Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms underlying phenotypic variation in neurogenetic disorders

Abstract

Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia–parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus–dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.

Key points

  • Studies in large data sets are providing important insights into the correlations between pathogenic gene variation and clinical phenotypes in people with neurogenetic disorders.

  • These analyses have shown that different genetic variants can give rise to similar phenotypes and, conversely, a single pathogenic variant might be associated with multiple phenotypes.

  • The mechanisms underlying phenotypic variations in neurogenetic disorders are beginning to be elucidated.

  • Environmental factors, sometimes interacting with genetic factors, can increase or reduce the risk of disease.

  • Genetic factors that are known to modify phenotypes include mechanisms intrinsic to the pathogenic variant, such as dynamic mutations, and modifier genes that influence the function of proteins encoded by pathogenic variants.

  • Epigenetic factors, such as DNA methylation, chromatin remodelling, histone modifications and non-coding RNAs, might help to explain diverse presentations among family members with the same pathogenic variant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. da Costa, B. L., Levi, S. R., Eulau, E., Tsai, Y. T. & Quinn, P. M. J. Prime editing for inherited retinal diseases. Front. Genome Ed. 3, 775330 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gannamani, R., van der Veen, S., van Egmond, M., de Koning, T. J. & Tijssen, M. A. J. Challenges in clinicogenetic correlations: one phenotype — many genes. Mov. Disord. Clin. Pract. 8, 311–321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Indelicato, E. & Boesch, S. From genotype to phenotype: expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Front. Neurol. 12, 639994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Uchitel, O. D., Gonzalez Inchauspe, C. & Di Guilmi, M. N. Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models. Biophys. Rev. 6, 15–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Spacey, S. D., Hildebrand, M. E., Materek, L. A., Bird, T. D. & Snutch, T. P. Functional implications of a novel EA2 mutation in the P/Q-type calcium channel. Ann. Neurol. 56, 213–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Du, X. et al. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 154, 118–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balck, A. et al. Genotype-phenotype relations in primary familial brain calcification: systematic MDSGene review. Mov. Disord. 36, 2468–2480 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Pfeffer, G. et al. Multisystem proteinopathy due to VCP mutations: a review of clinical heterogeneity and genetic diagnosis. Genes 13, 963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimonis, V. E., Fulchiero, E., Vesa, J. & Watts, G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim. Biophys. Acta 1782, 744–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Berger, J., Molzer, B., Fae, I. & Bernheimer, H. X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem. Biophys. Res. Commun. 205, 1638–1643 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Lill, C. M. et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov. Disord. 31, 607–609 (2016).

    Article  PubMed  Google Scholar 

  13. Lange, L. M. et al. Genotype-phenotype relations for isolated dystonia genes: MDSGene systematic review. Mov. Disord. 36, 1086–1103 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Hickman, R. A., O’Shea, S. A., Mehler, M. F. & Chung, W. K. Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat. Rev. Neurol. 18, 117–124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Magrinelli, F., Balint, B. & Bhatia, K. P. Challenges in clinicogenetic correlations: one gene — many phenotypes. Mov. Disord. Clin. Pract. 8, 299–310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Forder, A. A. A brief history of infection control — past and present. S. Afr. Med. J. 97, 1161–1164 (2007).

    CAS  PubMed  Google Scholar 

  17. Syeda, T. & Cannon, J. R. Environmental exposures and the etiopathogenesis of Alzheimer’s disease: the potential role of BACE1 as a critical neurotoxic target. J. Biochem. Mol. Toxicol. 35, e22694 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Peng, B. et al. Role of alcohol drinking in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Int. J. Mol. Sci. 21, 2316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clark, K., Leung, Y. Y., Lee, W. P., Voight, B. & Wang, L. S. Polygenic risk scores in Alzheimer’s disease genetics: methodology, applications, inclusion, and diversity. J. Alzheimers Dis. 89, 1–12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanner, C. M. Advances in environmental epidemiology. Mov. Disord. 25 (Suppl. 1), S58–S62 (2010).

    Article  PubMed  Google Scholar 

  22. Chambers-Richards, T., Su, Y., Chireh, B. & D’Arcy, C. Exposure to toxic occupations and their association with Parkinson’s disease: a systematic review with meta-analysis. Rev. Environ. Health 38, 65–83 (2021).

    Article  PubMed  Google Scholar 

  23. Domenighetti, C. et al. Dairy intake and Parkinson’s disease: a Mendelian randomization study. Mov. Disord. 37, 857–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Chittoor-Vinod, V. G., Nichols, R. J. & Schule, B. Genetic and environmental factors influence the pleomorphy of LRRK2 parkinsonism. Int. J. Mol. Sci. 22, 1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Spronsen, F. J. et al. Phenylketonuria. Nat. Rev. Dis. Primers 7, 36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaulent, P. et al. Neurological manifestations in adults with phenylketonuria: new cases and review of the literature. J. Neurol. 267, 531–542 (2020).

    Article  PubMed  Google Scholar 

  27. Bauman, M. L. & Kemper, T. L. Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol. 58, 55–63 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Zeng, W. Q. et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am. J. Hum. Genet. 77, 16–26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajgopal, A., Edmondnson, A., Goldman, I. D. & Zhao, R. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim. Biophys. Acta 1537, 175–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Alfadhel, M. & Tabarki, B. SLC19A3 gene defects sorting the phenotype and acronyms: review. Neuropediatrics 49, 83–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Ozand, P. T. et al. Biotin-responsive basal ganglia disease: a novel entity. Brain 121, 1267–1279 (1998).

    Article  PubMed  Google Scholar 

  32. Wang, J. et al. Report of the largest Chinese cohort with SLC19A3 gene defect and literature review. Front. Genet. 12, 683255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alfadhel, M. et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J. Rare Dis. 8, 83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schanzer, A. et al. Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease. Brain Pathol. 24, 270–279 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alabdulqader, M. A. & Al Hajjaj, S. Biotin-thiamine-responsive basal ganglia disease: case report and follow-up of a patient with poor compliance. Child Neurol. Open 5, 2329048X18773218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jinnah, H. A. et al. Treatable inherited rare movement disorders. Mov. Disord. 33, 21–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Ilg, W. et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13, 248–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hommersom, M. P. et al. The complexities of CACNA1A in clinical neurogenetics. J. Neurol. 269, 3094–3108 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Stam, A. H. et al. Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J. Neurol. Neurosurg. Psychiatry 80, 1125–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Heinzen, E. L. et al. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 13, 503–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murata, K. et al. Region- and neuronal-subtype-specific expression of Na,K-ATPase alpha and beta subunit isoforms in the mouse brain. J. Comp. Neurol. 528, 2654–2678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prasuhn, J. et al. In vivo brain sodium disequilibrium in ATP1A3-related rapid-onset dystonia-parkinsonism. Mov. Disord. 37, 877–879 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Arystarkhova, E., Ozelius, L. J., Brashear, A. & Sweadner, K. J. Misfolding, altered membrane distributions, and the unfolded protein response contribute to pathogenicity differences in Na,K-ATPase ATP1A3 mutations. J. Biol. Chem. 296, 100019 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Dard, R. et al. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev. Med. Child Neurol. 57, 1183–1186 (2015).

    Article  PubMed  Google Scholar 

  45. Vetro, A. et al. ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria. Brain 144, 1435–1450 (2021).

    Article  PubMed  Google Scholar 

  46. Prange, L. et al. D-DEMO, a distinct phenotype caused by ATP1A3 mutations. Neurol. Genet. 6, e466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Knaap, M. S. et al. A new leukoencephalopathy with vanishing white matter. Neurology 48, 845–855 (1997).

    Article  PubMed  Google Scholar 

  48. Hamilton, E. M. C. et al. Natural history of vanishing white matter. Ann. Neurol. 84, 274–288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leegwater, P. A. et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat. Genet. 29, 383–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Damon-Perriere, N. et al. Intra-familial phenotypic heterogeneity in adult onset vanishing white matter disease. Clin. Neurol. Neurosurg. 110, 1068–1071 (2008).

    Article  PubMed  Google Scholar 

  51. van der Lei, H. D. et al. Characteristics of early MRI in children and adolescents with vanishing white matter. Neuropediatrics 43, 22–26 (2012).

    Article  PubMed  Google Scholar 

  52. Stellingwerff, M. D., van de Wiel, M. A. & van der Knaap, M. S. Radiological correlates of episodes of acute decline in the leukodystrophy vanishing white matter. Neuroradiology 65, 855–863 (2023).

    Article  PubMed  Google Scholar 

  53. Moon, S. L. & Parker, R. EIF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response. RNA 24, 841–852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keefe, M. D. et al. Vanishing white matter disease expression of truncated EIF2B5 activates induced stress response. eLife 9, e56319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong, Y. L. et al. The small molecule ISRIB rescues the stability and activity of vanishing white matter disease eIF2B mutant complexes. eLife 7, e32733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martino, D. et al. Extragenetic factors and clinical penetrance of DYT1 dystonia: an exploratory study. J. Neurol. 260, 1081–1086 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Natasa, C., Petrovic, I., Klein, C. & Kostic, V. S. Delayed-onset dystonia due to perinatal asphyxia: a prospective study. Mov. Disord. 22, 2426–2429 (2007).

    Article  Google Scholar 

  58. Knorr, S. et al. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol. Dis. 154, 105337 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Ellerby, L. M. Repeat expansion disorders: mechanisms and therapeutics. Neurotherapeutics 16, 924–927 (2019).

    Article  PubMed  Google Scholar 

  60. Mosbach, V., Poggi, L. & Richard, G. F. Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr. Genet. 65, 17–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. McColgan, P. & Tabrizi, S. J. Huntington’s disease: a clinical review. Eur. J. Neurol. 25, 24–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. No authors listed. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 26, 971–983 (1993).

    Google Scholar 

  63. Nicolas, G. et al. Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am. J. Med. Genet. A 155A, 815–818 (2011).

    Article  PubMed  Google Scholar 

  64. Lefaucheur, R. et al. Chorea in an 83-year-old woman: don’t forget Huntington’s disease. J. Am. Geriatr. Soc. 60, 983–984 (2012).

    Article  PubMed  Google Scholar 

  65. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Jiang, H. et al. Huntingtin gene CAG repeat numbers in Chinese patients with Huntington’s disease and controls. Eur. J. Neurol. 21, 637–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Bean, L. & Bayrak-Toydemir, P. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet. Med. 16, e2 (2014).

    Article  PubMed  Google Scholar 

  68. Bunting, E. L., Hamilton, J. & Tabrizi, S. J. Polyglutamine diseases. Curr. Opin. Neurobiol. 72, 39–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Monckton, D. G. The contribution of somatic expansion of the CAG repeat to symptomatic development in Huntington’s disease: a historical perspective. J. Huntingt. Dis. 10, 7–33 (2021).

    Article  CAS  Google Scholar 

  70. Chong, S. S. et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum. Mol. Genet. 6, 301–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Djousse, L. et al. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am. J. Med. Genet. A 119A, 279–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, D. et al. Motor onset and diagnosis in Huntington disease using the diagnostic confidence level. J. Neurol. 262, 2691–2698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Consortium, G. H. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178, 887–900 (2019).

    Article  Google Scholar 

  74. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell. Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Tabrizi, S. J., Ghosh, R. & Leavitt, B. R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 101, 801–819 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Tabrizi, S. J. et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities. Lancet Neurol. 21, 645–658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Helm, J., Schols, L. & Hauser, S. Towards personalized allele-specific antisense oligonucleotide therapies for toxic gain-of-function neurodegenerative diseases. Pharmaceutics 14, 1708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arning, L. & Epplen, J. T. Genetic modifiers in Huntington’s disease: fiction or fact? Neurogenetics 14, 171–172 (2013).

    Article  PubMed  Google Scholar 

  80. Hong, E. P. et al. Huntington’s disease pathogenesis: two sequential components. J. Huntingt. Dis. 10, 35–51 (2021).

    Article  CAS  Google Scholar 

  81. Moss, D. J. H. et al. Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol. 16, 701–711 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Flower, M. et al. MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain 142, 1876–1886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Di Lazzaro, G. et al. X-linked parkinsonism: phenotypic and genetic heterogeneity. Mov. Disord. 36, 1511–1525 (2021).

    Article  PubMed  Google Scholar 

  84. Laabs, B. H. et al. Identifying genetic modifiers of age-associated penetrance in X-linked dystonia-parkinsonism. Nat. Commun. 12, 3216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elsayed, L. E. O., Eltazi, I. Z., Ahmed, A. E. & Stevanin, G. Insights into clinical, genetic, and pathological aspects of hereditary spastic paraplegias: a comprehensive overview. Front. Mol. Biosci. 8, 690899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. von Fellenberg, J. et al. Clinical and molecular genetic analysis of 4 Swiss families with the pure form of hereditary spastic spinal paralysis. Schweiz. Med. Wochenschr. 128, 1043–1050 (1998).

    Google Scholar 

  87. Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet. 23, 296–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Newton, T. et al. Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 141, 1286–1299 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ernst, P. & Vakoc, C. R. WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief. Funct. Genomics 11, 217–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Piras, I. S. et al. Huntingtin gene CAG repeat size affects autism risk: family-based and case-control association study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 183, 341–351 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Tezenas du Montcel, S. et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137, 2444–2455 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ryan, N. S. et al. Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer’s disease: a case series. Lancet Neurol. 15, 1326–1335 (2016).

    Article  PubMed  Google Scholar 

  93. Sepulveda-Falla, D. et al. A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease. Acta Neuropathol. 141, 217–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Weissbach, A. et al. Relationship of genotype, phenotype, and treatment in dopa-responsive dystonia: MDSGene review. Mov. Disord. 37, 237–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Furukawa, Y. et al. Gender-related penetrance and de novo GTP-cyclohydrolase I gene mutations in dopa-responsive dystonia. Neurology 50, 1015–1020 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Shimoji, M., Hirayama, K., Hyland, K. & Kapatos, G. GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J. Neurochem. 72, 757–764 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Erfanian Omidvar, M. et al. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J. Neurol. 268, 2065–2082 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Gan, S. R. et al. The impact of ethnicity on the clinical presentations of spinocerebellar ataxia type 3. Parkinsonism Relat. Disord. 72, 37–43 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hentati, F. et al. LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology 83, 568–569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lacal, I. & Ventura, R. Epigenetic inheritance: concepts, mechanisms and perspectives. Front. Mol. Neurosci. 11, 292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cazurro-Gutierrez, A. et al. ε-Sarcoglycan: unraveling the myoclonus-dystonia gene. Mol. Neurobiol. 58, 3938–3952 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Grabowski, M. et al. The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. Eur. J. Hum. Genet. 11, 138–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Piras, G. et al. Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol. Cell Biol. 20, 3308–3315 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hyeon, J. W., Kim, A. H. & Yano, H. Epigenetic regulation in Huntington’s disease. Neurochem. Int. 148, 105074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu, A. T. et al. DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nat. Commun. 11, 4529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Burgunder.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks A. C. Bruni, who co-reviewed with F. Bruno; F. Magrinelli; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgunder, JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 19, 363–370 (2023). https://doi.org/10.1038/s41582-023-00811-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00811-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing