Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis

Abstract

Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.

Key points

  • The meninges are an immunologically active tissue barrier, and they represent an intrathecal immunological niche that compartmentalizes chronic inflammation in multiple sclerosis (MS).

  • Lymphoid neogenesis is an aberrant process observed in the meninges in post-mortem tissue from a substantial proportion (about 40%) of individuals with progressive MS, with diffuse meningeal inflammation being observed in most of these individuals.

  • Increased diffuse or compartmentalized meningeal inflammation is associated with a ‘surface-in’ gradient of cortical cell pathology, including subpial demyelination and significant neuronal loss.

  • Combined high levels of meningeal inflammation and subpial cortical damage correlate with severe and rapid disease progression.

  • Meningeal inflammation represents a potential new therapeutic target to halt disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cortical demyelination and leptomeningeal inflammation in multiple sclerosis.
Fig. 2: Meningeal lymphoid-like structures in multiple sclerosis and animal models.
Fig. 3: The physiological and pathological events associated with leptomeningeal infiltration in multiple sclerosis.
Fig. 4: Leptomeningeal inflammation and pathological and clinical burden of multiple sclerosis.

Similar content being viewed by others

References

  1. Hauser, S. L. et al. OPERA I and OPERA II clinical investigators. ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds, R. et al. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 122, 155–170 (2011).

    Article  PubMed  Google Scholar 

  3. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 9, 3116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Van Olst, L. et al. Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathol. 141, 881–899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peterson, J. W., Bö, L., Mörk, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Klaver, R. et al. Neuronal and axonal loss in normal-appearing gray matter and subpial lesions in multiple sclerosis. J. Neuropathol. Exp. Neurol. 74, 453–458 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Howell, O. W. et al. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J. Neuropathol. Exp. Neurol. 69, 1017–1033 (2010).

    Article  PubMed  Google Scholar 

  10. Jürgens, T. et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 139, 39–46 (2016).

    Article  PubMed  Google Scholar 

  11. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  12. Ahmed, S. M. et al. Accumulation of meningeal lymphocytes correlates with white matter lesion activity in progressive multiple sclerosis. JCI Insight 7, e151683 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Junker, A. et al. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol. 30, 641–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gilmore, C. P. et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J. Neurol. Neurosurg. Psychiatry 80, 182–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Howell, O. W. et al. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathol. Appl. Neurobiol. 41, 798–813 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Reali, C. et al. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol. 30, 779–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bø, L., Vedeler, C. A., Nyland, H., Trapp, B. D. & Mørk, S. J. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler. 9, 323–331 (2003).

    Article  PubMed  Google Scholar 

  18. Geurts, J. J. & Barkhof, F. Grey matter pathology in multiple sclerosis. Lancet Neurol. 7, 841–851 (2008).

    Article  PubMed  Google Scholar 

  19. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  20. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    Article  PubMed  Google Scholar 

  22. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 34, 2755–2771 (2011).

    Article  Google Scholar 

  23. Haider, L. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fischer, M. T. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136, 1799–1815 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  PubMed  Google Scholar 

  29. Zhang, E. T., Inman, C. B. & Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J. Anat. 170, 111–123 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Paredes, I., Himmels, P. & Ruiz de Almodóvar, C. Neurovascular communication during CNS development. Dev. Cell 45, 10–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Rua, R. & McGavern, D. B. Advances in meningeal immunity. Trends Mol. Med 24, 542–559 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zamvil, S. S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Lehmann-Horn, K., Wang, S. Z., Sagan, S. A., Zamvil, S. S. & von Büdingen, H. C. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1, e87234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stüve, O. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 59, 743–747 (2006).

    Article  PubMed  Google Scholar 

  35. Mancuso, R. et al. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult. Scler. 20, 1900–1903 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Michel, L. et al. Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Sci. Transl. Med 11, eaaw0475 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Lodygin, D. et al. A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat. Med 19, 784–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Mues, M. et al. Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat. Med 19, 778–783 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  PubMed  Google Scholar 

  40. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Serafini, B. et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65, 124–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kooi, E. J. et al. Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol. Appl. Neurobiol. 35, 283–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100.e23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. James, R. E. et al. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol. Commun. 8, 66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. James Bates, R. E. et al. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 145, 4287–4307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Korin, B. et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20, 1300–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Magliozzi, R. et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83, 739–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Magliozzi, R. et al. The CSF profile linked to cortical damage predicts multiple sclerosis activity. Ann. Neurol. 88, 562–573 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Bevan, R. J. et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 84, 829–842 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    Article  PubMed  Google Scholar 

  53. Hassin, G. B. & Bassoe, P. Multiple degenerative softening versus multiple sclerosis. Arch. NeurPsych. 7, 613–628 (1922).

    Article  Google Scholar 

  54. Adams, D. K. The cerebro-spinal fluid in disseminated sclerosis. Lancet 1, 420 (1921).

    Article  Google Scholar 

  55. Guseo, A. & Jellinger, K. The significance of perivascular infiltrations in multiple sclerosis. J. Neurol. 211, 51–60 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Peferoen, L. A. et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133, e137 (2010).

    Article  PubMed  Google Scholar 

  57. Torkildsen, O. et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 20, 720–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Aloisi, F., Serafini, B., Magliozzi, R., Howell, O. W. & Reynolds, R. Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 133, e157 (2010).

    Article  PubMed  Google Scholar 

  59. Frischer, J. M. et al. The relation between inflammation and neurodegeneration inmultiple sclerosis brains. Brain 132, 1175–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Annibali, V. et al. CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134, 542–554 (2011).

    Article  PubMed  Google Scholar 

  61. Cencioni, M. T. et al. Programmed death 1 is highly expressed on CD8+ CD57+ T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein–Barr virus. Immunology 152, 660–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. James, C. A. et al. CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells. Nat. Commun. 13, 78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bell, L., Lenhart, A., Rosenwald, A., Monoranu, C. M. & Berberich-Siebelt, F. Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells. Front. Immunol. 10, 3090 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lovato, L. et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 134, 534–541 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Uccelli, A., Aloisi, F. & Pistoia, V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol. 26, 254–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Neyt, K., Perros, F., GeurtsvanKessel, C. H., Hammad, H. & Lambrecht, B. N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 33, 297–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schröder, A. E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl Acad. Sci. USA 93, 221–225 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Cañete, J. D. et al. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann. Rheum. Dis. 66, 720–726 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marinkovic, T. et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J. Clin. Invest 116, 2622–2632 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 159, 861–873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sims, G. P., Shiono, H., Willcox, N. & Stott, D. I. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol. 167, 1935–1944 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol. 185, 717–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sato, M. et al. Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation 91, 1398–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Winter, S. et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation. J. Mol. Med. 88, 1169–1180 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Shomer, N. H., Fox, J. G., Juedes, A. E. & Ruddle, N. H. Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect. Immun. 71, 3572–3577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ghosh, S., Steere, A. C., Stollar, B. D. & Huber, B. T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol. 174, 2860–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Martinet, L. et al. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J. Immunol. 191, 2001–2008 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Cipponi, A. et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72, 3997–4007 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Houtkamp, M. A., de Boer, O. J., van der Loos, C. M., van der Wal, A. C. & Becker, A. E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Perros, F. et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 185, 311–321 (2012).

    Article  PubMed  Google Scholar 

  84. Brusselle, G. G., Demoor, T., Bracke, K. R., Brandsma, C. A. & Timens, W. Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur. Respir. J. 34, 219–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Marchal-Sommé, J. et al. Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J. Immunol. 176, 5735–5739 (2006).

    Article  PubMed  Google Scholar 

  86. Sato, M. et al. The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation. J. Immunol. 182, 7307–7316 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wengner, A. M. et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56, 3271–3283 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J. Immunol. 171, 4359–4368 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, K. & Randall, T. D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc. Natl Acad. Sci. USA 104, 10577–10582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Timmer, T. C. et al. Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum. 56, 2492–2502 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, S. H. et al. An exhausted phenotype of TH2 cells is primed by allergen exposure, but not reinforced by allergen-specific immunotherapy. Allergy 76, 2827–2839 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Gräbner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gardner, C. et al. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136, 3596–3608 (2013).

    Article  PubMed  Google Scholar 

  96. Van Langelaar, J. et al. Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. Ann. Neurol. 86, 264–278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kuerten, S. et al. Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol. 124, 861–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pikor, N. B., Prat, A., Bar-Or, A. & Gommerman, J. L. Meningeal tertiary lymphoid tissues and multiple sclerosis: a gathering place for diverse types of immune cells during CNS autoimmunity. Front. Immunol. 6, 657 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  102. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Magliozzi, R. et al. B-cell enrichment and Epstein–Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 72, 29–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein–Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflammation 15, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hassani, A., Corboy, J. R., Al-Salam, S. & Khan, G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One 13, e0192109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Willis, S. N. et al. Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Haider, L. et al. Linear brain atrophy measures in multiple sclerosis and clinically isolated syndromes: a 30-year follow-up. J. Neurol. Neurosurg. Psychiatry 92, 839–846 (2021).

    Article  Google Scholar 

  110. McMahon, J. M., McQuaid, S., Reynolds, R. & FitzGerald, U. F. Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult. Scler. 18, 1437–1447 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Rossi, S. et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult. Scler. 20, 304–312 (2014).

    Article  PubMed  Google Scholar 

  112. Perga, S. et al. Overexpression of the ubiquitin-editing enzyme A20 in the brain lesions of multiple sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathol. 31, 283–296 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Van Wageningen, T. A. et al. Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis. Brain Commun. 4, fcac005 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Centonze, D. et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 3442–3452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bannerman, P. G. et al. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. Brain 128, 1877–1886 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Soulika, A. M. et al. Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 14965–14979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ziehn, M. O., Avedisian, A. A., Tiwari-Woodruff, S. & Voskuhl, R. R. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab. Invest. 90, 774–786 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nikić, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  PubMed  Google Scholar 

  119. Yates, R. L. et al. The influence of HLA-DRB1*15 on the relationship between microglia and neurons in multiple sclerosis normal appearing cortical grey matter. Brain Pathol. 32, e13041 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10, 1139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Markoullis, K. et al. Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol. 123, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma, R. et al. Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol. 120, 223–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Prineas, J. W. & Lee, S. Multiple sclerosis: destruction and regeneration of astrocytes in acute lesions. J. Neuropathol. Exp. Neurol. 78, 140–156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun, M. et al. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 51, 102870 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Brosnan, C. F. & Raine, C. S. The astrocyte in multiple sclerosis revisited. Glia 61, 453–465 (2013).

    Article  PubMed  Google Scholar 

  128. Krumbholz, M. et al. BAFF is produced by astrocytes and up regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 201, 195–200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).

    Article  PubMed  Google Scholar 

  130. Gharagozloo, M. et al. Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathol. 142, 899–915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dore-Duffy, P., Donaldson, J. O., Koff, T., Longo, M. & Perry, W. Prostaglandin release in multiple sclerosis: correlation with disease activity. Neurology 36, 1587–1590 (1986).

    Article  CAS  PubMed  Google Scholar 

  132. Lagumersindez-Denis, N. et al. Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathol. 134, 15–34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lovato, N. & Lack, L. The effects of napping on cognitive functioning. Prog. Brain Res. 185, 155–166 (2010).

    Article  PubMed  Google Scholar 

  134. Derfuss, T., Hohlfeld, R. & Meinl, E. Intrathecal antibody (IgG) production against human herpesvirus type 6 occurs in about 20% of multiple sclerosis patients and might be linked to a polyspecific B-cell response. J. Neurol. 252, 968–971 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Kuerten, S. et al. Autoantibodies against central nervous system antigens in a subset of B cell-dominant multiple sclerosis patients. Proc. Natl Acad. Sci. USA 117, 21512–21518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Blauth, K. et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. 130, 765–781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schartz, N. D. & Tenner, A. J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J. Neuroinflammation 91, 1398–1405 (2020).

    Google Scholar 

  138. Michailidou, I. et al. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77, 1007–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Cooze, B. J. et al. The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathol. 32, e13054 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fitzgerald, K. C. et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain 142, 2722–2736 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ramaglia, V. et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 142, 643–667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Carassiti, D. et al. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol. Appl. Neurobiol. 44, 377–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Trapp, B. D. et al. Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 17, 870–884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Magliozzi, R. et al. CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Ann. Clin. Transl. Neurol. 8, 534–547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wegner, C., Esiri, M. M., Chance, S. A., Palace, J. & Matthews, P. M. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67, 960–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Freeman, L. et al. The neuronal component of gray matter damage in multiple sclerosis: A [11C]flumazenil positron emission tomography study. Ann. Neurol. 78, 554–567 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Mainero, C. et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 138, 932–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Brown, J. W. et al. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis. Brain 140, 387–398 (2017).

    Article  PubMed  Google Scholar 

  151. Fadda, G. et al. A surface-in gradient of thalamic damage evolves in pediatric multiple sclerosis. Ann. Neurol. 85, 340–351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. De Meo, E. et al. In vivo gradients of thalamic damage in paediatric multiple sclerosis: a window into pathology. Brain 144, 186–197 (2021).

    Article  PubMed  Google Scholar 

  153. Magliozzi, R. et al. “Ependymal-in” gradient of thalamic damage in progressive multiple sclerosis. Ann. Neurol. 92, 670–685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Campbell, G. R. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 69, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141, 2066–2082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lisak, R. P. et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246, 85–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    Article  PubMed  Google Scholar 

  159. Loveless, S. et al. Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis. Brain Pathol. 28, 507–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vidaurre, O. G. et al. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 137, 2271–2286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Bhargava, P. et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J. Clin. Invest. 130, 3467–3482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Magliozzi, R. et al. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J. Neuroinflammation 16, 259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chataway, J. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383, 2213–2221 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Chan, D. et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol. 16, 591–600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Picon, JayaramanA. et al. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol. 141, 585–604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Androdias, G. et al. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann. Neurol. 68, 465–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Staff, N. P., Lucchinetti, C. F. & Keegan, B. M. Multiple sclerosis with predominant, severe cognitive impairment. Arch. Neurol. 66, 1139–1143 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  171. La Mantia, L. & Prone, V. Headache in multiple sclerosis and autoimmune disorders. Neurol. Sci. 1, 75–78 (2015).

    Article  Google Scholar 

  172. Farina, G. et al. Increased cortical lesion load and intrathecal inflammation is associated with oligoclonal bands in multiple sclerosis patients: a combined CSF and MRI study. J. Neuroinflammation 14, 40 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lepennetier, G. et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflammation 16, 219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Harrer, C. et al. The CXCL13/CXCR5-chemokine axis in neuroinflammation: evidence of CXCR5+CD4 T cell recruitment to CSF. Fluids Barriers CNS 18, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Morille, J. et al. Multiple sclerosis CSF is enriched with follicular T cells displaying a Th1/Eomes signature. Neurol. Neuroimmunol. Neuroinflamm. 9, e200033 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 12, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Calabrese, M. et al. Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch. Neurol. 64, 1416–−1422 (2007).

    Article  PubMed  Google Scholar 

  178. Calabrese, M. & Gallo, P. Magnetic resonance evidence of cortical onset of multiple sclerosis. Mult. Scler. 15, 933–941 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. De Stefano, N. et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60, 1157–1162 (2003).

    Article  PubMed  Google Scholar 

  180. Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    Article  PubMed  Google Scholar 

  181. Calabrese, M. et al. No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79, 1671–−1676 (2012).

    Article  PubMed  Google Scholar 

  182. Fisniku, L. K. et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131, 808–817 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    Article  PubMed  Google Scholar 

  184. Geurts, J. J. et al. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236, 254–260 (2005).

    Article  PubMed  Google Scholar 

  185. Harel, A. et al. Phase-sensitive inversion-recovery MRI improves longitudinal cortical lesion detection in progressive MS. PLoS One 11, e0152180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zivadinov, R. et al. Voxel-wise magnetization transfer imaging study of effects of natalizumab and IFNβ-1a in multiple sclerosis. Mult. Scler. 18, 1125–1134 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Pardini, M. et al. Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 1212–1217 (2016).

    Article  PubMed  Google Scholar 

  188. Jehna, M. et al. Periventricular lesions correlate with cortical thinning in multiple sclerosis. Ann. Neurol. 78, 530–539 (2015).

    Article  PubMed  Google Scholar 

  189. Ouellette, R. et al. 7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain 143, 2973–2987 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Poirion, E. et al. Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology 96, e1865–e1875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mahajan, K. R., Nakamura, K., Cohen, J. A., Trapp, B. D. & Ontaneda, D. Intrinsic and extrinsic mechanisms of thalamic pathology in multiple sclerosis. Ann. Neurol. 88, 81–92 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Yates, R. L. et al. Fibrin(ogen) and neurodegeneration in the progressive multiple sclerosis cortex. Ann. Neurol. 82, 259–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Pardini, M., Brown, J. W. L., Magliozzi, R., Reynolds, R. & Chard, D. T. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain 144, 1646–1654 (2021).

    Article  PubMed  Google Scholar 

  194. Eisele, P. et al. Investigation of leptomeningeal enhancement in MS: a postcontrast FLAIR MRI study. Neurology 84, 770–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Absinta, M. et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85, 18–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mathews, V. P. et al. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 211, 257–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Zurawski, J. et al. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult. Scler. 26, 177–187 (2020).

    Article  PubMed  Google Scholar 

  198. Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345 (2016).

    Article  PubMed  Google Scholar 

  199. Harrison, D. M. et al. Leptomeningeal enhancement at 7T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J. Neuroimaging 27, 461–468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Absinta, M. et al. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology 88, 1439–1444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Coulette, S. et al. Diagnosis and prediction of relapses in Susac syndrome: a new use for MR postcontrast FLAIR leptomeningeal enhancement. AJNR Am. J. Neuroradiol. 40, 1184–1190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sari, L., Peker, A. A., Cesme, D. H. & Alkan, A. A case of neurosarcoidosis mimicking brain tumor. Curr. Med. Imaging 17, 657–659 (2020).

    Article  Google Scholar 

  203. Schuster, S. et al. Rheumatoid meningitis: a rare cause of aseptic meningitis with frequently stroke-like episodes. Neurol. Clin. Pract. 8, 451–455 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Long, Y. et al. Brain gadolinium enhancement along the ventricular and leptomeningeal regions in patients with aquaporin-4 antibodies in cerebral spinal fluid. J. Neuroimmunol. 269, 62–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Turtzo, L. C. et al. Meningeal blood–brain barrier disruption in acute traumatic brain injury. Brain Commun. 2, fcaa143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Emu, B. et al. Safety, pharmacokinetics, and biologic activity of pateclizumab, a novel monoclonal antibody targeting lymphotoxin α: results of a phase I randomized, placebo-controlled trial. Arthritis Res. Ther. 14, R6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. St Clair, E. W. et al. Clinical sfficacy and safety of baminercept, a lymphotoxin β receptor fusion protein, in primary Sjögren’s syndrome: results from a phase II randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 70, 1470–1480 (2018).

    Article  Google Scholar 

  208. Frey, O. et al. Inducible costimulator (ICOS) blockade inhibits accumulation of polyfunctional T helper 1/T helper 17 cells and mitigates autoimmune arthritis. Ann. Rheum. Dis. 69, 1495–1501 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Klimatcheva, E. et al. CXCL13 antibody for the treatment of autoimmune disorders. BMC Immunol. 16, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kramer, J. M., Klimatcheva, E. & Rothstein, T. L. CXCL13 is elevated in Sjögren’s syndrome in mice and humans and is implicated in disease pathogenesis. J. Leukoc. Biol. 94, 1079–1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, W. et al. EULAR evidence based recommendations for the management of hip osteoarthritis: report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 64, 669–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Bar-Or, A. et al. Rituximab in relapsing–remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann. Neurol. 63, 395–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  213. Sorensen, P. S. et al. Safety and efficacy of ofatumumab in relapsing–remitting multiple sclerosis: a phase 2 study. Neurology 82, 573–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Fox, E. et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult. Scler. J. 27, 420–429 (2020).

    Article  Google Scholar 

  215. Fransen, N. L. et al. Absence of B cells in brainstem and white matter lesions associates with less severe disease and absence of oligoclonal bands in MS. Neurol. Neuroimmunol. Neuroinflamm. 8, e955 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Cross, A. H. et al. CSF cell signature and biomarkers of neuroinflammation and neurodegeneration in MS: immunophenotyping standardisation in the OBOE study [abstract EP1599]. Mult. Scler. J. 23 (Suppl. 3), 837–838 (2017).

    Google Scholar 

  217. Li, R., Patterson, K. R. & Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19, 696–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Naismith, R. T. et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 4, 1860–1867 (2010).

    Article  Google Scholar 

  219. Bhargava, P. et al. Altered levels of toll-like receptors in circulating extracellular vesicles in multiple sclerosis. Cells 8, 1058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kenny, E. F. et al. Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One 8, e74103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bhargava, P. et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 144, 1396–1408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Brand, R. M. et al. Siponimod inhibits the formation of meningeal ectopic lymphoid tissue in experimental autoimmune encephalomyelitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Pender, M. P. et al. Epstein–Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 3, e124714 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Dawson, J. W. The histology of disseminated sclerosis. Trans. R. Soc. Edinb. 50, 517–740 (1916).

    Article  Google Scholar 

  226. Griffiths, L. et al. Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology? Neuroimmunol. Neuroinflamm. 7, 51–67 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the UK Multiple Sclerosis Society Tissue Bank at Imperial College London, London, UK.

Author information

Authors and Affiliations

Authors

Contributions

All the authors wrote the article. R.M., O.W.H. and R.R. researched data and images for the article. R.M., O.W.H., M.C. and R.R. made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Roberta Magliozzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks A.-M. van Dam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magliozzi, R., Howell, O.W., Calabrese, M. et al. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 19, 461–476 (2023). https://doi.org/10.1038/s41582-023-00838-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00838-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing