Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy?

Abstract

Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis — processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.

Key points

  • Clinically relevant variability in disease severity and progression is observed in Duchenne muscular dystrophy (DMD) and can be explained by allelic heterogeneity within the DMD locus (‘cis’ modifiers) and polymorphisms in different loci (‘trans’ modifiers).

  • Understanding the bases of clinical variability is important for patient and family counselling and prognosis, clinical trial design and the identification of therapeutic targets.

  • The main identified modifiers influence inflammation and fibrotic replacement, highlighting the central role of these processes in DMD and the importance of addressing them pharmacologically.

  • Modifier genes and proteins might become targets for therapeutic modulation themselves, predict responsiveness to treatments or enable precise subgroup analyses in clinical trials.

  • Future developments in the field include the identification of novel modifiers by genome mapping in large, deeply phenotyped cohorts and the development of multilocus interaction models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the downstream consequences of dystrophin deficiency in skeletal muscle.
Fig. 2: Schematic representation of ‘cis-acting’ genetic modifiers.
Fig. 3: The main ‘trans-acting’ genetic modifiers and their effects on inflammatory and profibrotic pathways.

Similar content being viewed by others

References

  1. Crisafulli, S. et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J. Rare Dis. 15, 141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Bello, L., Hoffman, E. P. & Pegoraro, E. Dystrophinopathies. in Muscular Dystrophy: Causes and Management 67–96 (NOVA Publishers, 2013).

  4. Darras, B.T., Urion, D.K., & Ghosh, P.S. Dystrophinopathies. in GeneReviews® [Internet] (eds Adam, M. P. et al) (University of Washington, 2022).

  5. Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H. & Kunkel, L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. McDonald, C. M. et al. The Cooperative International Neuromuscular Research Group Duchenne natural history study — a longitudinal investigation in the era of glucocorticoid therapy: design of protocol and the methods used. Muscle Nerve 48, 32–54 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 17, 251–267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 17, 347–361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 17, 445–455 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Humbertclaude, V. et al. Motor and respiratory heterogeneity in Duchenne patients: implication for clinical trials. Eur. J. Paediatr. Neurol. 16, 149–160 (2012).

    Article  PubMed  Google Scholar 

  11. Winnard, A. V., Mendell, J. R., Prior, T. W., Florence, J. & Burghes, A. H. Frameshift deletions of exons 3–7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am. J. Hum. Genet. 56, 158–166 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Bergen, J. C., Ginjaar, H. B., Niks, E. H., Aartsma-Rus, A. & Verschuuren, J. J. G. M. Prolonged ambulation in Duchenne patients with a mutation amenable to exon 44 skipping. J. Neuromuscul. Dis. 1, 91–94 (2014).

    Article  PubMed  Google Scholar 

  13. Hufton, M. & Roper, H. Variations in Duchenne muscular dystrophy course in a multi-ethnic UK population: potential influence of socio-economic factors. Dev. Med. Child Neurol. 59, 837–842 (2017).

    Article  PubMed  Google Scholar 

  14. Emery, A. E. H. The muscular dystrophies. Lancet 359, 687–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hoffman, E. P. Causes of clinical variability in Duchenne and Becker muscular dystrophies and implications for exon skipping therapies. Acta Myol. 39, 179–186 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ervasti, J. M. Costameres: the Achilles’ heel of Herculean muscle. J. Biol. Chem. 278, 13591–13594 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y.-W. et al. Early onset of inflammation and later involvement of TGF in Duchenne muscular dystrophy. Neurology 65, 826–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Dumont, N. A. et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 21, 1455–1463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brinkmeier, H. TRP channels in skeletal muscle: gene expression, function and implications for disease. Adv. Exp. Med. Biol. 704, 749–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Rando, T. A. Role of nitric oxide in the pathogenesis of muscular dystrophies: a ‘two hit’ hypothesis of the cause of muscle necrosis. Microsc. Res. Tech. 55, 223–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Consalvi, S. et al. Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. Mol. Med. 17, 457–465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2, 731–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Henricson, E. K. et al. The cooperative international neuromuscular research group Duchenne natural history study: glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures: CINRG DMD Natural History Study. Muscle Nerve 48, 55–67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazzone, E. S. et al. Timed rise from floor as a predictor of disease progression in Duchenne muscular dystrophy: an observational study. PLoS ONE 11, e0151445 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. McDonald, C. M. et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet 391, 451–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Scott, E. et al. Development of a functional assessment scale for ambulatory boys with Duchenne muscular dystrophy: development of a scale for Duchenne MD. Physiother. Res. Int. 17, 101–109 (2012).

    Article  PubMed  Google Scholar 

  27. Mazzone, E. et al. North Star Ambulatory assessment, 6-minute walk test and timed items in ambulant boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 20, 712–716 (2010).

    Article  PubMed  Google Scholar 

  28. McDonald, C. M. et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve 41, 500–510 (2010).

    Article  PubMed  Google Scholar 

  29. Mcdonald, C. M. et al. THE 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study: 6MWT and endpoints in DMD. Muscle Nerve 48, 343–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barnard, A. M. et al. MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 94, e897–e909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bello, L. et al. Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology 79, 159–162 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Forbes, S. C., Willcocks, R. J., Rooney, W. D., Walter, G. A. & Vandenborne, K. MRI quantifies neuromuscular disease progression. Lancet Neurol. 15, 26–28 (2016).

    Article  PubMed  Google Scholar 

  33. Rooney, W. D. et al. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 94, e1622–e1633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barnard, A. M. et al. Evaluating genetic modifiers of Duchenne muscular dystrophy disease progression using modeling and MRI. Neurology 99, e2406–e2416 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pane, M. et al. Reliability of the performance of upper limb assessment in Duchenne muscular dystrophy. Neuromuscul. Disord. 24, 201–206 (2014).

    Article  PubMed  Google Scholar 

  36. Ricotti, V. et al. Respiratory and upper limb function as outcome measures in ambulant and non-ambulant subjects with Duchenne muscular dystrophy: a prospective multicentre study. Neuromuscul. Disord. https://doi.org/10.1016/j.nmd.2019.02.002 (2019).

    Article  PubMed  Google Scholar 

  37. Mayhew, A. et al. Development of the performance of the upper limb module for Duchenne muscular dystrophy. Dev. Med. Child Neurol. 55, 1038–1045 (2013).

    Article  PubMed  Google Scholar 

  38. Brooke, M. H. et al. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve 4, 186–197 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. McDonald, C. M. et al. Longitudinal pulmonary function testing outcome measures in Duchenne muscular dystrophy: long-term natural history with and without glucocorticoids. Neuromuscul. Disord. 28, 897–909 (2018).

    Article  PubMed  Google Scholar 

  40. LoMauro, A. et al. Evolution of respiratory function in Duchenne muscular dystrophy from childhood to adulthood. Eur. Respir. J. 51, 1701418 (2018).

    Article  PubMed  Google Scholar 

  41. Bello, L. et al. Genetic modifiers of respiratory function in Duchenne muscular dystrophy. Ann. Clin. Transl. Neurol. 7, 786–798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vianello, A., Matarese, A. & Paladini, L. Ventilatory assistance. in Muscular Dystrophy: Causes and Management 381–391 (NOVA Publishers, 2013).

  43. Eagle, M. et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. 12, 926–929 (2002).

    Article  PubMed  Google Scholar 

  44. Nigro, G., Comi, L. I., Politano, L. & Bain, R. J. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int. J. Cardiol. 26, 271–277 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Puchalski, M. D. et al. Late gadolinium enhancement: precursor to cardiomyopathy in Duchenne muscular dystrophy? Int. J. Cardiovasc. Imaging 25, 57–63 (2009).

    Article  PubMed  Google Scholar 

  46. Jin, J. B., Carter, J. C., Sheehan, D. W. & Birnkrant, D. J. Cardiopulmonary phenotypic discordance is common in Duchenne muscular dystrophy. Pediatr. Pulmonol. 54, 186–193 (2019).

    PubMed  Google Scholar 

  47. Melacini, P. et al. Cardiac and respiratory involvement in advanced stage Duchenne muscular dystrophy. Neuromuscul. Disord. 6, 367–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Duboc, D. et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 45, 855–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Raman, S. V. et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 153–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Cotton, S., Voudouris, N. J. & Greenwood, K. M. Intelligence and Duchenne muscular dystrophy: full-scale, verbal, and performance intelligence quotients. Dev. Med. Child Neurol. 43, 497–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Doorenweerd, N. et al. Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy. Ann. Neurol. 76, 403–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Doorenweerd, N. et al. Resting-state functional MRI shows altered default-mode network functional connectivity in Duchenne muscular dystrophy patients. Brain Imaging Behav. https://doi.org/10.1007/s11682-020-00422-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ricotti, V. et al. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev. Med. Child Neurol. 58, 77–84 (2016).

    Article  PubMed  Google Scholar 

  54. Doorenweerd, N. et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 7, 12575 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bello, L., Pegoraro, E. & Hoffman, E. P. Genome-wide association studies in muscle physiology and disease. in Omics Approaches to Understanding Muscle Biology (eds Burniston, J. G. & Chen, Y.-W.) 9–30 (Springer, 2019).

  56. Pegoraro, E. et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 76, 219–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Hogarth, M. W. et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat. Commun. 8, 14143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heydemann, A. et al. Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J. Clin. Invest. 119, 3703–3712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vetrone, S. A. et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β. J. Clin. Investig. 119, 1583–1594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Capote, J. et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J. Cell Biol. 213, 275–288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giacopelli, F. et al. Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiol. Genomics 20, 87–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Jacobson, E. M., Concepcion, E., Oashi, T. & Tomer, Y. A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146, 2684–2691 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Flanigan, K. M. et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann. Neurol. 73, 481–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bello, L. et al. DMD genotypes and loss of ambulation in the CINRG Duchenne natural history study. Neurology 87, 401–409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang, R. T. et al. DMD genotype correlations from the Duchenne Registry: endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum. Mutat. 39, 1193–1202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bello, L. et al. Genetic modifiers of ambulation in the cooperative international neuromuscular research group Duchenne natural history study: ambulation in CINRG-DNHS. Ann. Neurol. 77, 684–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, M. et al. Genetic modifiers of Duchenne muscular dystrophy in Chinese patients. Front. Neurol. 11, 721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kosac, A. et al. LTBP4, SPP1, and CD40 variants: genetic modifiers of Duchenne muscular dystrophy analyzed in Serbian patients. Genes 13, 1385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson, S. F. & Griggs, R. C. Predicting the severity of Duchenne muscular dystrophy: implications for treatment. Neurology 76, 208–209 (2011).

    Article  PubMed  Google Scholar 

  70. Pascual-Morena, C. et al. Genetic modifiers and phenotype of Duchenne muscular dystrophy: a systematic review and meta-analysis. Pharmaceuticals 14, 798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Visscher, P. M. et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bello, L. et al. Association study of exon variants in the NF-κB and TGFβ pathways identifies CD40 as a modifier of Duchenne muscular dystrophy. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2016.08.023 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weiss, R. B. et al. Long-range genomic regulators of THBS1 and LTBP4 modify disease severity in duchenne muscular dystrophy. Ann. Neurol. 84, 234–245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flanigan, K. M. et al. A genome-wide association analysis of loss of ambulation in dystrophinopathy patients suggests multiple candidate modifiers of disease severity. Eur. J. Hum. Genet. https://doi.org/10.1038/s41431-023-01329-5 (2023).

    Article  PubMed  Google Scholar 

  75. Vieland, V. J., Seok, S.-C. & Stewart, W. C. L. A new linear regression-like residual for survival analysis, with application to genome wide association studies of time-to-event data. PLoS ONE 15, e0232300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vieland, V. J. & Seok, S.-C. The PPLD has advantages over conventional regression methods in application to moderately sized genome-wide association studies. PLoS ONE 16, e0257164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G.-J. B. & Den Dunnen, J. T. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34, 135–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kesari, A. et al. Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum. Mutat. 29, 728–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Bello, L. & Pegoraro, E. The ‘usual suspects’: genes for inflammation, fibrosis, regeneration, and muscle strength modify Duchenne muscular dystrophy. J. Clin. Med. 8, 649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mazzone, E. et al. Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology 77, 250–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Matthews, E., Brassington, R., Kuntzer, T., Jichi, F. & Manzur, A. Y. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003725.pub4 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sarepta Therapeutics, Inc. A Phase 3 Multinational, Randomized, Double-Blind, Placebo-Controlled Systemic Gene Delivery Study to Evaluate the Safety and Efficacy of SRP-9001 in Patients with Duchenne Muscular Dystrophy (EMBARK). https://clinicaltrials.gov/ct2/show/NCT05096221 (2022).

  83. Pane, M. et al. 6 Minute walk test in Duchenne MD patients with different mutations: 12 month changes. PLoS ONE 9, e83400 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dwianingsih, E. K. et al. A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. J. Hum. Genet. 59, 423–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Muntoni, F. et al. Deletions in the 5’ region of dystrophin and resulting phenotypes. J. Med. Genet. 31, 843–847 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gualandi, F. et al. Intronic breakpoint definition and transcription analysis in DMD/BMD patients with deletion/duplication at the 5’ mutation hot spot of the dystrophin gene. Gene 370, 26–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Zambon, A. A. et al. Phenotypic spectrum of dystrophinopathy due to Duchenne muscular dystrophy exon 2 duplications. Neurology 98, e730–e738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nigro, V. et al. Detection of a nonsense mutation in the dystrophin gene by multiple SSCP. Hum. Mol. Genet. 1, 517–520 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Koeks, Z. et al. Clinical outcomes in Duchenne muscular dystrophy: a study of 5345 patients from the TREAT-NMD DMD global database. J. Neuromuscul. Dis. 4, 293–306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Flanigan, K. M. et al. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Hum. Mutat. 32, 299–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zatz, M. et al. Milder course in Duchenne patients with nonsense mutations and no muscle dystrophin. Neuromuscul. Disord. 24, 986–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Torella, A. et al. The position of nonsense mutations can predict the phenotype severity: a survey on the DMD gene. PLoS ONE 15, e0237803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Flanigan, K. M. et al. DMD Trp3X nonsense mutation associated with a founder effect in North American families with mild Becker muscular dystrophy. Neuromuscul. Disord. 19, 743–748 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pagel, C. N., Wasgewatte Wijesinghe, D. K., Taghavi Esfandouni, N. & Mackie, E. J. Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle. J. Cell Commun. Signal. 8, 95–103 (2014).

    Article  PubMed  Google Scholar 

  95. Dadgar, S. et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J. Cell Biol. 207, 139–158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uaesoontrachoon, K. et al. Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro. Int. J. Biochem. Cell Biol. 40, 2303–2314 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Uaesoontrachoon, K., Wasgewatte Wijesinghe, D. K., Mackie, E. J. & Pagel, C. N. Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury. Dis. Model. Mech. 6, 197–205 (2013).

    CAS  PubMed  Google Scholar 

  98. van den Bergen, J. C. et al. Validation of genetic modifiers for Duchenne muscular dystrophy: a multicentre study assessing SPP1 and LTBP4 variants. J. Neurol. Neurosurg. Psychiatr. 86, 1060–1065 (2015).

    Article  Google Scholar 

  99. Hoffman, E. P. et al. Alterations in osteopontin modify muscle size in females in both humans and mice. Med. Sci. Sports Exerc. 45, 1060–1068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barfield, W. L. et al. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage. Hum. Mol. Genet. 23, 4043–4050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vianello, S. et al. SPP1 genotype and glucocorticoid treatment modify osteopontin expression in Duchenne muscular dystrophy cells. Hum. Mol. Genet. 26, 3342–3351 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Barp, A. et al. Genetic modifiers of Duchenne muscular dystrophy and dilated cardiomyopathy. PLoS ONE 10, e0141240 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sabbatini, D. et al. Genetic modifiers of upper limb function in Duchenne muscular dystrophy. J. Neurol. 269, 4884–4894 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosenberg, A. S. et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci. Transl. Med. 7, 299rv4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol. 51, 600–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. North, K. N. et al. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21, 353–354 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Schiaffino, S. Knockout of human muscle genes revealed by large scale whole-exome studies. Mol. Genet. Metab. 123, 411–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Clarkson, P. M. et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 99, 154–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Yang, N. et al. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 73, 627–631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moran, C. N. et al. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur. J. Hum. Genet. 15, 88–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Eynon, N. et al. ACTN3 R577X polymorphism and Israeli top-level athletes. Int. J. Sports Med. 30, 695–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. MacArthur, D. G. et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 17, 1076–1086 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Seto, J. T. et al. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Invest. 123, 4255–4263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. St-Pierre, S. J. G. et al. Glucocorticoid treatment alleviates dystrophic myofiber pathology by activation of the calcineurin/NF-AT pathway. FASEB J. 18, 1937–1939 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Nagai, M. et al. The ACTN3 577XX null genotype is associated with low left ventricular dilation-free survival rate in patients with Duchenne muscular dystrophy. J. Card. Fail. 26, 841–848 (2020).

    Article  PubMed  Google Scholar 

  116. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  117. Spitali, P. et al. TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. Eur. J. Hum. Genet. 28, 815–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 44, D536–D541 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Farmer, P. & Pugin, J. Beta-adrenergic agonists exert their ‘anti-inflammatory’ effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L675–L682 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Tang, W. et al. The Arg16Gly polymorphism of the beta2-adrenergic receptor and left ventricular systolic function. Am. J. Hypertens. 16, 945–951 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, G. et al. Association of haplotypes of beta2-adrenoceptor polymorphisms with lung function and airway responsiveness in a pediatric cohort. Pediatr. Pulmonol. 41, 1233–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Groenning, B. A. et al. Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J. Am. Coll. Cardiol. 36, 2072–2080 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Kelley, E. F. et al. Influence of β2 adrenergic receptor genotype on risk of nocturnal ventilation in patients with Duchenne muscular dystrophy. Respir. Res. 20, 221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kelley, E. F., Cross, T. J., McDonald, C. M., Hoffman, E. P. & Bello, L. Influence of β2 adrenergic receptor genotype on longitudinal measures of forced vital capacity in patients with Duchenne muscular dystrophy. Neuromuscul. Disord. 32, 150–158 (2022).

    Article  PubMed  Google Scholar 

  126. Hagg, A. et al. Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size. Sci. Rep. 6, 23042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, M. O., Na, S. I., Lee, M. Y., Heo, J. S. & Han, H. J. Epinephrine increases DNA synthesis via ERK1/2s through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse embryonic stem cells. J. Cell Biochem. 104, 1407–1420 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Kelley, E. F. et al. Influence of β1 adrenergic receptor genotype on longitudinal measures of left ventricular ejection fraction and responsiveness to ß-blocker therapy in patients with Duchenne muscular dystrophy. Clin. Med. Insights Cardiol. 16, 11795468221116838 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Johnson, J. A. et al. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin. Pharmacol. Ther. 74, 44–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Liggett, S. B. et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bello, L. et al. Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne natural history study. Neurology 85, 1048–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Research Center for Drug Evaluations. Duchenne muscular dystrophy and related dystrophinopathies: developing drugs for treatment guidance for industry. US Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/duchenne-muscular-dystrophy-and-related-dystrophinopathies-developing-drugs-treatment-guidance (2020).

  133. Treat-NMD Neuromuscular Network. Immune response to micro-dystrophin. Gene Therapy. https://treat-nmd.org/resources-support/research-overview/dmd-research-overview/gene-therapy/.

  134. Muntoni, F. et al. DMD genotypes and motor function in Duchenne muscular dystrophy: a multi-institution meta-analysis with implications for clinical trials. Neurology https://doi.org/10.1212/WNL.0000000000201626 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Demonbreun, A. R. et al. Anti-latent TGFβ binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Sci. Transl. Med. 13, eabf0376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.P. and L.B. are part of the European Reference Network (ERN) for neuromuscular diseases and wish to acknowledge funding from the Cariparo foundation (Progetti di Eccellenza 2017).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elena Pegoraro.

Ethics declarations

Competing interests

L.B. reports honoraria (speaker, advisory boards) from PTC Therapeutics, Sarepta Therapeutics, Edgewise Therapeutics, Epirium Bio and research funding from PTC Therapeutics. E.P.H. reports salary support from Reveragen and AGADA Biosciences. E.P. reports personal fees from Sarepta, grants and non-financial support from Santhera, personal fees and non-financial support from PTC Pharmaceuticals, non-financial support from Genzyme and personal fees from Roche, outside the submitted work.

Peer review

Peer review information

Nature Reviews Neurology thanks Marianela Schiava, who co-reviewed with Michela Guglieri, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

L.B., E.P.H. and E.P. carried out independent literature searches using PubMed for published articles on genetic modifiers in Duchenne muscular dystrophy, with the following keywords: ‘Duchenne AND genetic modifiers’, ‘Duchenne AND genotype’. All results describing findings from human patients were considered for inclusion in the article. Abstracts were not considered. No time period restrictions or language restrictions utilized in the search criteria.

Related links

BGee database: https://bgee.org/

GTEx database: https://gtexportal.org/home/

Glossary

Allelic heterogeneity

When patients with a single gene disorder show multiple different types of mutations in the specific gene involved in the disorder.

Cis-acting genetic modifiers

Mutations in disease-causing genes that are expected to give rise to a ‘typical’ phenotype for the disease of interest (for example, out-of-frame mutations in the DMD gene expected to give rise to a severe DMD phenotype), but that, in some cases, is associated with milder or more severe phenotypes, because of complex molecular mechanisms (for example, out-of-frame deletion of exon 45 of the DMD gene allowing low-level expression of internally deleted dystrophin owing to endogenous skipping of exon 44).

GWASs

Genome-wide association studies, in which millions of genetic polymorphisms throughout the human genome are studied for association with a human trait (such as clinical severity in DMD).

Non-null (leaky)

The protein product of the mutated gene is detectable, often at low levels, and with only partly retained biochemical function.

Null

The protein product of the mutated gene is not detectable.

Trans-acting genetic modifiers

Genetic variations in genes remote from a disease-causing gene, which typically show a high degree of polymorphism in the general population and significantly alter the phenotypic manifestations of the disease, by affecting molecular pathways in the disease pathophysiology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, L., Hoffman, E.P. & Pegoraro, E. Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy?. Nat Rev Neurol 19, 410–423 (2023). https://doi.org/10.1038/s41582-023-00823-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00823-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research