Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges

Abstract

The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A potential strategy for correction of loss-of-function primary mitochondrial disease variants.
Fig. 2: Potential strategies for the correction of dominant primary mitochondrial disease phenotypes.
Fig. 3: Timeline of research into genetic treatments for primary mitochondria diseases.

Similar content being viewed by others

References

  1. Al-Zaidy, S. et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr. Pulmonol. 54, 179–185 (2019).

    Article  PubMed  Google Scholar 

  2. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug. Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Iftikhar, M., Frey, J., Shohan, M. J., Malek, S. & Mousa, S. A. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 220, 107719 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  9. Pitceathly, R. D. S., Keshavan, N., Rahman, J. & Rahman, S. Moving towards clinical trials for mitochondrial diseases. J. Inherit. Metab. Dis. 44, 22–41 (2021).

    Article  PubMed  Google Scholar 

  10. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ng, Y. S. et al. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol. 20, 573–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Schon, E. A., Dimauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsson, N. G. & Clayton, D. A. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bugiardini, E. et al. Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol. Genet. 6, e381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pitceathly, R. D. S. et al. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 79, 1145–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Ribeil, J.-A. et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376, 848–855 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Lundstrom, K. Viral vectors in gene therapy. Diseases 6, 42 (2018).

    Article  PubMed Central  Google Scholar 

  24. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug. Discov. 20, 427–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stewart, J. B. Current progress with mammalian models of mitochondrial DNA disease. J. Inherit. Metab. Dis. 44, 325–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, M. D., Trounce, I. A., Jun, A. S., Allen, J. C. & Wallace, D. C. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J. Biol. Chem. 275, 39831–39836 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Pallotti, F. et al. Biochemical analysis of respiratory function in cybrid cell lines harbouring mitochondrial DNA mutations. Biochem. J. 384, 287–293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trounce, I., Neill, S. & Wallace, D. C. Cytoplasmic transfer of the mtDNA nt 8993 T->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc. Natl Acad. Sci. USA 91, 8334–8338 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cavaliere, A., Marchet, S., Di Meo, I. & Tiranti, V. An in vitro approach to study mitochondrial dysfunction: a cybrid model. J. Vis. Exp. 181, e63452 (2022).

    Google Scholar 

  34. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, D., L Tai, P. W. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug. Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torres-Torronteras, J. et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum. Gene Ther. 29, 708–718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vila-Julià, F. et al. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine 62, 103133 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Torres-Torronteras, J. et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol. Ther. 22, 901–907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bottani, E. et al. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol. Ther. 22, 10–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Meo, I. et al. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol. Med. 4, 1008 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Silva-Pinheiro, P., Cerutti, R., Luna-Sanchez, M., Zeviani, M. & Viscomi, C. A single intravenous injection of AAV-PHP.B-hNDUFS4 ameliorates the phenotype of Ndufs4−/− mice. Mol. Ther. Methods Clin. Dev. 17, 1071–1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, L. et al. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46−/− mice. Hum. Mol. Genet 29, 649–661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ling, Q., Rioux, M., Hu, Y., Lee, M. J. & Gray, S. J. Adeno-associated viral vector serotype 9-based gene replacement therapy for SURF1-related Leigh syndrome. Mol. Ther. Methods Clin. Dev. 23, 158–168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lopez-Gomez, C. et al. Synergistic deoxynucleoside and gene therapies for thymidine kinase 2 deficiency. Ann. Neurol. 90, 640–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reynaud-Dulaurier, R. et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain 143, 1686–1696 (2020).

    Article  PubMed  Google Scholar 

  49. Corrà, S., Cerutti, R., Balmaceda, V., Viscomi, C.& Zeviani, M. Double administration of self-complementary AAV9NDUFS4 prevents Leigh disease in Ndufs4−/− mice. Brain 139, 16–17 (2022).

    Google Scholar 

  50. Dong, J. Y., Fan, P. D. & Frizzell, R. A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 7, 2101–2112 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Rahman, S. & Copeland, W. C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 15, 40–52 (2018).

