Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neural cell state shifts and fate loss in ageing and age-related diseases

Abstract

Most age-related neurodegenerative diseases remain incurable owing to an incomplete understanding of the disease mechanisms. Several environmental and genetic factors contribute to disease onset, with human biological ageing being the primary risk factor. In response to acute cellular damage and external stimuli, somatic cells undergo state shifts characterized by temporal changes in their structure and function that increase their resilience, repair cellular damage, and lead to their mobilization to counteract the pathology. This basic cell biological principle also applies to human brain cells, including mature neurons that upregulate developmental features such as cell cycle markers or glycolytic reprogramming in response to stress. Although such temporary state shifts are required to sustain the function and resilience of the young human brain, excessive state shifts in the aged brain might result in terminal fate loss of neurons and glia, characterized by a permanent change in cell identity. Here, we offer a new perspective on the roles of cell states in sustaining health and counteracting disease, and we examine how cellular ageing might set the stage for pathological fate loss and neurodegeneration. A better understanding of neuronal state and fate shifts might provide the means for a controlled manipulation of cell fate to promote brain resilience and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of cell states and fates in the brain.
Fig. 2: Damage-induced state shifts in young neurons and fate loss in old neurons.
Fig. 3: Pluripotency reprogramming and partial reprogramming and rejuvenation for neurons.

Similar content being viewed by others

References

  1. Zhao, N. et al. Alzheimer’s risk factors age, APOE genotype, and sex drive distinct molecular pathways. Neuron 106, 727–742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal. Transduct. Target. Ther. 7, 391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  5. Berben, L., Floris, G., Wildiers, H. & Hatse, S. Cancer and aging: two tightly interconnected biological processes. Cancers 13, 1400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  PubMed  Google Scholar 

  7. Calabrese, V., Butterfield, D. A. & Stella, A. M. G. in Handbook of Neurochemistry and Molecular Neurobiology (eds Lajtha, A., Perez-Polo, J. R. & Rossner, S.) 103–146 (Springer, 2008).

  8. Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes axonal injury. Neuron 108, 128–144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 758–770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suyama, S. et al. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. Sci. Rep. 6, 30796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bano-Otalora, B. et al. Daily electrical activity in the master circadian clock of a diurnal mammal. Elife 10, e68179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poplawski, G. H. D. et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 581, 77–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Guo, X.-J., Yang, D. & Zhang, X.-Y. Epigenetics recording varied environment and complex cell events represents the origin of cellular aging. J. Zhejiang Univ. Sci. B 20, 550–562 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang, J.-H. et al. Erosion of the epigenetic landscape and loss of cellular identity as a cause of aging in mammals. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/808642v1 (2019).

  17. Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal. Transduct. Target. Ther. 7, 374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y. & Tollefsbol, T. O. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics 8, 1637–1651 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, M., Hazelton, W. D., Luebeck, G. E. & Grady, W. M. Epigenetic aging: more than just a clock when it comes to cancer. Cancer Res. 80, 367–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Belmonte-Mateos, C. & Pujades, C. From cell states to cell fates: how cell proliferation and neuronal differentiation are coordinated during embryonic development. Front. Neurosci. 15, 1752 (2022).

    Article  Google Scholar 

  21. Clevers, H. et al. What is your conceptual definition of “cell type” in the context of a mature organism? Cell Syst. 4, 255–259 (2017).

    Article  Google Scholar 

  22. Morris, S. A., Klein, A. & Treutlein, B. The evolving concept of cell identity in the single cell era. Development 146, dev169748 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Viana, M. P. et al. Integrated intracellular organization and its variations in human iPS cells. Nature 613, 345–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brandão, A. S. et al. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. Elife 11, e76987 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Urbán, N. & Cheung, T. H. Stem cell quiescence: the challenging path to activation. Development 148, dev165084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benninger, R. K. P. & Hodson, D. J. New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67, 537–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eban-Rothschild, A., Appelbaum, L. & de Lecea, L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacol 43, 937–952 (2017).

    Article  Google Scholar 

  28. Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kole, A. J., Annis, R. P. & Deshmukh, M. Mature neurons: equipped for survival. Cell Death Dis. 4, e689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benn, S. C. & Woolf, C. J. Adult neuron survival strategies – slamming on the brakes. Nat. Rev. Neurosci. 5, 686–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Annis, R. P. et al. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes. FEBS J. 283, 4569–4582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geloso, M. C. & D’Ambrosi, N. Microglial pruning: relevance for synaptic dysfunction in multiple sclerosis and related experimental models. Cells 10, 686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lauro, C. & Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol. 11, 493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou, J. et al. Heterogeneity analysis of astrocytes following spinal cord injury at single‐cell resolution. FASEB J. 36, e22442 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 11, 6129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Kamermans, A., Planting, K. E., Jalink, K., van Horssen, J. & de Vries, H. E. Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 67, 68–77 (2019).

    Article  PubMed  Google Scholar 

  42. Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  44. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152, 340–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, J.-Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujimaki, K. et al. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proc. Natl Acad. Sci. USA 116, 22624–22634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, X.-L., Ding, J. & Meng, L.-H. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol. Sin. 39, 1553–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  PubMed  Google Scholar 

  53. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sapieha, P. & Mallette, F. A. Cellular senescence in postmitotic cells: beyond growth arrest. Trends Cell Biol. 28, 595–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Sah, E. et al. The cellular senescence stress response in post-mitotic brain cells: cell survival at the expense of tissue degeneration. Life 11, 229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Riessland, M. et al. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25, 514–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dehkordi, S. K. et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat. Aging 1, 1107–1116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwab, N., Leung, E. & Hazrati, L.-N. Cellular senescence in traumatic brain injury: evidence and perspectives. Front. Aging Neurosci. 13, 742632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paramos-de-Carvalho, D. et al. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep. 36, 109334 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29, 1637–1652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moreno-Blas, D. et al. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging 11, 6175–6198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chow, H.-M. et al. Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat. Neurosci. 22, 1806–1819 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  CAS  PubMed  Google Scholar 

  66. McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J. Nutr. 10, 63–79 (1935).

    Article  CAS  Google Scholar 

  67. Johnson, T. E. & Wood, W. B. Genetic analysis of life-span in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 79, 6603–6607 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zainabadi, K. A brief history of modern aging research. Exp. Gerontol. 104, 35–42 (2018).

    Article  PubMed  Google Scholar 

  69. Macchiarini, F., Miller, R. A., Strong, R., Rosenthal, N. & Harrison, D. E. in Handbook of the Biology of Aging 9th edn (eds Musi, N., Hornsby, P. J.) 219–235 (Elsevier, 2021).

  70. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Kennedy, B. K., Austriaco, N. R., Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Teschendorff, A. E., West, J. & Beck, S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum. Mol. Genet. 22, R7–R15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng, S. C., Widschwendter, M. & Teschendorff, A. E. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 8, 705–719 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Blanco, E., González-Ramírez, M., Alcaine-Colet, A., Aranda, S. & Di Croce, L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 36, 118–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, Y. et al. A programmable fate decision landscape underlies single-cell aging in yeast. Science 369, 325–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. White, M. C. et al. Age and cancer risk: a potentially modifiable relationship. Am. J. Prev. Med. 46, S7–S15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cao, Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci. 7, 61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Friedmann-Morvinski, D. & Verma, I. M. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 15, 244–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Traxler, L. et al. Metabolism navigates neural cell fate in development, aging and neurodegeneration. Dis. Model. Mech. 14, dmm048993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  PubMed  Google Scholar 

  85. Vastenhouw, N. L. & Schier, A. F. Bivalent histone modifications in early embryogenesis. Curr. Opin. Cell Biol. 24, 374–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bernhart, S. H. et al. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci. Rep. 6, 37393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luth, H.-J. et al. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex 15, 211–220 (2004).

    Article  PubMed  Google Scholar 

  89. Duquette, A., Pernègre, C., Veilleux Carpentier, A. & Leclerc, N. Similarities and differences in the pattern of tau hyperphosphorylation in physiological and pathological conditions: impacts on the elaboration of therapies to prevent tau pathology. Front. Neurol. 11, 1823 (2021).

    Article  Google Scholar 

  90. Hefti, M. M. et al. Tau phosphorylation and aggregation in the developing human brain. J. Neuropathol. Exp. Neurol. 78, 930–938 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Mertens, J. et al. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell 28, 1533–1548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Traxler, L. et al. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell Metab. 34, 1248–1263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gu, N. et al. DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nat. Plants 6, 1098–1105 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Wagner, I. et al. Serum proteases potentiate BMP-Induced cell cycle re-entry of dedifferentiating muscle cells during newt limb regeneration. Dev. Cell 40, 608–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Oliva‐Vilarnau, N., Vorrink, S. U., Ingelman‐Sundberg, M. & Lauschke, V. M. A 3D cell culture model identifies Wnt/β‐catenin mediated inhibition of p53 as a critical step during human hepatocyte regeneration. Adv. Sci. 7, 2000248 (2020).

    Article  Google Scholar 

  97. Van Haele, M., Snoeck, J. & Roskams, T. Human liver regeneration: an etiology dependent process. Int. J. Mol. Sci. 20, 2332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Brilli Skvarca, L. et al. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. Dis. Model. Mech. 12, dmm037390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morrisey, E. E. Rewind to recover: dedifferentiation after cardiac injury. Cell Stem Cell 9, 387–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meyer, A. R., Brown, M. E., Mcgrath, P. S. & Dempsey, P. J. Injury-induced cellular plasticity drives intestinal regeneration. Cell. Mol. Gastroenterol. Hepatol. 13, 843–856 (2022).

    Article  PubMed  Google Scholar 

  101. Yao, Y. & Wang, C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. npj Regen. Med. 5, 14 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Raya, Á. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl Acad. Sci. USA 100, 11889–11895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jhamb, D. et al. Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinforma. 12, 80 (2011).

    Article  Google Scholar 

  105. Hayashi, S. et al. Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration. Dev. Biol. 406, 271–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Palla, A. R. et al. Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nat. Commun. 13, 1439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Carlson, M. E. & Conboy, I. M. Loss of stem cell regenerative capacity within aged niches. Aging Cell 6, 371–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Tower, R. J. et al. Spatial transcriptomics reveals metabolic changes underly age-dependent declines in digit regeneration. Elife 11, e71542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barrio-Alonso, E., Hernández-Vivanco, A., Walton, C. C., Perea, G. & Frade, J. M. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci. Rep. 8, 14316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Caldwell, A. B. et al. Dedifferentiation and neuronal repression define familial Alzheimer’s disease. Sci. Adv. 6, eaba5933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. Elife 8, e45114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ippati, S. et al. Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proc. Natl Acad. Sci. USA 118, e2011876118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hong, X.-P. et al. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus 20, 1339–1349 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Kent, S. A., Spires-Jones, T. L. & Durrant, C. S. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 140, 417–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, C. et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal. Transduct. Target. Ther. 7, 65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ho, R. et al. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat. Neurosci. 19, 1256–1267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. von Schimmelmann, M. et al. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat. Neurosci. 19, 1321–1330 (2016).

    Article  Google Scholar 

  119. Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim. Biophys. Acta. 1772, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, Y., Geldmacher, D. S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 21, 2661–2668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Busser, J., Geldmacher, D. S. & Herrup, K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J. Neurosci. 18, 2801–2807 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wilkens, R. et al. Diverse maturity-dependent and complementary anti-apoptotic brakes safeguard human iPSC-derived neurons from cell death. Cell Death Dis. 13, 887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wirth, M. et al. Alzheimer’s disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid in cognitively normal older individuals. J. Neurosci. 33, 5553–5563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Herrup, K. Reimagining Alzheimer’s disease – an age-based hypothesis. J. Neurosci. 30, 16755–16762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. National Cancer Institute. Age and cancer risk. National Cancer Institute https://www.cancer.gov/about-cancer/causes-prevention/risk/age (2021).

  126. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Lo Sardo, V. et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35, 69–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11, 268–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chondronasiou, D. et al. Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roux, A. E. et al. Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst. 13, 574–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Coyne, A. N. & Rothstein, J. D. Nuclear pore complexes – a doorway to neural injury in neurodegeneration. Nat. Rev. Neurol. 18, 348–362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Anderson, S. R. et al. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. Elife 11, e76564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Roy, N. & Hebrok, M. Regulation of cellular identity in cancer. Dev. Cell 35, 674–684 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andrés Blanco, M. et al. Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell Rep. 37, 109967 (2021).

    Article  PubMed  Google Scholar 

  143. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Marchetto, M. C. N. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mertens, J., Marchetto, M. C., Bardy, C. & Gage, F. H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat. Rev. Neurosci. 17, 424–437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Frobel, J. et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep. 3, 414–422 (2014).

    Article  CAS  Google Scholar 

  147. HD iPSC Consortium. Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11, 264–278 (2012).

    Article  Google Scholar 

  148. Schafer, S. T. et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat. Neurosci. 22, 243–255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, Y. et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 23, 2550–2558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Victor, M. B. et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat. Neurosci. 21, 341–352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Capano, L. S. et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Stem Cell 29, 918–932 (2022).

    CAS  Google Scholar 

  152. Luo, C. et al. Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. Elife 8, e40197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ocampo, S. Schäfer, P. Verstreken, B. De Strooper, I. Nitulescu, M. Wang and L. Karbacher for helpful discussions. The work of the authors is funded by the BrightFocus Foundation (A2019562S, A2022024F), the European Union (grants ERC-STG-2019-852086 and H2020-MSCA-IF-2017-797205), the Alzheimer Association (grant AARG-22-9723093), the Chen Foundation, the Austrian Science Fund (grant FWF-I5057), Clene Nanomedicine, the US National Academy of Medicine (NAM), the Michael J. Fox Foundation (MJFF), The National Institute on Aging (R01 grants AG05611, AG057706, AG072502, and AG056306, the K99-AG056679 and the P30-AG062429), the Paul G. Allen Frontiers Group (grant #19PABHI34610000), the Grace Foundation, the JPB Foundation, Annette C. Merle-Smith, Lynn and Edward Streim, the Ray and Dagmar Dolby Family Fund, the Milky Way Research Foundation, the Paul G. Allen Family Foundation, Stichting ASC Academy, California Institute for Regenerative Medicine (CIRM) (grant RT2–01927), the Austrian Marshall Plan Foundation, the Theodor Koerner Fonds, L’Oreal Austria/OeUK/OeAW Stipend, and the University of California, San Diego (UCSD).

Author information

Authors and Affiliations

Authors

Contributions

F.H.G., L.T., R.L., J.R.H., J.R.J, and J.M. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. F.H.G., L.T., R.L., J.R.H., J.R.J. and J.M. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jerome Mertens or Fred H. Gage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks M. Orr, A. Prigione and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bivalent promoter chromatin marks

Activating and repressing histone modifications, such as histone 3 lysine 4 trimethylated (H3K4me3) and histone 3 lysine 27 trimethylated (H3K27me3).

Cellular senescence

An irreversible damage response to intrinsic or extrinsic stimuli in normal cells, which results in diverse phenotypic alterations including cell cycle arrest, an inflammatory secretome, metabolic alterations and epigenetic reprograming.

Epigenetic drift

Global stochastic deregulation of epigenetic patterns in response to environmental factors and ageing.

Health span

The number of years lived when a person is healthy and free from disease.

Metabolic drift

A change in preference for a set of specific metabolic pathways.

Nuclear pore

A protein-lined channel in the nuclear envelope that regulates the transport of molecules, such as transcription factors, into and out of the nucleus.

Proliferative arrest

The cessation of a cell proceeding through the cell cycle and dividing.

Transcriptional noise

Variation in gene expression and transcriptional activity occurring among an otherwise homogeneous isogenic population of cells.

Warburg effect

A metabolic switch from oxidative metabolism to aerobic glycolysis, first described in cancer cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traxler, L., Lucciola, R., Herdy, J.R. et al. Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 19, 434–443 (2023). https://doi.org/10.1038/s41582-023-00815-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00815-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing