Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional brain networks in the evaluation of patients with neurodegenerative disorders

A Publisher Correction to this article was published on 19 May 2023

This article has been updated

Abstract

Network analytical tools are increasingly being applied to brain imaging maps of resting metabolic activity (PET) or blood oxygenation-dependent signals (functional MRI) to characterize the abnormal neural circuitry that underlies brain diseases. This approach is particularly valuable for the study of neurodegenerative disorders, which are characterized by stereotyped spread of pathology along discrete neural pathways. Identification and validation of disease-specific brain networks facilitate the quantitative assessment of pathway changes over time and during the course of treatment. Network abnormalities can often be identified before symptom onset and can be used to track disease progression even in the preclinical period. Likewise, network activity can be modulated by treatment and might therefore be used as a marker of efficacy in clinical trials. Finally, early differential diagnosis can be achieved by simultaneously measuring the activity levels of multiple disease networks in an individual patient’s scans. Although these techniques were originally developed for PET, over the past several years analogous methods have been introduced for functional MRI, a more accessible non-invasive imaging modality. This advance is expected to broaden the application of network tools to large and diverse patient populations.

Key points

  • Parkinson disease, Alzheimer disease and other neurodegenerative disorders are characterized by specific disease-related functional topographies (brain networks) that can be identified and validated using metabolic PET or resting-state functional MRI.

  • Brain network activity can be quantified on an individual patient basis, and the resulting network expression levels can be used in research and clinical settings.

  • Expression levels for multiple disease-related topographies can be entered into computational algorithms used to classify patients according to the diagnostic likelihood of these diseases.

  • Expression levels for abnormal disease networks correlate with clinical symptom severity and can be modulated by effective treatment.

  • Network expression levels increase over time and can be used to predict the likelihood of transition from preclinical to symptomatic disease in at-risk individuals.

  • The characterization of treatment-induced networks opens the door to their future use as objective outcome measures in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional brain network alterations associated with Parkinson disease.
Fig. 2: Novel functional brain network induced by subthalamic gene therapy for Parkinson disease.
Fig. 3: Pattern-based classification algorithms for the differential diagnosis of parkinsonism.
Fig. 4: Abnormal metabolic covariance patterns associated with Alzheimer disease and dementia with Lewy bodies.
Fig. 5: Abnormal metabolic covariance pattern associated with frontotemporal dementia.

Similar content being viewed by others

Change history

References

  1. Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Article  Google Scholar 

  2. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396, 1204–1222 (2020).

    Article  Google Scholar 

  3. Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  4. Ou, Z. et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 9, 776847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wanneveich, M., Moisan, F., Jacqmin-Gadda, H., Elbaz, A. & Joly, P. Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s disease (2010–2030) in France. Mov. Disord. 33, 1449–1455 (2018).

    Article  PubMed  Google Scholar 

  6. Nichols, E. et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106 (2019).

    Article  Google Scholar 

  7. Dorsey, E. R. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 939–953 (2018).

    Article  Google Scholar 

  8. Cummings, J., Lee, G., Zhong, K., Fonseca, J. & Taghva, K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement. 7, e12179 (2021).

    Google Scholar 

  9. McFarthing, K. et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 2020. J. Parkinsons Dis. 10, 757–774 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beach, T. G., Monsell, S. E., Phillips, L. E. & Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 71, 266–273 (2012).

    Article  PubMed  Google Scholar 

  11. Rizzo, G. et al. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 89, 358–366 (2018).

    Article  PubMed  Google Scholar 

  12. Adler, C. H. et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology 83, 406–412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Joutsa, J., Gardberg, M., Röyttä, M. & Kaasinen, V. Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat. Disord. 20, 840–844 (2014).

    Article  PubMed  Google Scholar 

  14. Rizzo, G. et al. Accuracy of clinical diagnosis of Parkinson disease. Neurology 86, 566–576 (2016).

    Article  PubMed  Google Scholar 

  15. Jack, C. R. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schindlbeck, K. A. & Eidelberg, D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 17, 629–640 (2018).

    Article  PubMed  Google Scholar 

  17. Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017). This Review provides a valuable summary of multivariate models of brain imaging data as potential biomarkers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kragel, P. A., Koban, L., Barrett, L. F. & Wager, T. D. Representation, pattern information, and brain signatures: from neurons to neuroimaging. Neuron 99, 257–273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng, S. et al. Dynamic 18F-FPCIT PET: quantification of Parkinson disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. J. Nucl. Med. 62, 1775–1782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Christie, I. N., Wells, J. A., Kasparov, S., Gourine, A. V. & Lythgoe, M. F. Volumetric spatial correlations of neurovascular coupling studied using single pulse opto-fMRI. Sci. Rep. 7, 41583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agarwal, S., Sair, H. I., Yahyavi-Firouz-Abadi, N., Airan, R. & Pillai, J. J. Neurovascular uncoupling in resting state fMRI demonstrated in patients with primary brain gliomas. J. Magn. Reson. Imaging 43, 620–626 (2016).

    Article  PubMed  Google Scholar 

  22. Chen, J., Venkat, P., Zacharek, A. & Chopp, M. Neurorestorative therapy for stroke. Front. Hum. Neurosci. 8, 382 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Østergaard, L. et al. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J. Cereb. Blood Flow. Metab. 34, 1585–1598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hirano, S. et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J. Neurosci. 28, 4201–4209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jourdain, V. A. et al. Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 1, e86615 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guedj, E. et al. EANM procedure guidelines for brain PET imaging using 18F FDG, version 3. Eur. J. Nucl. Med. Mol. Imaging 49, 632–651 (2022).

    Article  PubMed  Google Scholar 

  27. Spetsieris, P. G. & Eidelberg, D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage 54, 2899–2914 (2011). This paper provides a comprehensive presentation of computational procedures to identify and validate disease-related metabolic covariance patterns.

    Article  PubMed  Google Scholar 

  28. Habeck, C. & Stern, Y. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem. Biophys. 58, 53–67 (2010). An oustanding introduction to the multivariate analyses used to characterize disease-related network topographies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 32, 548–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexander, G. E. & Moeller, J. R. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease. Hum. Brain Mapp. 2, 79–94 (1994).

    Article  Google Scholar 

  31. Sala, A. & Perani, D. Brain molecular connectivity in neurodegenerative diseases: recent advances and new perspectives using positron emission tomography. Front. Neurosci. 13, 617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yakushev, I., Drzezga, A. & Habeck, C. Metabolic connectivity: methods and applications. Curr. Opin. Neurol. 30, 677–685 (2017).

    Article  PubMed  Google Scholar 

  33. Spetsieris, P. G. & Eidelberg, D. Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease. Neuroimage 226, 117568 (2021). This paper facilitates the biological interpretion of disease networks by visualizing relevant node-to-node connections using graphical displays.

    Article  CAS  PubMed  Google Scholar 

  34. Jollife, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).

    Article  Google Scholar 

  35. Habeck, C. et al. A new approach to spatial covariance modeling of functional brain imaging data: ordinal trend analysis. Neural Comput. 17, 1602–1645 (2005).

    Article  PubMed  Google Scholar 

  36. Mure, H. et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54, 1244–1253 (2011).

    Article  PubMed  Google Scholar 

  37. Mure, H. et al. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J. Neurosci. 32, 2804–2813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang, C. C. et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J. Clin. Invest. 123, 4076–4088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niethammer, M. et al. Gene therapy reduces Parkinson’s disease symptoms by reorganizing functional brain connectivity. Sci. Transl. Med. 10, eaau0713 (2018). A study that shows how subthalamic gene therapy for advanced PD induces a unique and more-efficient metabolic network that correlates with treatment outcome.

    Article  CAS  PubMed  Google Scholar 

  40. Brakedal, B. et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 34, 396–407 (2022). This study uses similar methods to those in the preceding paper to identify a treatment-related network induced by a supplement that boosts mitochondrial respiration in early PD.

    Article  CAS  PubMed  Google Scholar 

  41. Li, B. & Freeman, R. D. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex. J. Neurochem. 135, 742–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stoessl, A. J. Glucose utilization: still in the synapse. Nat. Neurosci. 20, 382–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Patel, A. B. et al. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc. Natl Acad. Sci. USA 111, 5385–5390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Savio, A. et al. Resting-state networks as simultaneously measured with functional MRI and PET. J. Nucl. Med. 58, 1314–1317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marchitelli, R. et al. Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease: relationship between glucose metabolism and intrinsic activity. Neuroimage 176, 246–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Jamadar, S. D. et al. Metabolic and hemodynamic resting-state connectivity of the human brain: a high-temporal resolution simultaneous BOLD-fMRI and FDG-fPET multimodality study. Cereb. Cortex 31, 2855–2867 (2021).

    Article  PubMed  Google Scholar 

  48. Sala, A., Lizarraga, A., Ripp, I., Cumming, P. & Yakushev, I. Static versus functional PET: making sense of metabolic connectivity. Cereb. Cortex 32, 1125–1129 (2021).

    Article  Google Scholar 

  49. Watabe, T. & Hatazawa, J. Evaluation of functional connectivity in the brain using positron emission tomography: a mini-review. Front. Neurosci. 13, 775 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cao, J. & Worsley, K. The geometry of correlation fields with an application to functional connectivity of the brain. Ann. Appl. Probab. 9, 1021–1057 (1999).

    Article  Google Scholar 

  51. Sun, F. T., Miller, L. M. & D’Esposito, M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21, 647–658 (2004).

    Article  PubMed  Google Scholar 

  52. Hyvärinen, A. Independent component analysis: recent advances. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20110534 (2013).

    Article  Google Scholar 

  53. Baggio, H.-C. et al. Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum. Brain Mapp. 36, 199–212 (2015).

    Article  PubMed  Google Scholar 

  54. Calhoun, V. D., Liu, J. & Adalı, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45, S163–S172 (2009).

    Article  PubMed  Google Scholar 

  55. Vo, A. et al. Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum. Brain Mapp. 38, 617–630 (2017). This study shows how rs-fMRI can be used to identify disease-related topographies that are similar to their PET counterparts.

    Article  PubMed  Google Scholar 

  56. Rommal, A. et al. Parkinson’s disease-related pattern (PDRP) identified using resting-state functional MRI: validation study. Neuroimage Rep. 1, 100026 (2021).

    Article  Google Scholar 

  57. Greuel, A. et al. GBA variants in Parkinson’s disease: clinical, metabolomic, and multimodal neuroimaging phenotypes. Mov. Disord. 35, 2201–2210 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Steidel, K. et al. Dopaminergic pathways and resting-state functional connectivity in Parkinson’s disease with freezing of gait. Neuroimage Clin. 32, 102899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meles, S. K. et al. The cerebral metabolic topography of spinocerebellar ataxia type 3. Neuroimage Clin. 19, 90–97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sporns, O. Graph theory methods: applications in brain networks. Dialogues Clin. Neurosci. 20, 111–121 (2018). Overview of graph theory as applied to the study of brain networks.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Muskulus, M., Houweling, S., Verduyn-Lunel, S. & Daffertshofer, A. Functional similarities and distance properties. J. Neurosci. Methods 183, 31–41 (2009).

    Article  PubMed  Google Scholar 

  62. Newman, M. Networks (Oxford Univ. Press, 2010).

  63. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

    Article  Google Scholar 

  64. Agosta, F. et al. Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 81, 134–143 (2013).

    Article  PubMed  Google Scholar 

  65. Imai, M. et al. Metabolic network topology of Alzheimer’s disease and dementia with Lewy bodies generated using fluorodeoxyglucose positron emission tomography. J. Alzheimers Dis. 73, 197–207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sala, A. et al. Altered brain metabolic connectivity at multiscale level in early Parkinson’s disease. Sci. Rep. 7, 4256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yao, Z. et al. A FDG-PET study of metabolic networks in apolipoprotein E ε4 allele carriers. PLoS ONE 10, e0132300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    Article  PubMed  Google Scholar 

  69. Ko, J. H., Spetsieris, P. G. & Eidelberg, D. Network structure and function in Parkinson’s disease. Cereb. Cortex 28, 4121–4135 (2018).

    PubMed  Google Scholar 

  70. Schindlbeck, K. A. et al. Metabolic network abnormalities in drug-naïve Parkinson’s disease. Mov. Disord. 35, 587–594 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Vo, A. et al. Adaptive and pathological connectivity responses in Parkinson’s disease brain networks. Cereb. Cortex https://doi.org/10.1093/cercor/bhac110 (2022). This study shows that connectivity patterns within the network space distinguish maladaptive changes from beneficial adaptations in PD.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Adler, C. H. et al. Unified staging system for Lewy body disorders: clinicopathologic correlations and comparison to Braak staging. J. Neuropathol. Exp. Neurol. 78, 891–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hawkes, C. H., Del Tredici, K. & Braak, H. A timeline for Parkinson’s disease. Parkinsonism Relat. Disord. 16, 79–84 (2010).

    Article  PubMed  Google Scholar 

  74. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  PubMed  Google Scholar 

  75. Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Prim. 7, 47 (2021).

    Article  PubMed  Google Scholar 

  76. Niethammer, M. & Eidelberg, D. Metabolic brain networks in translational neurology: concepts and applications. Ann. Neurol. 72, 635–647 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Meles, S. K., Teune, L. K., de Jong, B. M., Dierckx, R. A. & Leenders, K. L. Metabolic imaging in Parkinson disease. J. Nucl. Med. 58, 23–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Stamelou, M. & Bhatia, K. P. Atypical parkinsonism. Neurol. Clin. 33, 39–56 (2015).

    Article  PubMed  Google Scholar 

  79. Kovacs, G. G. et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 140, 99–119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Briggs, M. et al. Validation of the new pathology staging system for progressive supranuclear palsy. Acta Neuropathol. 141, 787–789 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brettschneider, J. et al. Progression of α-synuclein pathology in multiple system atrophy of the cerebellar type. Neuropathol. Appl. Neurobiol. 43, 315–329 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Rus, T. et al. Stereotyped relationship between motor and cognitive metabolic networks in Parkinson’s disease. Mov. Disord. 37, 2247–2256 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, Y., Tang, C., Spetsieris, P. G., Dhawan, V. & Eidelberg, D. Abnormal metabolic network activity in Parkinson’s disease: test–retest reproducibility. J. Cereb. Blood Flow. Metab. 27, 597–605 (2007).

    Article  PubMed  Google Scholar 

  84. Tomše, P. et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology 59, 507–515 (2017).

    Article  PubMed  Google Scholar 

  85. Wu, P. et al. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Parkinsonism Relat. Disord. 19, 622–627 (2013).

    Article  PubMed  Google Scholar 

  86. Meles, S. K. et al. Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three European cohorts. Eur. J. Nucl. Med. Mol. Imaging 47, 437–450 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Matthews, D. C. et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. Neuroimage Clin. 20, 572–579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Teune, L. K. et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov. Disord. 28, 547–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, T. P. et al. Metabolic correlates of subthalamic nucleus activity in Parkinson’s disease. Brain 131, 1373–1380 (2008).

    Article  PubMed  Google Scholar 

  90. Helmich, R. C., Hallett, M., Deuschl, G., Toni, I. & Bloem, B. R. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135, 3206–3226 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zach, H. et al. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology 95, e1461–e1470 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Ko, J. H., Spetsieris, P., Ma, Y., Dhawan, V. & Eidelberg, D. Quantifying significance of topographical similarities of disease-related brain metabolic patterns. PLoS ONE 9, e88119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tang, C. C. et al. Hemispheric network expression in Parkinson’s disease: relationship to dopaminergic asymmetries. J. Parkinsons Dis. 10, 1737–1749 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Ma, Y. et al. Parkinson’s disease spatial covariance pattern: noninvasive quantification with perfusion MRI. J. Cereb. Blood Flow. Metab. 30, 505–509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ma, Y. & Eidelberg, D. Functional imaging of cerebral blood flow and glucose metabolism in Parkinson’s disease and Huntington’s disease. Mol. Imaging Biol. 9, 223–233 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu, C. et al. Brain functional and structural signatures in Parkinson’s disease. Front. Aging Neurosci. 12, 125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Melzer, T. R. et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 134, 845–855 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rane, S. et al. Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 76, 21–28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Correa, C., Crnovrsanin, T. & Kwan-Liu, M. Visual reasoning about social networks using centrality sensitivity. IEEE Trans. Vis. Comput. Graph. 18, 106–120 (2012).

    Article  PubMed  Google Scholar 

  101. Schindlbeck, K. A. et al. LRRK2 and GBA variants exert distinct influences on parkinson’s disease-specific metabolic networks. Cereb. Cortex 30, 2867–2878 (2020).

    Article  PubMed  Google Scholar 

  102. Davis, M. Y. et al. Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol. 73, 1217–1224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Saunders-Pullman, R. et al. Progression in the LRRK2-associated Parkinson disease population. JAMA Neurol. 75, 312–319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wolters, A. F. et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat. Disord. 62, 16–27 (2019).

    Article  PubMed  Google Scholar 

  105. Spetsieris, P. G. et al. Metabolic resting-state brain networks in health and disease. Proc. Natl Acad. Sci. USA 112, 2563–2568 (2015). This study identifies the metabolic DMN in healthy individuals and describes the effects of neurodegeneration on expression of this pattern in patients with PD and Alzheimer disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruppert, M. C. et al. The default mode network and cognition in Parkinson’s disease: a multimodal resting-state network approach. Hum. Brain Mapp. 42, 2623–2641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Huang, C. et al. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 34, 714–723 (2007).

    Article  PubMed  Google Scholar 

  108. Mattis, P. J., Tang, C. C., Ma, Y., Dhawan, V. & Eidelberg, D. Network correlates of the cognitive response to levodopa in Parkinson disease. Neurology 77, 858–865 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mattis, P. J. et al. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases. Neurology 87, 1925–1933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schindlbeck, K. A. et al. Cognition-related functional topographies in Parkinson’s disease: localized loss of the ventral default mode network. Cereb. Cortex 31, 5139–5150 (2021). This study uses rs-fMRI to explore the topographic relationship between the PDCP and DMN.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hirano, S. Clinical implications for dopaminergic and functional neuroimage research in cognitive symptoms of Parkinson’s disease. Mol. Med. 27, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, C. et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 70, 1470–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Meles, S. K. et al. Abnormal metabolic pattern associated with cognitive impairment in Parkinson’s disease: a validation study. J. Cereb. Blood Flow. Metab. 35, 1478–1484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trošt, M. et al. Metabolic brain changes related to specific cognitive impairment in non-demented Parkinson’s disease patients [abstract #1306]. Presented at 2016 International Congress, International Parkinson and Movement Disorder Society. https://www.mdsabstracts.org/abstract/metabolic-brain-changes-related-to-specific-cognitive-impairment-in-non-demented-parkinsons-disease-patients/ (2016).

  115. Smallwood, J. et al. The default mode network in cognition: a topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021). In this paper, the authors attribute the integrative role of the DMN in higher-order cognitive functions to its position at the end of the cortical processing stream.

    Article  CAS  PubMed  Google Scholar 

  116. Meles, S. K., et al. in PET and SPECT in Neurology. 73–104 (Springer International, 2021).

  117. Högl, B., Stefani, A. & Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration — an update. Nat. Rev. Neurol. 14, 40–56 (2018).

    Article  PubMed  Google Scholar 

  118. Holtbernd, F. et al. Abnormal metabolic network activity in REM sleep behavior disorder. Neurology 82, 620–627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kogan, R. V. et al. Four-year follow-up of 18F fluorodeoxyglucose positron emission tomography-based Parkinson’s disease-related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression. Mov. Disord. 36, 230–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Ge, J. et al. Assessing cerebral glucose metabolism in patients with idiopathic rapid eye movement sleep behavior disorder. J. Cereb. Blood Flow. Metab. 35, 2062–2069 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shin, J. H. et al. Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder. Neurology 97, e378–e388 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Meles, S. K. et al. The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage Parkinson disease. J. Nucl. Med. 59, 1437–1444 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Yoon, E. J. et al. A new metabolic network correlated with olfactory and executive dysfunctions in idiopathic rapid eye movement sleep behavior disorder. J. Clin. Neurol. 15, 175–183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wu, P. et al. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder. Brain 137, 3122–3128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huang, C. et al. Changes in network activity with the progression of Parkinson’s disease. Brain 130, 1834–1846 (2007).

    Article  PubMed  Google Scholar 

  126. Tang, C. C., Poston, K. L., Dhawan, V. & Eidelberg, D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J. Neurosci. 30, 1049–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  128. Ko, J. H., Lerner, R. P. & Eidelberg, D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov. Disord. 30, 54–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Ge, J. et al. Metabolic network as an objective biomarker in monitoring deep brain stimulation for Parkinson’s disease: a longitudinal study. EJNMMI Res. 10, 131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Asanuma, K. et al. Network modulation in the treatment of Parkinson’s disease. Brain 129, 2667–2678 (2006).

    Article  PubMed  Google Scholar 

  131. Trošt, M. et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31, 301–307 (2006).

    Article  PubMed  Google Scholar 

  132. Rommelfanger, K. S. & Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat. 4, 139 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jourdain, V. A. et al. Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia. JCI Insight 2, e96411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ntetsika, T., Papathoma, P.-E. & Markaki, I. Novel targeted therapies for Parkinson’s disease. Mol. Med. 27, 17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Niethammer, M. et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight 2, e90133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ko, J. H. et al. Network modulation following sham surgery in Parkinson’s disease. J. Clin. Invest. 124, 3656–3666 (2014). This study shows that the clinical response to sham surgery in patients with PD is mediated by a specific metabolic brain network that is active only in patients who are blinded to treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Prasuhn, J. & Brüggemann, N. Genotype-driven therapeutic developments in Parkinson’s disease. Mol. Med. 27, 42 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Filippi, M., Balestrino, R., Basaia, S. & Agosta, F. Neuroimaging in glucocerebrosidase‐associated parkinsonism: a systematic review. Mov. Disord. 37, 1375–1393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Meles, S. K., Oertel, W. H. & Leenders, K. L. Circuit imaging biomarkers in preclinical and prodromal Parkinson’s disease. Mol. Med. 27, 111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tolosa, E., Vila, M., Klein, C. & Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020).

    Article  PubMed  Google Scholar 

  141. Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Beach, T. G. & Adler, C. H. Importance of low diagnostic accuracy for early Parkinson’s disease. Mov. Disord. 33, 1551–1554 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rus, T. et al. Differential diagnosis of parkinsonian syndromes: a comparison of clinical and automated-metabolic brain patterns’ based approach. Eur. J. Nucl. Med. Mol. Imaging 47, 2901–2910 (2020). This study supports the utility of automated pattern-based differential diagnosis of parkinsonism in a real-world clinical setting.

    Article  PubMed  Google Scholar 

  144. Rus, T. et al. Atypical clinical presentation of pathologically proven Parkinson’s disease: the role of Parkinson’s disease related metabolic pattern. Parkinsonism Relat. Disord. 78, 1–3 (2020).

    Article  PubMed  Google Scholar 

  145. Tang, C. C. et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 9, 149–158 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Papathoma, P. E. et al. A replication study, systematic review and meta-analysis of automated image-based diagnosis in parkinsonism. Sci. Rep. 12, 2763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eckert, T. et al. Abnormal metabolic networks in atypical parkinsonism. Mov. Disord. 23, 727–733 (2008).

    Article  PubMed  Google Scholar 

  148. Ge, J. et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: multivariate and univariate analyses in American and Chinese patient cohorts. Hum. Brain Mapp. 39, 2842–2858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Shen, B. et al. Reproducible metabolic topographies associated with multiple system atrophy: network and regional analyses in Chinese and American patient cohorts. Neuroimage Clin. 28, 102416 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tomše, P. et al. Abnormal metabolic covariance patterns associated with multiple system atrophy and progressive supranuclear palsy. Phys. Med. 98, 131–138 (2022).

    Article  PubMed  Google Scholar 

  151. Poston, K. L. et al. Network correlates of disease severity in multiple system atrophy. Neurology 78, 1237–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Martí‐Andrés, G. et al. Multicenter validation of metabolic abnormalities related to PSP according to the MDS‐PSP criteria. Mov. Disord. 35, 2009–2018 (2020). This study shows the robustness and reproducibility of the PSPRP across different populations and clinical phenotypes.

    Article  PubMed  Google Scholar 

  153. Ko, J. H., Lee, C. S. & Eidelberg, D. Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J. Cereb. Blood Flow. Metab. 37, 683–693 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Niethammer, M. et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain 137, 3036–3046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Schindlbeck, K. A. et al. Neuropathological correlation supports automated image-based differential diagnosis in parkinsonism. Eur. J. Nucl. Med. Mol. Imaging 48, 3522–3529 (2021). This study compares the results of an automated pattern-based diagnostic algorithm with autopsy findings in patients with parkinsonism of uncertain cause.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tripathi, M. et al. Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study. J. Nucl. Med. 57, 60–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Eckert, T. et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26, 912–921 (2005).

    Article  PubMed  Google Scholar 

  158. Meyer, P. T., Frings, L., Rücker, G. & Hellwig, S. 18F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J. Nucl. Med. 58, 1888–1898 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Gu, S.-C., Ye, Q. & Yuan, C.-X. Metabolic pattern analysis of 18F-FDG PET as a marker for Parkinson’s disease: a systematic review and meta-analysis. Rev. Neurosci. 30, 743–756 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Manzanera, O. M. et al. Scaled subprofile modeling and convolutional neural networks for the identification of Parkinson’s disease in 3D nuclear imaging data. Int. J. Neural Syst. 29, 1950010 (2019).

    Article  PubMed  Google Scholar 

  161. Mudali, D., Teune, L. K., Renken, R. J., Leenders, K. L. & Roerdink, J. B. T. M. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features. Comput. Math. Methods Med. 2015, 136921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vázquez-Mojena, Y., León-Arcia, K., González-Zaldivar, Y., Rodríguez-Labrada, R. & Velázquez-Pérez, L. Gene therapy for polyglutamine spinocerebellar ataxias: advances, challenges, and perspectives. Mov. Disord. 36, 2731–2744 (2021).

    Article  PubMed  Google Scholar 

  163. Fields, E. et al. Gene targeting techniques for Huntington’s disease. Ageing Res. Rev. 70, 101385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. van der Horn, H. J. et al. A resting-state fMRI pattern of spinocerebellar ataxia type 3 and comparison with 18F-FDG PET. Neuroimage Clin. 34, 103023 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 14, 367–429 (2018).

    Article  Google Scholar 

  166. Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease — relationship to biomarkers and genetics. Nat. Rev. Neurol. 17, 545–563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pievani, M., Filippini, N., Van Den Heuvel, M. P., Cappa, S. F. & Frisoni, G. B. Brain connectivity in neurodegenerative diseases — from phenotype to proteinopathy. Nat. Rev. Neurol. 10, 620–633 (2014).

    Article  PubMed  Google Scholar 

  169. Pievani, M., de Haan, W., Wu, T., Seeley, W. W. & Frisoni, G. B. Functional network disruption in the degenerative dementias. Lancet Neurol. 10, 829–843 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012). Landmark paper relating network progression in neurodegenerative processes to pathological spread from one anatomical layer to the next.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Prim. 7, 33 (2021).

    Article  PubMed  Google Scholar 

  172. Karikari, T. K. et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat. Rev. Neurol. 42, 400–418 (2022).

    Article  Google Scholar 

  173. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. 8, 73–85 (2017).

    Google Scholar 

  174. Scarmeas, N. et al. Covariance PET patterns in early Alzheimer’s disease and subjects with cognitive impairment but no dementia: utility in group discrimination and correlations with functional performance. Neuroimage 23, 35–45 (2004).

    Article  PubMed  Google Scholar 

  175. Devanand, D. P. et al. PET network abnormalities and cognitive decline in patients with mild cognitive impairment. Neuropsychopharmacology 31, 1327–1334 (2006).

    Article  PubMed  Google Scholar 

  176. Teune, L. K. et al. The Alzheimer’s disease-related glucose metabolic brain pattern. Curr. Alzheimer Res. 11, 725–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Katako, A. et al. Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Sci. Rep. 8, 13236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Perovnik, M. et al. Identification and validation of Alzheimer’s disease-related metabolic brain pattern in biomarker confirmed Alzheimer’s dementia patients. Sci. Rep. 12, 11752 (2022). This study shows the diagnostic robustness of the ADRP across independent populations of patients with biologically confirmed Alzheimer disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Peretti, D. E. et al. Feasibility of pharmacokinetic parametric PET images in scaled subprofile modelling using principal component analysis. Neuroimage Clin. 30, 102625 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Meles, S. K. et al. The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment. J. Cereb. Blood Flow. Metab. 37, 3643–3648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Blazhenets, G. et al. Principal components analysis of brain metabolism predicts development of Alzheimer dementia. J. Nucl. Med. 60, 837–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Spetsieris, P. G., Ma, Y., Dhawan, V. & Eidelberg, D. Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features. Neuroimage 45, 1241–1252 (2009).

    Article  PubMed  Google Scholar 

  183. Sörensen, A., Blazhenets, G., Schiller, F., Meyer, P. T. & Frings, L. Amyloid biomarkers as predictors of conversion from mild cognitive impairment to Alzheimer’s dementia: a comparison of methods. Alzheimers Res. Ther. 12, 155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Blazhenets, G. et al. Predictive value of 18F-florbetapir and 18F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementia. J. Nucl. Med. 61, 597–603 (2020). This study shows the value of the ADCRP cross-pattern as a predictor of dementia in patients with MCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Blazhenets, G. et al. Validation of the Alzheimer disease dementia conversion-related pattern as an ATN biomarker of neurodegeneration. Neurology 96, e1358–e1368 (2021). This study shows that the ADCRP outperforms fluid biomarkers of neurodegeneration as a predictor of dementia in patients with MCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Blum, D. et al. Controls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PET. Eur. J. Nucl. Med. Mol. Imaging 46, 2370–2379 (2019).

    Article  PubMed  Google Scholar 

  187. Blazhenets, G., Frings, L., Sörensen, A. & Meyer, P. T. Principal-component analysis–based measures of PET data closely reflect neuropathologic staging schemes. J. Nucl. Med. 62, 855–860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li, T. R. et al. Exploring brain glucose metabolic patterns in cognitively normal adults at risk of Alzheimer’s disease: a cross-validation study with Chinese and ADNI cohorts. Neuroimage Clin. 33, 102900 (2022).

    Article  PubMed  Google Scholar 

  189. Tai, H. et al. The neuropsychological correlates of brain perfusion and gray matter volume in Alzheimer’s disease. J. Alzheimers Dis. 78, 1639–1652 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease. Neurology 94, 436–448 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jellinger, K. A. Pathobiological subtypes of Alzheimer disease. Dement. Geriatr. Cogn. Disord. 49, 321–333 (2020).

    Article  PubMed  Google Scholar 

  192. Outeiro, T. F. et al. Dementia with Lewy bodies: an update and outlook. Mol. Neurodegener. 14, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Arnaoutoglou, N. A., O’Brien, J. T. & Underwood, B. R. Dementia with Lewy bodies — from scientific knowledge to clinical insights. Nat. Rev. Neurol. 15, 103–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Iizuka, T. & Kameyama, M. Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease. J. Neurol. 267, 1960–1969 (2020).

    Article  PubMed  Google Scholar 

  195. Kang, S. W. et al. Implication of metabolic and dopamine transporter PET in dementia with Lewy bodies. Sci. Rep. 11, 14394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Perovnik, M. et al. Metabolic brain pattern in dementia with Lewy bodies: relationship to Alzheimer’s disease topography. Neuroimage Clin. 35, 103080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Lu, J. et al. Consistent abnormalities in metabolic patterns of Lewy body dementias. Mov. Disord. 37, 1861–1871 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hepp, D. H. et al. Distribution and load of amyloid-β pathology in Parkinson disease and dementia with Lewy bodies. J. Neuropathol. Exp. Neurol. 75, 936–945 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Lau, A. et al. Alzheimer’s disease-related metabolic pattern in diverse forms of neurodegenerative diseases. Diagnostics 11, 2023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ingram, M. et al. Spatial covariance analysis of FDG-PET and HMPAO-SPECT for the differential diagnosis of dementia with Lewy bodies and Alzheimer’s disease. Psychiatry Res. Neuroimaging 322, 111460 (2022).

    Article  PubMed  Google Scholar 

  202. Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet 386, 1672–1682 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Nazem, A. et al. A multivariate metabolic imaging marker for behavioral variant frontotemporal dementia. Alzheimers Dement. 10, 583–594 (2018).

    Google Scholar 

  204. Rus, T. et al. Disease specific and nonspecific metabolic brain networks in behavioral variant of frontotemporal dementia. Hum. Brain Mapp. https://doi.org/10.1002/hbm.26140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Filippi, M. et al. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 49, 2389–2401 (2013).

    Article  PubMed  Google Scholar 

  206. Shlens, J. A tutorial on independent component analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.1404.2986 (2014).

  207. Myszczynska, M. A. et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020). Review of current applications of machine learning in the study of neurodegenerative diseases.

    Article  PubMed  Google Scholar 

  208. Young, A. L. et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat. Commun. 9, 4273 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Franzmeier, N. et al. Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease‐informed machine‐learning. Alzheimers Dement. 16, 501–511 (2020). This study proposes a machine learning model to predict cognitive decline in individuals with autosomal dominant Alzheimer disease and amyloid-positive individuals with MCI using a combination of fluid and imaging biomarkers.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Davatzikos, C. Machine learning in neuroimaging: progress and challenges. Neuroimage 197, 652–656 (2019).

    Article  PubMed  Google Scholar 

  211. Borchert, R. et al. Artificial intelligence for diagnosis and prognosis in neuroimaging for dementia; a systematic review. Preprint at medRxiv https://doi.org/10.1101/2021.12.12.21267677 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P. and T.R. were supported by the Slovenian Research Agency (ARRS) through grant P1-0389 and projects J7-2600 and J7-3150. T.R. is a recipient of the Fulbright Foreign Student Program sponsored by the US Department of State’s Bureau of Educational and Cultural Affairs. The authors thank Yoon Young Choi for her invaluable editorial assistance in preparing the manuscript.

Competing interests

D.E. declares that he receives funding from the NIH and The Michael J. Fox Foundation for Parkinson’s Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to the discussion of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David Eidelberg.

Peer review

Peer review information

Nature Reviews Neurology thanks Yoshikazu Nakano, who co-reviewed with Shigeki Hirano; Meichen Yu; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Assortativity

Correlation coefficient between the degree of all nodes on two opposite ends of a link; a measure of the diversity of connections in a graph that provides an index of overall network stability.

Characteristic path length

The average number of edges in the shortest paths connecting the nodes of the network; a measure of the integration of information processing and the global efficiency of the network.

Clustering coefficient

The likelihood that the nearest neighbours of a given network node are themselves connected; an index of the segregation of information processing within the network.

Covariance topographies

Patterns of co-varying regional activity identified by principal component analysis of the individual’s scan data.

Degree centrality

The number of connections divided by the number of nodes in the same graph; a measure of the overall connectivity of nodes.

Dimensionality reduction

Mathematical procedures to identify one or more smaller matrices that contain information the same as or similar to the original large data matrix; this approach is used to extract relevant properties of the data (such as specific disease-related topographies) and remove extraneous effects.

Expression levels

Also termed subject scores. The principal component scalar, which quantifies the extent to which a given topographic pattern is represented in a specific individual’s scan.

Functional connectivity

Connections between brain regions defined by the magnitude of correlations in spontaneous signal fluctuations (resting-state functional MRI), local metabolic activity ([18F]fluorodeoxyglucose PET), electrical signals (electro-encephalography) or magnetic fields produced by electrical activity (magneto-encephalography).

Functional neuroimaging

Technique to map regional changes in neuronal activity, based typically on blood oxygenation, cerebral metabolism or other physiological signals.

Graph theory

Mathematical approach to studying properties of network structure (nodal organization) and function (information flow).

Modularity

The relationship of the number of edges linking the nodes within a community (module or subgraph) to those linking the different communities for the network as a whole; a means of partitioning the network into organizationally discrete nodal clusters.

Network patterns

Topographical patterns of neural activity in which interconnected brain regions form discrete networks.

Predictive models

Mathematical constructs that predict the likelihood of future events or outcomes based on a set of input data.

Small-worldness

Ratio of clustering coefficient to characteristic path length, normalized to corresponding values from an equivalent random graph; a measure of the balance between segregation and integration of information processing in the network space.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perovnik, M., Rus, T., Schindlbeck, K.A. et al. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 19, 73–90 (2023). https://doi.org/10.1038/s41582-022-00753-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00753-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research