    Article  Google Scholar 

  52. Saneto, R. P. & Naviaux, R. K. Polymerase gamma disease through the ages. Dev. Disabil. Res. Rev. 16, 163–174 (2010).

    Article  PubMed  Google Scholar 

  53. Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl. Med. 11, eaav4523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tornabene, P. & Trapani, I. Can adeno-associated viral vectors deliver effectively large genes? Hum. Gene Ther. 31, 47–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Zhi, S. et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Bennett, C. F., Baker, B. F., Pham, N., Swayze, E. & Geary, R. S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57, 81–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Venkatesh, A. et al. Antisense oligonucleotide mediated increase of OPA1 expression using TANGO technology for the treatment of autosomal dominant optic atrophy [abstract]. Investig. Ophthalmol. Vis. Sci. 61, 2755 (2020).

    Google Scholar 

  58. Indrieri, A. et al. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol. Med. 11, e8734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bacman, S. R., Williams, S. L., Pinto, M. & Moraes, C. T. The use of mitochondria-targeted endonucleases to manipulate mtDNA. Methods Enzymol. 547, 373–397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J. & Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zekonyte, U. et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat. Commun. 12, 3210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet 34, 101–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).

    CAS  PubMed  Google Scholar 

  65. Alexeyev, M. F. et al. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther. 15, 516–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Bayona-Bafaluy, M. P., Blits, B., Battersby, B. J., Shoubridge, E. A. & Moraes, C. T. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc. Natl Acad. Sci. USA 102, 14392–14397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bacman, S. R., Williams, S. L., Duan, D. & Moraes, C. T. Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease. Gene Ther. 19, 1101–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Gammage, P. A. et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 44, 7804–7816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jackson, C. B., Turnbull, D. M., Minczuk, M. & Gammage, P. A. Therapeutic manipulation of mtDNA heteroplasmy: a shifting perspective. Trends Mol. Med. 26, 698–709 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. & Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaude, E. et al. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Mol. Cell 69, 581–593.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, Y. et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 9, 283–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yahata, N., Boda, H. & Hata, R. Elimination of mutant mtDNA by an optimized mpTALEN restores differentiation capacities of heteroplasmic MELAS-iPSCs. Mol. Ther. Methods Clin. Dev. 20, 54–68 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hashimoto, M. et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther. 23, 1592–1599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reddy, P. et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pereira, C. V. et al. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol. Med. 10, e8084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Arnould, S. et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng. Des. Sel. 24, 27–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cho, S.-I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Lei, Z. et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804–811 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Man, P. Y. W. et al. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet. 72, 333–339 (2003).

    Article  CAS  Google Scholar 

  82. Yu-Wai-Man, P. et al. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 132, 789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Yu, H. et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl Acad. Sci. USA 109, 1238–1247 (2012).

    Article  Google Scholar 

  85. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peverelli, L. et al. Leber’s hereditary optic neuropathy: a report on novel mtDNA pathogenic variants. Front. Neurol. 12, 652 (2021).

    Article  Google Scholar 

  87. Yu-Wai-Man, P. et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci. Transl. Med. 12, eaaz7423 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Newman, N. J. et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology 128, 649–660 (2021).

    Article  PubMed  Google Scholar 

  89. Newman, N. J. et al. Intravitreal gene therapy vs. natural history in patients with Leber hereditary optic neuropathy carrying the m.11778G>A ND4 mutation: systematic review and indirect comparison. Front. Neurol. 12, 662838 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Biousse, V. et al. Long-term follow-up after unilateral intravitreal gene therapy for Leber hereditary optic neuropathy: the RESTORE study. J. Neuroophthalmol. 41, 309–315 (2021).

    Article  PubMed  Google Scholar 

  91. Bonnet, C. et al. The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochim. Biophys. Acta 1783, 1707–1717 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Koilkonda, R. et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Investig. Ophthalmol. Vis. Sci. 55, 7739–7753 (2014).

    Article  CAS  Google Scholar 

  93. Calkins, D. J. et al. Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates. Mol. Ther. Methods Clin. Dev. 23, 307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perales-Clemente, E., Fernández-Silva, P., Acín-Pérez, R., Pérez-Martos, A. & Enríquez, J. A. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 39, 225–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Lewis, C. J. et al. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol. 30, 101429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oca-Cossio, J., Kenyon, L., Hao, H. & Moraes, C. T. Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics 165, 707–720 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goto, Y. I., Nonaka, I. & Horai, S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. El-Hattab, A. W., Almannai, M. & Scaglia, F. in Gene Reviews (Univ. Washington, 2018).

  99. Lawlor, M. W. & Dowling, J. J. X-linked myotubular myopathy. Neuromuscul. Disord. 31, 1004–1012 (2021).

    Article  PubMed  Google Scholar 

  100. Bessis, N., GarciaCozar, F. J. & Boissier, M. C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 11, S10–S17 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Chan, Y. K. et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci. Transl. Med. 13, eabd3438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tiku, V., Tan, M. W. & Dikic, I. Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maresca, A. et al. Expanding and validating the biomarkers for mitochondrial diseases. J. Mol. Med. 98, 1467–1478 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Lehtonen, J. M. et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 87, 2290–2299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yatsuga, S. et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 78, 814–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Parikh, S. et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet. Med. 17, 689 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal. Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pereira, C. V. et al. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol. Med. 12, e10674 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamada, Y., Somiya, K., Miyauchi, A., Osaka, H. & Harashima, H. Validation of a mitochondrial RNA therapeutic strategy using fibroblasts from a Leigh syndrome patient with a mutation in the mitochondrial ND3 gene. Sci. Rep. 10, 7511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamada, Y. et al. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv. Drug. Deliv. Rev. 154–155, 187–209 (2020).

    Article  PubMed  Google Scholar 

  112. Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. Srivastava, S. & Moraes, C. T. Manipulating mitochondrial DNA heteroplasmy by mitochondrially targeted restriction endonuclease. Hum. Mol. Genet. 10, 3093–3099 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Silva-Pinheiro, P. et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat. Commun. 13, 750 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.V. is supported by the Telethon Foundation (GGP20013), AFM-Telethon (23706), Associazione Luigi Comini Onlus, Department of Biomedical Sciences-UNIPD (SID2022- VISC_BIRD2222_01). M.M. is supported by the Medical Research Council (MC_UU_00028/3). R.D.S.P. and M.F. are supported by a Medical Research Council (UK) Clinician Scientist Fellowship (MR/S002065/1). M.F., M.M., M.G.H, C.V., and R.D.S.P. are supported by Medical Research Council (UK) award MC_PC_21046 to establish a National Mouse Genetics Network Cluster in Mitochondria (MitoCluster). M.G.H. and R.D.S.P. are supported by Medical Research Council (UK) strategic award MR/S005021/1 to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert D. S. Pitceathly.

Ethics declarations

Competing interests

M.M. is a co-founder, shareholder, and member of the Scientific Advisory Board of Pretzel Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Robert Lightowlers, Ramon Martí, Yuma Yamada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cybrid

A cytoplasmic hybrid created by fusing cells harbouring a wild-type or altered mtDNA of interest with cells depleted of endogenous mtDNA.

Heteroplasmy shift

A shift in the relative abundance of mutant mtDNA to wild-type mtDNA.

Indels

The insertion and/or deletion of one or more nucleotides in a DNA sequence.

Restriction sites

A short sequence of DNA that can be recognized and cleaved by restriction enzymes.

Stoichiometry

The quantitative relationship between two or more substances forming a compound.

Tropism

The ability of different viral strains to infect specific cell types or tissues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falabella, M., Minczuk, M., Hanna, M.G. et al. Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges. Nat Rev Neurol 18, 689–698 (2022). https://doi.org/10.1038/s41582-022-00715-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00715-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing