. Assignment of the human serotonin 1F receptor gene (HTR1F) to the short arm of chromosome 3 (3p13-p14.1). Mol. Membr. Biol. 14, 133–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 54, 152–160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lovenberg, T. W. et al. Molecular cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes. Proc. Natl Acad. Sci. USA 90, 2184–2188 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lucaites, V. L., Krushinski, J. H., Schaus, J. M., Audia, J. E. & Nelson, D. L. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Schmiedebergs Arch. Pharmacol. 371, 178–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Fugelli, A., Moret, C. & Fillion, G. Autoradiographic localization of 5-HT1E and 5-HT1F binding sites in rat brain: effect of serotonergic lesioning. J. Recept. Signal. Transduct. Res. 17, 631–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Goadsby, P. J. & Classey, J. D. Evidence for serotonin (5-HT)1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input. Neuroscience 122, 491–498 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Wainscott, D. B., Johnson, K. W., Phebus, L. A., Schaus, J. M. & Nelson, D. L. Human 5-HT1F receptor-stimulated [35S]GTPγS binding: correlation with inhibition of guinea pig dural plasma protein extravasation. Eur. J. Pharmacol. 352, 117–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Wainscott, D. B. et al. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties. Naunyn Schmiedebergs Arch. Pharmacol. 371, 169–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Williamson, D. J., Hill, R. G., Shepheard, S. L. & Hargreaves, R. J. The anti-migraine 5-HT1B/1D agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs. Br. J. Pharmacol. 133, 1029–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shepherd, S. L., Williamson, D. J., Beer, M. S., Hill, R. G. & Hargreaves, R. J. Differential effects of 5-HT1B/1D receptor agonists on neurogenic dural plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacology 36, 525–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Cohen, M. L. & Schenck, K. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT1F receptor agonists and PGF. Br. J. Pharmacol. 131, 562–568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nelson, D. L. et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia 30, 1159–1169 (2010).

    Article  PubMed  Google Scholar 

  82. Labastida-Ramírez, A. et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain 161, 1092–1099 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Clemow, D. B. et al. Lasmiditan mechanism of action – review of a selective 5-HT1F agonist. J. Headache Pain. 21, 71 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simmons, E. C., Scholpa, N. E. & Schnellmann, R. G. FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Exp. Neurol. 341, 113720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong, X. et al. Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci. Lett. 636, 127–133 (2016).

    Article  PubMed  Google Scholar 

  86. Borkum, J. M. The migraine attack as a homeostatic, neuroprotective response to brain oxidative stress: preliminary evidence for a theory. Headache 58, 118–135 (2017).

    Article  PubMed  Google Scholar 

  87. Goldstein, D. J. et al. Selective seratonin 1F (5-HT1F) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358, 1230–1234 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Lamb, Y. N. Lasmiditan: first approval. Drugs 79, 1989–1996 (2019).

    Article  PubMed  Google Scholar 

  89. Szkutnik-Fiedler, D. Pharmacokinetics, pharmacodynamics and drug–drug interactions of new anti-migraine drugs—lasmiditan, gepants, and calcitonin-gene-related peptide (CGRP) receptor monoclonal antibodies. Pharmaceutics 12, 1180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mecklenburg, J., Raffaelli, B., Neeb, L., Sanchez Del Rio, M. & Reuter, U. The potential of lasmiditan in migraine. Ther. Adv. Neurol. Disord. 13, 1756286420967847 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vila-Pueyo, M. Targeted 5-HT1F therapies for migraine. Neurotherapeutics 15, 291–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Capi, M. et al. Lasmiditan for the treatment of migraine. Expert. Opin. Investig. Drugs 26, 227–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Tsai, M., Case, M., Ardayfio, P., Hochstetler, H. & Wilbraham, D. Effects of lasmiditan on cardiovascular parameters and pharmacokinetics in healthy subjects receiving oral doses of propranolol. Clin. Pharmacol. Drug Dev. 9, 629–638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferrari, M. D. et al. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan – a randomised proof-of-concept trial. Cephalalgia 30, 1170–1178 (2010).

    Article  PubMed  Google Scholar 

  95. Färkkilä, M. et al. Efficacy and tolerability of lasmiditan, an oral 5-HT1F receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallel-group, dose-ranging study. Lancet Neurol. 11, 405–413 (2012).

    Article  PubMed  Google Scholar 

  96. Sakai, F. et al. Phase 2 randomized placebo-controlled study of lasmiditan for the acute treatment of migraine in Japanese patients. Headache 61, 755–765 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kuca, B. et al. Lasmiditan is an effective acute treatment for migraine: a phase 3 randomized study. Neurology 91, e2222–e2232 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goadsby, P. J. et al. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain 142, 1894–1904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Krege, J. H. et al. Safety findings from phase 3 lasmiditan studies for acute treatment of migraine: results from SAMURAI and SPARTAN. Cephalalgia 39, 957–966 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tepper, S. J. et al. Characterization of dizziness after lasmiditan usage: findings from the SAMURAI and SPARTAN acute migraine treatment randomized trials. Headache 59, 1052–1062 (2019).

    Article  PubMed  Google Scholar 

  101. Brandes, J. L. et al. Interim results of a prospective, randomized, open-label, Phase 3 study of the long-term safety and efficacy of lasmiditan for acute treatment of migraine (the GLADIATOR study). Cephalalgia 39, 1343–1357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lipton, R. B. et al. Trajectory of migraine-related disability following long-term treatment with lasmiditan: results of the GLADIATOR study. J. Headache Pain. 21, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ashina, M. et al. Randomized, controlled trial of lasmiditan over four migraine attacks: findings from the CENTURION study. Cephalalgia 41, 294–304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tassorelli, C. et al. Safety findings from CENTURION, a phase 3 consistency study of lasmiditan for the acute treatment of migraine. J. Headache Pain. 22, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnston, K. M. et al. Rimegepant, ubrogepant, and lasmiditan in the acute treatment of migraine examining the benefit-risk profile using number needed to treat/harm. Clin. J. Pain. 38, 680–685 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Polavieja, P., Belger, M., Venkata, S. K., Wilhelm, S. & Johansson, E. Relative efficacy of lasmiditan versus rimegepant and ubrogepant as acute treatments for migraine: network meta-analysis findings. J. Headache Pain. 23, 76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ashina, M. et al. Onset of efficacy following oral treatment with lasmiditan for the acute treatment of migraine: integrated results from 2 randomized double-blind placebo-controlled phase 3 clinical studies. Headache 59, 1788–1801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pearlman, E. M. et al. Effects of lasmiditan on simulated driving performance: results of two randomized, blinded, crossover studies with placebo and active controls. Hum. Psychopharmacol. 35, e2732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doty, E. G. et al. The association between the occurrence of common treatment-emergent adverse events and efficacy outcomes after lasmiditan treatment of a single migraine attack: secondary analyses from four pooled randomized clinical trials. CNS Drugs 36, 771–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shapiro, R. E. et al. Lasmiditan for acute treatment of migraine in patients with cardiovascular risk factors: post-hoc analysis of pooled results from 2 randomized, double-blind, placebo-controlled, phase 3 trials. J. Headache Pain. 20, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hashimoto, Y., Komori, M., Tanji, Y., Ozeki, A. & Hirata, K. Lasmiditan for single migraine attack in Japanese patients with cardiovascular risk factors: subgroup analysis of a phase 2 randomized placebo-controlled trial. Expert. Opin. Drug. Saf. 21, 1495–1503 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Krege, J. H. et al. Lasmiditan for patients with migraine and contraindications to triptans: a post hoc analysis. Pain. Ther. 11, 701–712 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Knievel, K. et al. Lasmiditan for the acute treatment of migraine: subgroup analyses by prior response to triptans. Cephalalgia 40, 19–27 (2020).

    Article  PubMed  Google Scholar 

  114. Purdue-Smithe, A. C. et al. Prepregnancy migraine, migraine phenotype, and risk of adverse pregnancy outcomes. Neurology 100, e1464–e1473 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Negro, A. et al. Headache and pregnancy: a systematic review. J. Headache Pain. 18, 106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rubio-Beltrán, E. et al. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br. J. Pharmacol. 176, 4681–4695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. MacGregor, E. A. et al. Efficacy of lasmiditan for the acute treatment of perimenstrual migraine. Cephalalgia 42, 1467–1475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Diamond, M. L. et al. Characteristics of migraine attacks and responses to almotriptan treatment: a comparison of menstrually related and nonmenstrually related migraines. Headache 48, 248–258 (2008).

    Article  PubMed  Google Scholar 

  119. Vetvik, K. G. & MacGregor, E. A. Menstrual migraine: a distinct disorder needing greater recognition. Lancet Neurol. 20, 304–315 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Onofri, A. et al. Primary headache epidemiology in children and adolescents: a systematic review and meta-analysis. J. Headache Pain. 24, 8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tsai, M. et al. Pharmacokinetics, safety, and tolerability of lasmiditan in pediatric patients with migraine. Clin. Pharmacokinet. 60, 819–828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martin, V. T. et al. Tolerability and safety of lasmiditan treatment in elderly patients with migraine: post hoc analyses from randomized studies. Clin. Ther. 43, 1066–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Rau, J. C. et al. Evaluation of LY573144 (lasmiditan) in a preclinical model of medication overuse headache. Cephalalgia 40, 903–912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wilbraham, D. et al. Abuse potential of lasmiditan: a phase 1 randomized, placebo- and alprazolam-controlled crossover study. J. Clin. Pharmacol. 60, 495–504 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Schwedt, T. J. & Chong, C. D. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 57, 1173–1178 (2017).

    Article  PubMed  Google Scholar 

  126. Li, C., Dai, W., Miao, S., Xie, W. & Yu, S. Medication overuse headache and substance use disorder: a comparison based on basic research and neuroimaging. Front. Neurol. 14, 1118929 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tepper, S. J. et al. Variability in recurrence rates with acute treatments for migraine: why recurrence is not an appropriate outcome measure. J. Headache Pain. 23, 148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Loo, L. S. et al. Effect of a rescue or recurrence dose of lasmiditan on efficacy and safety in the acute treatment of migraine: findings from the phase 3 trials (SAMURAI and SPARTAN). BMC Neurol. 19, 191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. US Food and Drug Administration. Highlights of prescribing information: REYVOW. FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211280s000lbl.pdf (2019).

  130. Cady, R. et al. Treatment of chronic migraine: a 3-month comparator study of naproxen sodium vs SumaRT/Nap. Headache 54, 80–93 (2013).

    Article  PubMed  Google Scholar 

  131. Hu, Y., Guan, X., Fan, L. & Jin, L. Triptans in prevention of menstrual migraine: a systematic review with meta-analysis. J. Headache Pain. 14, 7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lo Castro, F., Guerzoni, S. & Pellesi, L. Safety and risk of medication overuse headache in lasmiditan and second-generation gepants: a rapid review. Drug. Healthc. Patient Saf. 13, 233–240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. US Food and Drug Administration. FDA approves new treatment for patients with migraine. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-patients-migraine (2019).

  134. Loo, L. S. et al. Efficacy and safety of lasmiditan in patients using concomitant migraine preventive medications: findings from SAMURAI and SPARTAN, two randomized phase 3 trials. J. Headache Pain. 20, 84 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Spadaro, A., Scott, K. R., Koyfman, A. & Long, B. High risk and low prevalence diseases: serotonin syndrome. Am. J. Emerg. Med. 61, 90–97 (2022).

    Article  PubMed  Google Scholar 

  136. Martinelli, D., Bitetto, V. & Tassorelli, C. Lasmiditan: an additional therapeutic option for the acute treatment of migraine. Expert. Rev. Neurother. 21, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Dunkley, E. J., Isbister, G. K., Sibbritt, D., Dawson, A. H. & Whyte, I. M. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. Q. J. Med. 96, 635–642 (2003).

    Article  CAS  Google Scholar 

  138. Lasaosa, S. S., Diago, E. B., Calzada, J. N. & Benito, A. V. Cardiovascular risk factors in cluster headache. Pain. Med. 18, 1161–1167 (2017).

    PubMed  Google Scholar 

  139. Vila-Pueyo, M. et al. The selective 5-HT1F receptor agonist lasmiditan inhibits trigeminal nociceptive processing: implications for migraine and cluster headache. Br. J. Pharmacol. 179, 358–370 (2021).

    Article  PubMed  Google Scholar 

  140. Jin, C. et al. Design, synthesis and biological evaluation of pyridinylmethylenepiperidine derivatives as potent 5-HT1F receptor agonists for migraine therapy. Eur. J. Med. Chem. 225, 113782 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Uddman, R., Edvinsson, L. & Hara, H. Axonal tracing of autonomic nerve fibers to the superficial temporal artery in the rat. Cell Tissue Res. 256, 559–565 (1989).

    Article  CAS  PubMed  Google Scholar 

  142. Bowery, N. G., Hudson, A. L. & Price, G. W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365–383 (1987).

    Article  CAS  PubMed  Google Scholar 

  143. Dutschmann, M., Guthmann, A. & Herbert, H. NMDA receptor subunit NR1-immunoreactivity in the rat pons and brainstem and colocalization with Fos induced by nasal stimulation. Brain Res. 809, 221–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Meng, J. et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J. Neurosci. 29, 4981–4992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Warfvinge, K. & Edvinsson, L. Cellular distribution of PACAP-38 and PACAP receptors in the rat brain: relation to migraine activated regions. Cephalalgia 40, 527–542 (2019).

    Article  PubMed  Google Scholar 

  146. Mills, A. & Martin, G. R. Autoradiographic mapping of [3H]sumatriptan binding in cat brain stem and spinal cord. Eur. J. Pharmacol. 280, 175–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Dodick, D. W. et al. Ubrogepant for the treatment of migraine. N. Engl. J. Med. 381, 2230–2241 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Croop, R. et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet 394, 737–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. No authors listed. Evaluation of a multiple-dose regimen of oral sumatriptan for the acute treatment of migraine: the Oral Sumatriptan International Multiple-Dose Study Group. Eur. Neurol. 31, 306–313 (1991).

    Article  Google Scholar 

  150. Diener, H. C. et al. Placebo-controlled comparison of effervescent acetylsalicylic acid, sumatriptan and ibuprofen in the treatment of migraine attacks. Cephalalgia 24, 947–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Eigenbrodt, A. K. et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 17, 501–514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ashina, M. et al. Migraine: integrated approaches to clinical management and emerging treatments. Lancet 397, 1505–1518 (2021).

    Article  PubMed  Google Scholar 

  153. Lipton, R. B. et al. Validity and reliability of the migraine-treatment optimization questionnaire. Cephalalgia 29, 751–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Charles, A. & Pozo-Rosich, P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet 394, 1765–1774 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Ferrari, M. D. et al. Migraine. Nat. Rev. Dis. Prim. 8, 2 (2022).

    Article  PubMed  Google Scholar 

  156. Sacco, S. et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update. J. Headache Pain. 23, 67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bendtsen, L. et al. Guideline on the use of onabotulinumtoxinA in chronic migraine: a consensus statement from the European Headache Federation. J. Headache Pain. 19, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ashina, M. Migraine. N. Engl. J. Med. 383, 1866–1876 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Steiner, T. J. et al. The headache under-response to treatment (HURT) questionnaire, an outcome measure to guide follow-up in primary care: development, psychometric evaluation and assessment of utility. J. Headache Pain. 19, 15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barnes, N. M. et al. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol. Rev. 73, 310–520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bruinvels, A. T. et al. Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33, 367–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Castro, M. E. et al. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology 36, 535–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Cohen, Z. et al. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J. Cereb. Blood Flow. Metab. 19, 908–917 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, J. J. et al. Multiple subtypes of serotonin receptors are expressed in rat sensory neurons in culture. J. Pharmacol. Exp. Ther. 287, 1119–1127 (1998).

    CAS  PubMed  Google Scholar 

  165. Hirst, W. D., Cheung, N. Y., Rattray, M., Price, G. W. & Wilkin, G. P. Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes, without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase. Brain Res. Mol. Brain Res. 61, 90–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, X. Y. et al. Changes of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by bee venom-induced inflammatory pain. Neurosci. Lett. 375, 42–46 (2004).

    Article  PubMed  Google Scholar 

  167. Wu, S. et al. Changes of the expression of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by complete Freund’s adjuvant-induced inflammation. Neurosci. Lett. 307, 183–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Reuter, U., Salomone, S., Ickenstein, G. W. & Waeber, C. Effects of chronic sumatriptan and zolmitriptan treatment on 5-HT receptor expression and function in rats. Cephalalgia 24, 398–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Bouchelet, I., Cohen, Z., Case, B., Séguéla, P. & Hamel, E. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol. Pharmacol. 50, 219–223 (1996).

    CAS  PubMed  Google Scholar 

  170. Frederiksen, S. D., Warfvinge, K., Ohlsson, L. & Edvinsson, L. Expression of pituitary adenylate cyclase-activating peptide, calcitonin gene-related peptide and headache targets in the trigeminal ganglia of rats and humans. Neuroscience 393, 319–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Usman, H. O. & Balaban, C. D. Distribution of 5-HT1F receptors in monkey vestibular and trigeminal ganglion cells. Front. Neurol. 7, 173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Classey, J. D., Bartsch, T. & Goadsby, P. J. Distribution of 5-HT1B, 5-HT1D and 5-HT1F receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans. Brain Res. 1361, 76–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Granados-Soto, V. et al. The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience 165, 561–568 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Stantcheva, K. K. et al. A subpopulation of itch-sensing neurons marked by Ret and somatostatin expression. EMBO Rep. 17, 585–600 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Shahidi, S., Sadeghian, R., Komaki, A. & Asl, S. S. Intracerebroventricular microinjection of the 5-HT1F receptor agonist LY 344864 inhibits methamphetamine conditioned place preference reinstatement in rats. Pharmacol. Biochem. Behav. 173, 27–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Hisadome, K. et al. 5-HT inhibition of rat insulin 2 promoter Cre recombinase transgene and proopiomelanocortin neuron excitability in the mouse arcuate nucleus. Neuroscience 159, 83–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Almaça, J. et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 17, 3281–3291 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Janssen, P., Tack, J., Sifrim, D., Meulemans, A. L. & Lefebvre, R. A. Influence of 5-HT1 receptor agonists on feline stomach relaxation. Eur. J. Pharmacol. 492, 259–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Garrett, S. M., Whitaker, R. M., Beeson, C. C. & Schnellmann, R. G. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350, 257–264 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gibbs, W. S., Garrett, S. M., Beeson, C. C. & Schnellmann, R. G. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. Am. J. Physiol. Ren. Physiol. 314, F260–F268 (2018).

    Article  Google Scholar 

  182. Scholpa, N. E., Lynn, M. K., Corum, D., Boger, H. A. & Schnellmann, R. G. 5-HT1F receptor-mediated mitochondrial biogenesis for the treatment of Parkinson’s disease. Br. J. Pharmacol. 175, 348–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Amisten, S., Braun, O. O., Bengtsson, A. & Erlinge, D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb. Res. 122, 47–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Ruddell, R. G. et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol. 169, 861–876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Turner, H. C., Alvarez, L. J., Candia, O. A. & Bernstein, A. M. Characterization of serotonergic receptors in rabbit, porcine and human conjunctivae. Curr. Eye Res. 27, 205–215 (2003).

    Article  PubMed  Google Scholar 

  186. Ropenga, A., Chapel, A., Vandamme, M. & Griffiths, N. M. Use of reference gene expression in rat distal colon after radiation exposure: a caveat. Radiat. Res. 161, 597–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Stefulj, J., Jernej, B., Cicin-Sain, L., Rinner, I. & Schauenstein, K. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav. Immun. 14, 219–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Centurión, D., Sánchez-López, A., De Vries, P., Saxena, P. R. & Villalón, C. M. The GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT1B, but not to the 5-HT1D or 5-HT1F, receptor subtype. Br. J. Pharmacol. 132, 991–998 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Razzaque, Z. et al. Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation. Br. J. Clin. Pharmacol. 47, 75–82 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Elhusseiny, A. & Hamel, E. Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles. Br. J. Pharmacol. 132, 55–62 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nilsson, T. et al. Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur. J. Pharmacol. 372, 49–56 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. V. Barla for contributions to identifying the chemical composition and structure of ditans.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dimos D. Mitsikostas.

Ethics declarations

Competing interests

D.D.M. has received honoraria, research and travel grants from Allergan/Abbvie, Amgen, Biogen, Cefaly, Genesis Pharma, Electrocore, Eli Lilly, Lundbeck, Merk-Serono, Mertz, Novartis, Roche, Sanofi, Specifar and Teva; has participated in clinical trials for Amgen, Cefaly, Electrocore, Eli Lilly, Genesis Pharma, Lundbeck, Mertz, Novartis, Specifar and Teva as principal investigator; is President of the board of the Hellenic Headache Society; and is Co-chairman of the management group of the Headache Panel at the European Academy of Neurology. M.S.d.R. has received honoraria and travel grants from Allergan/Abbvie, Eli Lilly, Novartis and Teva; and is Secretary of the Board of the European Headache Federation. B.R. has received honoraria from Allergan/Abbvie, Eli Lilly, Hormosan, Novartis and Teva; and has received research grants from the Charité Clinician Scientist Program, the German Migraine and Headache Society (Deutsche Migräne- und Kopfschmerzgesellschaft) and Novartis. H.A. reports personal fees from Teva, outside the submitted work. A.M.v.d.B. has received honoraria, research and/or travel grants from Allergan/Abbvie, Amgen/Novartis, Eli Lilly, Satsuma and Teva as principal investigator; is First Vice President of the European Headache Federation; and is a board member of the Dutch Headache Society. A.A. has received speaker and/or consultation fees from AbbVie, Eli Lilly and Neuresta Inc. P.P.-R. has received honoraria as a consultant and speaker for AbbVie, Biohaven, Chiesi, Eli Lilly, Lundbeck, Medscape, Novartis Pfizer and Teva; has received research grants from AbbVie, Novartis and Teva; has received funding for clinical trials from Alder, Amgen, Biohaven, Electrocore, Eli Lilly, Lundbeck, Novartis and Teva; and is the founder of www.midolordecabeza.org. A.R. has received honoraria as a consultant and speaker for AbbVie, Amgen, Biohaven, Cala Health, Impel, Lundbeck, Pfizer, Teva, Theranica and Xoc. M.A. has received personal fees from AbbVie, Amgen, Eli Lilly, Lundbeck, Novartis, Pfizer and Teva; has participated in clinical trials as the principal investigator for AbbVie, Amgen, Eli Lilly, Lundbeck, Novartis and Teva; has received research grants from Lundbeck Foundation, Novo Nordisk Foundation and Novartis; and serves as Associate Editor for Cephalalgia, Journal of Headache and Pain and Brain. C.W. and M.A.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks K. Haanes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsikostas, D.D., Waeber, C., Sanchez-del-Rio, M. et al. The 5-HT1F receptor as the target of ditans in migraine — from bench to bedside. Nat Rev Neurol 19, 489–505 (2023). https://doi.org/10.1038/s41582-023-00842-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00842-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing