Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implications of immunometabolism for smouldering MS pathology and therapy

Abstract

Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term ‘smouldering inflammation’ summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.

Key points

  • The term ‘smouldering inflammation’ summarizes the biological aspects that underlie compartmentalized CNS inflammation and chronic neuronal damage, which are insufficiently targeted by currently approved therapies.

  • The chronically inflamed CNS provides a unique tissue microenvironment characterized by alterations in nutrient availability, pH value, lactate levels and cytokine profiles.

  • Tissue-resident memory T cells, microglia and astrocytes are key immune cells in smouldering inflammation that can adapt their metabolic profiles in response to the inflamed microenvironment.

  • Environmental and lifestyle factors are increasingly recognized as modulators of immune cell metabolism.

  • Modulation of immune cell metabolism and the inflammatory microenvironment might foster novel treatment approaches in smouldering inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key metabolic pathways and their relevance for smouldering inflammation.
Fig. 2: The inflammatory microenvironment in smouldering MS.

Similar content being viewed by others

References

  1. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larochelle, C., Uphaus, T., Prat, A. & Zipp, F. Secondary progression in multiple sclerosis: neuronal exhaustion or distinct pathology? Trends Neurosci. 39, 325–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat. Rev. Neurol. 15, 53–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Bittner, S. & Zipp, F. Progression in multiple sclerosis — a long-term problem. Curr. Opin. Neurol. 35, 293–298 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lassmann, H. The contribution of neuropathology to multiple sclerosis research. Eur. J. Neurol. 29, 2869–2877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Kuhlmann, T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 22, 78–88 (2023).

    Article  PubMed  Google Scholar 

  11. Bittner, S. & Zipp, F. AAN unveils new guidelines for MS disease-modifying therapy. Nat. Rev. Neurol. 14, 384–386 (2018).

    Article  PubMed  Google Scholar 

  12. Giovannoni, G. et al. Smouldering multiple sclerosis: the ‘real MS’. Ther. Adv. Neurol. Disord. 15, 17562864211066751 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kappos, L. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 77, 1132–1140 (2020).

    Article  PubMed  Google Scholar 

  14. Gartner, J. et al. Efficacy and safety of ofatumumab in recently diagnosed, treatment-naive patients with multiple sclerosis: results from ASCLEPIOS I and II. Mult. Scler. 28, 1562–1575 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. von Wyl, V. et al. Disability progression in relapse-free multiple sclerosis patients on fingolimod versus interferon-β/glatiramer acetate. Mult. Scler. 27, 439–448 (2021).

    Article  Google Scholar 

  16. Uphaus, T. et al. NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study. EBioMedicine 72, 103590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Absinta, M. et al. Persistent 7-Tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J. Clin. Invest. 126, 2597–2609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maggi, P. et al. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology 97, e543–e553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaufmann, M. et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25, 944–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Elliott, C. et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 142, 2787–2799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ng Kee Kwong, K. C. et al. The prevalence of paramagnetic rim lesions in multiple sclerosis: a systematic review and meta-analysis. PLoS One 16, e0256845 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021). This MRI-informed RNA sequencing study characterizes the immunological landscape and interactome in the rim of smouldering lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calvi, A. et al. Association of slowly expanding lesions on MRI with disability in people with secondary progressive multiple sclerosis. Neurology 98, e1783–e1793 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Bittner, S. & Zipp, F. A lymphocyte–glia connection sets the pace for smoldering inflammation. Cell 184, 5696–5698 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Calvi, A. et al. Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis. Neuroimage Clin. 35, 103048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Preziosa, P. et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Elliott, C. et al. Patterning chronic active demyelination in slowly expanding/evolving white matter MS lesions. AJNR Am. J. Neuroradiol. 41, 1584–1591 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dufort, F. J. et al. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for ATP-citrate lyase in lipopolysaccharide-induced differentiation. J. Biol. Chem. 289, 7011–7024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  34. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). This landmark study directly links metabolic pathways in lymphocytes to the production of pro-inflammatory cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moon, J. S. et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12, 102–115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014). This study shows that inhibition of amino acid metabolism reduces T cell inflammation and suppresses EAE symptoms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Birkner, K. et al. β1-Integrin- and Kv1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J. Clin. Invest 130, 715–732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages — from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bottcher, C. et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol. Commun. 8, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yong, V. W. Microglia in multiple sclerosis: protectors turn destroyers. Neuron 110, 3534–3548 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Bernier, L. P. et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun. 11, 1559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L. et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener. 14, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10, 1139 (2019). This in-depth profiling study reveals the metabolic specialization of microglia in different anatomical locations of the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Holland, R. et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun. 68, 183–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Costa, I. et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther. 244, 108373 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Ryan, S. K. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 26, 12–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Rothammer, N. et al. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Sci. Adv. 8, eabm5500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Wasser, B. et al. CNS-localized myeloid cells capture living invading T cells during neuroinflammation. J. Exp. Med. https://doi.org/10.1084/jem.20190812 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brandt, A. U. et al. Association of a marker of N-acetylglucosamine with progressive multiple sclerosis and neurodegeneration. JAMA Neurol. 78, 842–852 (2021).

    Article  PubMed  Google Scholar 

  55. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498.e22 (2019). This paper links dysfunction of sphingolipid metabolism to astrocyte inflammation driving progressive CNS inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Polyzos, A. et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum. Mol. Genet. 25, 1792–1802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Tullius, S. G. et al. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun. 5, 5101 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Cameron, A. M. et al. Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20, 420–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Meyer, T. et al. NAD+ metabolism drives astrocyte proinflammatory reprogramming in central nervous system autoimmunity. Proc. Natl Acad. Sci. USA 119, e2211310119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Jarius, S. et al. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 2: results from 108 lumbar punctures in 80 pediatric patients. J. Neuroinflamm. 17, 262 (2020).

    Article  CAS  Google Scholar 

  65. Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Stampanoni Bassi, M. et al. Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis. J. Neurochem. 159, 857–866 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Simone, I. L. et al. High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J. Neurol. Sci. 144, 182–190 (1996).

    Article  PubMed  Google Scholar 

  68. Bitsch, A. et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am. J. Neuroradiol. 20, 1619–1627 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Friese, M. A. et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 13, 1483–1489 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Albanese, M. et al. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J. Neuroinflamm. 13, 36 (2016).

    Article  Google Scholar 

  71. Bittner, S., Oh, J., Havrdova, E. K., Tintore, M. & Zipp, F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 144, 2954–2963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Regenold, W. T., Phatak, P., Makley, M. J., Stone, R. D. & Kling, M. A. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J. Neurol. Sci. 275, 106–112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huppke, B. et al. Association of obesity with multiple sclerosis risk and response to first-line disease modifying drugs in children. JAMA Neurol. 76, 1157–1165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Matarese, G. et al. Leptin increase in multiple sclerosis associates with reduced number of CD4+CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 102, 5150–5155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerriets, V. A. et al. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lehmann, R. et al. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS One 5, e11519 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med. 2, 33ra37 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: an inflammatory connection. Immunity 51, 794–811 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Ghezzi, L., Cantoni, C., Pinget, G. V., Zhou, Y. & Piccio, L. Targeting the gut to treat multiple sclerosis. J. Clin. Invest. 131, e143774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duscha, A. et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067–1080.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Sonner, J. K. et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nat. Commun. 10, 4877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cirac, A. et al. The aryl hydrocarbon receptor-dependent TGF-α/VEGF-B ratio correlates with disease subtype and prognosis in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 8, e1043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tsaktanis, T. et al. Aryl hydrocarbon receptor plasma agonist activity correlates with disease activity in progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 8, e933 (2021).

    Article  PubMed  Google Scholar 

  89. Scott, L. J. Teriflunomide: a review in relapsing–remitting multiple sclerosis. Drugs 79, 875–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Ambrosius, B. et al. Teriflunomide and monomethylfumarate target HIV-induced neuroinflammation and neurotoxicity. J. Neuroinflamm. 14, 51 (2017).

    Article  Google Scholar 

  91. Wostradowski, T. et al. In vitro evaluation of physiologically relevant concentrations of teriflunomide on activation and proliferation of primary rodent microglia. J. Neuroinflamm. 13, 250 (2016).

    Article  Google Scholar 

  92. Groh, J., Horner, M. & Martini, R. Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations. J. Neuroinflamm. 15, 194 (2018).

    Article  Google Scholar 

  93. Schimrigk, S. et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur. J. Neurol. 13, 604–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Liebmann, M. et al. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain 144, 3126–3141 (2021). This work shows that dimethyl fumarate reduces glutathione levels, thereby impairing mitochondrial function and inducing apoptosis in activated T lymphocytes.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fleischer, V. et al. Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. Mult. Scler. 24, 632–641 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Ghadiri, M. et al. Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurol. Neuroimmunol. Neuroinflamm. 4, e340 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Luckel, C. et al. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat. Commun. 10, 5722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carlstrom, K. E. et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun. 10, 3081 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shestov, A. A. et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. eLife https://doi.org/10.7554/eLife.03342 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xia, L. et al. Inhibition of gasdermin D-mediated pyroptosis attenuates the severity of seizures and astroglial damage in kainic acid-induced epileptic mice. Front. Pharmacol. 12, 751644 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, J. et al. Gasdermin D-mediated microglial pyroptosis exacerbates neurotoxicity of aflatoxins B1 and M1 in mouse primary microglia and neuronal cultures. Neurotoxicology 91, 305–320 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Gil, A. et al. Neuronal metabolism and neuroprotection: neuroprotective effect of fingolimod on menadione-induced mitochondrial damage. Cells https://doi.org/10.3390/cells10010034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Feng, Y., Feng, F., Pan, S., Zhang, J. & Li, W. Fingolimod ameliorates chronic experimental autoimmune neuritis by modulating inflammatory cytokines and Akt/mTOR/NF-κB signaling. Brain Behav. 13, e2965 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makled, M. N., Serrya, M. S. & El-Sheakh, A. R. Fingolimod ameliorates acetic acid-induced ulcerative colitis: an insight into its modulatory impact on pro/anti-inflammatory cytokines and AKT/mTOR signalling. Basic Clin. Pharmacol. Toxicol. 130, 569–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Cui, L. et al. FTY720 inhibits the activation of pancreatic stellate cells by promoting apoptosis and suppressing autophagy via the AMPK/mTOR pathway. Life Sci. 217, 243–250 (2019).

    Article  PubMed  Google Scholar 

  107. Galvan-Pena, S. & O’Neill, L. A. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Perl, A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12, 169–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Huang, Z. et al. mTORC1 links pathology in experimental models of Still’s disease and macrophage activation syndrome. Nat. Commun. 13, 6915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Z., Nie, L., Chen, L., Sun, Y. & Li, G. Rapamycin relieves inflammation of experimental autoimmune encephalomyelitis by altering the balance of Treg/Th17 in a mouse model. Neurosci. Lett. 705, 39–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Lisi, L. et al. Rapamycin reduces clinical signs and neuropathic pain in a chronic model of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 243, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Bagherpour, B. et al. Promising effect of rapamycin on multiple sclerosis. Mult. Scler. Relat. Disord. 26, 40–45 (2018).

    Article  PubMed  Google Scholar 

  113. O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article  PubMed  Google Scholar 

  114. Mangalam, A. K. et al. AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage-Th17 axis. J. Immunol. 197, 747–760 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Phair, I. R. et al. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol. Metab. 68, 101661 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Negrotto, L., Farez, M. F. & Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73, 520–528 (2016).

    Article  PubMed  Google Scholar 

  119. Rhoads, J. P., Major, A. S. & Rathmell, J. C. Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 313–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Schweitzer, F. et al. Age and the risks of high-efficacy disease modifying drugs in multiple sclerosis. Curr. Opin. Neurol. 32, 305–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Irani, S. R., Nath, A. & Zipp, F. The neuroinflammation collection: a vision for expanding neuro-immune crosstalk in brain. Brain 144, e59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vigo, T. et al. IFNβ enhances mesenchymal stromal (stem) cells immunomodulatory function through STAT1–3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis. 10, 85 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. La Rocca, C. et al. Immunometabolic profiling of T cells from patients with relapsing–remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism 77, 39–46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Haghikia, A. et al. Interferon-β affects mitochondrial activity in CD4+ lymphocytes: implications for mechanism of action in multiple sclerosis. Mult. Scler. 21, 1262–1270 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Di Filippo, M. et al. Interferon-β1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: electrophysiological evidence. Neurobiol. Dis. 62, 387–393 (2014).

    Article  PubMed  Google Scholar 

  128. Bustamante, M. F., Nurtdinov, R. N., Rio, J., Montalban, X. & Comabella, M. Baseline gene expression signatures in monocytes from multiple sclerosis patients treated with interferon-β. PLoS One 8, e60994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lorefice, L. et al. Assessing the metabolomic profile of multiple sclerosis patients treated with interferon β1a by 1H-NMR spectroscopy. Neurotherapeutics 16, 797–807 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. De Riccardis, L. et al. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA Clin. 6, 131–137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Signoriello, E. et al. 12-months prospective pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J. Neuroimmunol. 348, 577385 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Ruggieri, M. et al. Glatiramer acetate induces pro-apoptotic mechanisms involving Bcl-2, Bax and Cyt-c in peripheral lymphocytes from multiple sclerosis patients. J. Neurol. 253, 231–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Ntranos, A. et al. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain 145, 569–583 (2022).

    Article  PubMed  Google Scholar 

  134. Carlstrom, K. E. et al. Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nat. Commun. 11, 4071 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hayashi, G. et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum. Mol. Genet. 26, 2864–2873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Diebold, M. et al. Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis. J. Autoimmun. 86, 39–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Cheng, J. et al. Fumarate suppresses B-cell activation and function through direct inactivation of LYN. Nat. Chem. Biol. 18, 954–962 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Mouton, A. J. et al. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J. Mol. Cell Cardiol. 158, 38–48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schmitt, A. et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood 138, 871–884 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Kabiraj, P. et al. Teriflunomide shifts the astrocytic bioenergetic profile from oxidative metabolism to glycolysis and attenuates TNFα-induced inflammatory responses. Sci. Rep. 12, 3049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Malla, B. et al. Teriflunomide preserves neuronal activity and protects mitochondria in brain slices exposed to oxidative stress. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031538 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Malla, B. et al. Teriflunomide preserves peripheral nerve mitochondria from oxidative stress-mediated alterations. Ther. Adv. Chronic Dis. 11, 2040622320944773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Klotz, L. et al. Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Sci. Transl. Med. 11, eaao5563 (2019). This study of immunometabolism demonstrates that high-affinity T cell clones in patients with MS are metabolically distinct and are targeted by teriflunomide.

    Article  CAS  PubMed  Google Scholar 

  145. Bajwa, A. et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J. Am. Soc. Nephrol. 26, 908–925 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Tian, L. et al. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol. Immunol. 19, 1235–1250 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Squillace, S. et al. Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J. Clin. Invest. https://doi.org/10.1172/JCI157738 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rousselle, T. V. et al. FTY720 regulates mitochondria biogenesis in dendritic cells to prevent kidney ischemic reperfusion injury. Front. Immunol. 11, 1278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. O’Sullivan, S. A., Velasco-Estevez, M. & Dev, K. K. Demyelination induced by oxidative stress is regulated by sphingosine 1-phosphate receptors. Glia 65, 1119–1136 (2017).

    Article  PubMed  Google Scholar 

  150. Conrad, D. M. et al. 2-Chloro-2′-deoxyadenosine-induced apoptosis in T leukemia cells is mediated via a caspase-3-dependent mitochondrial feedback amplification loop. Int. J. Oncol. 32, 1325–1333 (2008).

    CAS  PubMed  Google Scholar 

  151. Janoschka, C. et al. Enhanced pathogenicity of Th17 cells due to natalizumab treatment: implications for MS disease rebound. Proc. Natl Acad. Sci. USA 120, e2209944120 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Zeng, Q. H. et al. B cells polarize pathogenic inflammatory T helper subsets through ICOSL-dependent glycolysis. Sci. Adv. https://doi.org/10.1126/sciadv.abb6296 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kaushik, D. K. & Yong, V. W. Metabolic needs of brain-infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem. 158, 14–24 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research work is supported by grants from the German Research Council (DFG): CRC-TR-128 to F.Z. and S.B.; CRC-TR-355 to S.B.; CRC1080 and SFB1292 to F.Z.; the Progressive Multiple Sclerosis Alliance (PMSA): BRAVEinMS PA-1604–08492 to F.Z.; and the Herman and Lilly Schilling Foundation to S.B. The authors thank C. Ernest for proofreading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.B., K.P. and F.Z. wrote the manuscript. S.B., K.P. and L.K. researched data for the article. All authors contributed substantially to discussions of the content and to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Stefan Bittner or Frauke Zipp.

Ethics declarations

Competing interests

S.B. declares that he has received honoraria from Biogen Idec, Bristol Meyers Squibb, Merck Healthcare, Novartis, Sanofi, Roche and Teva. F.Z. declares that she has received research grants and/or consultation funds from Biogen, Ministry of Education and Research (BMBF), Bristol Meyers Squibb, Celgene, German Research Foundation (DFG), Janssen, the Max Planck Society (MPG), Merck Serono, Novartis, Progressive MS Alliance (PMSA), Roche, Sandoz and Sanofi Genzyme. K.P. and L.K. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Lars Fugger, Bianca Weinstock-Guttman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aerobic glycolysis

The pathway that converts pyruvate into lactate in an aerobic environment and generates NAD+ molecules.

Experimental autoimmune encephalomyelitis

(EAE). The most common experimental animal model of multiple sclerosis; inflammatory demyelinating brain disease can be induced in various animal species and strains by different methods depending on the experimental question.

Fatty acid oxidation

The metabolic pathway that converts fatty acids to acetyl coenzyme A to fuel the tricarboxylic acid cycle.

Glutaminolysis

The metabolic pathway that converts glutamine to α-ketoglutarate to fuel the tricarboxylic acid cycle.

Glycolysis

An oxygen-independent metabolic pathway that rapidly converts glucose into pyruvate to produce ATP and several metabolic intermediates used in further pathways.

Immunometabolism

The interplay between metabolism and immunology in both health and disease.

Oxidative phosphorylation

The metabolic pathway in which substrates are oxidized in the tricarboxylic acid cycle to generate ATP via the mitochondrial electron transport chain.

Smouldering inflammation

An umbrella term that includes all CNS-intrinsic, non-relapsing inflammatory processes in patients with multiple sclerosis such as chronically active lesions, diffuse alterations of the grey matter and normal-appearing white matter, meningeal inflammation, and cortical inflammation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittner, S., Pape, K., Klotz, L. et al. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 19, 477–488 (2023). https://doi.org/10.1038/s41582-023-00839-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00839-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing