Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene–environment interactions in Alzheimer disease: the emerging role of epigenetics

Abstract

With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene–environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.

Key points

  • Most forms of Alzheimer disease (AD) have a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors.

  • Studies in animal models and humans have shown that environmental AD risk factors, such as diet, lifestyle, alcohol, smoking and pollutants, can induce epigenetic modifications of key AD-related genes and pathways.

  • Several naturally occurring antioxidants as well as caloric restriction and physical activity can reduce oxidation and prevent cognitive decline related to brain ageing and AD. Many antioxidants have been found to act throughout epigenetic mechanisms.

  • The preconceptional, prenatal, perinatal and childhood phases of development are emerging as periods of sensitivity to epigenetic influences from environmental factors that can increase the risk of chronic conditions, including neurodegeneration, in adulthood.

  • Epigenetic modifications must be considered when assessing gene–environment interactions in AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of environmental factors on the epigenome.
Fig. 2: Dietary compounds with antioxidant and epigenetic properties.

Similar content being viewed by others

References

  1. Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 17, 327–406 (2021).

    Article  Google Scholar 

  2. Reitz, C., Rogaeva, E. & Beecham, G. W. Late-onset vs nonmendelian early-onset Alzheimer disease: a distinction without a difference? Neurol. Genet. 6, e512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayodele, T., Rogaeva, E., Kurup, J. T., Beecham, G. & Reitz, C. Early-onset Alzheimer’s disease: what is missing in research? Curr. Neurol. Neurosci. Rep. 21, 4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Migliore, L. & Coppedè, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 667, 82–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peschansky, V. J. & Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Perera, B., Faulk, C., Svoboda, L. K., Goodrich, J. M. & Dolinoy, D. C. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 61, 176–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Barker, D. J. The developmental origins of adult disease. Eur. J. Epidemiol. 18, 733–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rogaev, E. I. et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early‐onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016).

    Article  PubMed  Google Scholar 

  19. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to b-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 8098–8102 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Genin, E. et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunkle, B. et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Bis, J. C. et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol. Psychiatry 25, 1859–1875 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Sims, R., Hill, M. & Williams, J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 23, 311–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Escott-Price, V. et al. Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 138, 3673–3684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Escott-Price, V., Myers, A. J., Huentelman, M. & Hardy, J. Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Ann. Neurol. 82, 311–314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Escott-Price, V. & Schmidt, K. M. Probability of Alzheimer’s disease based on common and rare genetic variants. Alzheimers Res. Ther. 13, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pyun, J. M. et al. Predictability of polygenic risk score for progression to dementia and its interaction with APOE epsilon4 in mild cognitive impairment. Transl. Neurodegener. 10, 32 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ebenau, J. L. et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. Alzheimers Dement. 13, e12229 (2021).

    Google Scholar 

  39. Leonenko, G. et al. Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores. Nat. Commun. 12, 4506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Rojas, I. et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, 3417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huq, A. J. et al. Polygenic score modifies risk for Alzheimer’s disease in APOE epsilon4 homozygotes at phenotypic extremes. Alzheimers Dement. 13, e12226 (2021).

    Google Scholar 

  42. Karri, V., Schuhmacher, M. & Kumar, V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 48, 203–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Bakulski, K. M. et al. Heavy metals exposure and Alzheimer’s disease and related dementias. J. Alzheimers Dis. 76, 1215–1242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chin-Chan, M., Navarro-Yepes, J. & Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 9, 124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Killin, L. O. J., Starr, J. M., Shiue, I. J. & Russ, T. C. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 16, 175 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bjørklund, G. et al. Insights into the potential role of mercury in Alzheimer’s disease. J. Mol. Neurosci. 67, 511–533 (2019).

    PubMed  Google Scholar 

  47. Rahman, M. A. et al. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ. Sci. Pollut. Res. Int. 27, 44659–44672 (2020).

    Article  PubMed  Google Scholar 

  48. Ashok, A., Rai, N. K., Tripathi, S. & Bandyopadhyay, S. Exposure to As-, Cd- and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol. Sci. 143, 64–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Huat, T. J. et al. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 431, 1843–1868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rocha, A. & Trujillo, K. A. Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73, 58–80 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horton, C. J., Weng, H. Y. & Wells, E. M. Association between blood lead level and subsequent Alzheimer’s disease mortality. Environ. Epidemiol. 3, e045 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gunnarsson, L. G. & Bodin, L. Occupational exposures and neurodegenerative diseases — a systematic literature review and meta-analyses. Int. J. Environ. Res. Public. Health 16, 337 (2019).

    Article  PubMed Central  Google Scholar 

  53. Fuller-Thomson, E. & Deng, Z. Could lifetime lead exposure play a role in limbic-predominant age-related TDP-43 encephalopathy (LATE)? J. Alzheimers Dis. 73, 455–459 (2020).

    Article  PubMed  Google Scholar 

  54. Willhite, C. C. et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 44, 1–80 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Virk, S. A. & Eslick, G. D. Occupational exposure to aluminum and Alzheimer disease: a meta-analysis. J. Occup. Environ. Med. 57, 893–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. et al. Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci. Lett. 610, 200–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Bondy, S. C. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology 52, 222–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Aloizou, A. M. et al. Pesticides, cognitive functions and dementia: a review. Toxicol. Lett. 326, 31–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, K. H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Jalilian, H., Teshnizi, S. H., Röösli, M. & Neghab, M. Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease: a systematic review and meta-analysis. Neurotoxicology 69, 242–252 (2018).

    Article  PubMed  Google Scholar 

  61. Power, M. C., Adar, S. D., Yanosky, J. D. & Weuve, J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology 56, 235–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, H. et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet 389, 718–726 (2017).

    Article  PubMed  Google Scholar 

  63. Carey, I. M. et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 8, e022404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dimakakou, E., Johnston, H. J., Streftaris, G. & Cherrie, J. W. Exposure to environmental and occupational particulate air pollution as a potential contributor to neurodegeneration and diabetes: a systematic review of epidemiological research. Int. J. Environ. Res. Public Health 15, 1704 (2018).

    Article  PubMed Central  Google Scholar 

  65. Thompson, J. E. Airborne particulate matter: human exposure and health effects. J. Occup. Environ. Med. 60, 392–423 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Bowe, B., Xie, Y., Yan, Y. & Al-Aly, Z. Burden of cause-specific mortality associated with PM2.5 air pollution in the United States. JAMA Netw. Open 2, e1915834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peters, R. et al. Air pollution and dementia: a systematic review. J. Alzheimers Dis. 70, S145–S163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Calderón-Garcidueñas, L. et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol. Pathol. 36, 289–310 (2008).

    Article  PubMed  Google Scholar 

  70. Więckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M. & Wojda, U. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 70, 101397 (2021).

    Article  PubMed  Google Scholar 

  71. Chai, B. et al. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: an updated meta-analysis. BMC Neurol. 19, 284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Angelopoulou, E., Paudel, Y. N., Papageorgiou, S. G. & Piperi, C. APOE genotype and Alzheimer’s disease: the influence of lifestyle and environmental factors. ACS Chem. Neurosci. 12, 2749–2764 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, S., Liu, X., Jiang, R., Yan, X. & Ling, Z. Roles and mechanisms of gut microbiota in patients with Alzheimer’s disease. Front. Aging Neurosci. 13, 650047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, H., Yang, F., Zhang, S., Xin, R. & Sun, Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis. 7, 70 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sun, M. et al. A review of the brain-gut-microbiome axis and the potential role of microbiota in Alzheimer’s disease. J. Alzheimers Dis. 73, 849–865 (2020).

    Article  PubMed  Google Scholar 

  76. Heymann, D. et al. The association between alcohol use and the progression of Alzheimer’s disease. Curr. Alzheimer Res. 13, 1356–1362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Topiwala, A. et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ 357, j2353 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wiegmann, C., Mick, I., Brandl, E. J., Heinz, A. & Gutwinski, S. Alcohol and dementia — what is the link? A systematic review. Neuropsychiatr. Dis. Treat. 16, 87–99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Durazzo, T. C., Mattsson, N. & Weiner, M. W.; Alzheimer’s Disease Neuroimaging Initiative. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement. 10, S122–S145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhong, G., Wang, Y., Zhang, Y., Guo, J. J. & Zhao, Y. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One 10, e0118333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Finch, C. E. & Kulminski, A. M. The Alzheimer’s disease exposome. Alzheimers Dement. 9, 1123–1132 (2019).

    Article  Google Scholar 

  82. Adani, G. et al. Environmental risk factors for early-onset Alzheimer’s dementia and frontotemporal dementia: a case-control study in northern italy. Int. J. Environ. Res. Public Health 17, 7941 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  83. Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    Article  PubMed  Google Scholar 

  84. Slotkin, T. A., Skavicus, S., Ko, A., Levin, E. D. & Seidler, F. J. The developmental neurotoxicity of tobacco smoke can be mimicked by a combination of nicotine and benzo[a]pyrene: effects on cholinergic and serotonergic systems. Toxicol. Sci. 167, 293–304 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Dong, Y. et al. Nicotine prevents oxidative stress-induced hippocampal neuronal injury through α7-nAChR/Erk1/2 signaling pathway. Front. Mol. Neurosci. 13, 557647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wallin, C. et al. Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci. Rep. 7, 14423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wilkerson, J. L., Deba, F., Crowley, M. L., Hamouda, A. K. & McMahon, L. R. Advances in the in vitro and in vivo pharmacology of alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 168, 108008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. VanItallie, T. B. Traumatic brain injury (TBI) in collision sports: possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism 100S, 153943 (2019).

    Article  PubMed  Google Scholar 

  89. Süβ, P., Lana, A. J. & Schlachetzki, J. C. M. Chronic peripheral inflammation: a possible contributor to neurodegenerative diseases. Neural Regen. Res. 16, 1711–1714 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Guasch-Ferré, M. & Willett, W. C. The Mediterranean diet and health: a comprehensive overview. J. Intern. Med. 290, 549–566 (2021).

    Article  PubMed  Google Scholar 

  91. Canudas, S. et al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv. Nutr. 11, 1544–1554 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Holland, T. M. et al. Dietary flavonols and risk of Alzheimer dementia. Neurology 94, e1749–e1756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Appel, A. M. et al. Socioeconomic position and late-onset dementia: a nationwide register-based study. J. Aging Health 34, 184–195 (2022).

    Article  PubMed  Google Scholar 

  94. Peterson, R. L. et al. Operationalizing social environments in cognitive aging and dementia research: a scoping review. Int. J. Environ. Res. Public Health 18, 7166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Londzin, P., Zamora, M., Kakol, B., Taborek, A. & Folwarczna, J. Potential of caffeine in Alzheimer’s disease — a review of experimental studies. Nutrients 13, 537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, J. Q. A., Scheltens, P., Groot, C. & Ossenkoppele, R. Associations between caffeine consumption, cognitive decline, and dementia: a systematic review. J. Alzheimers Dis. 78, 1519–1546 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kim, J. W. et al. Coffee intake and decreased amyloid pathology in human brain. Transl. Psychiatry 9, 270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dunn, A. R., O’Connell, K. M. S. & Kaczorowski, C. C. Gene-by-environment interactions in Alzheimer’s disease and Parkinson’s disease. Neurosci. Biobehav. Rev. 103, 73–80 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pastor, P. et al. Apolipoprotein Eepsilon4 modifies Alzheimer’s disease onset in an E280A PS1 kindred. Ann. Neurol. 54, 163–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Cook, C. J. & Fletcher, J. M. Can education rescue genetic liability for cognitive decline? Soc. Sci. Med. 127, 159–170 (2015).

    Article  PubMed  Google Scholar 

  101. Lee, M. et al. Education and cardiovascular health as effect modifiers of APOE ε4 on dementia: the Atherosclerosis Risk in Communities (ARIC) Study. J. Gerontol. A Biol. Sci. Med. Sci. 77, 1199–1207 (2022).

    Article  PubMed  Google Scholar 

  102. Frank, M. et al. Interaction of Alzheimer’s disease-associated genetic risk with indicators of socioeconomic position on mild cognitive impairment in the Heinz Nixdorf Recall study. J. Alzheimers Dis. 82, 1715–1725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jin, X. et al. Association of APOE ε4 genotype and lifestyle with cognitive function among Chinese adults aged 80 years and older: a cross-sectional study. PLoS Med. 18, e1003597 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cacciottolo, M. et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 7, e1022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Folley, S., Zhou, A., Llewellyn, D. J. & Hyppönen, E. Physical activity, APOE genotype, and cognitive decline: exploring gene-environment interactions in the UK Biobank. J. Alzheimers Dis. 71, 741–750 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Stringa, N. et al. Physical activity as moderator of the association between APOE and cognitive decline in older adults: results from three longitudinal cohort studies. J. Gerontol. A Biol. Sci. Med. Sci. 75, 1880–1886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Luck, T. et al. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene-environment interaction for the risk of dementia and Alzheimer’s disease dementia. Psychol. Med. 44, 1319–1329 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Schuit, A. J., Feskens, E. J., Launer, L. J. & Kromhout, D. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med. Sci. Sports Exerc. 33, 772–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Reger, M. A. et al. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25, 311–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Wolf, A. B., Caselli, R. J., Reiman, E. M. & Valla, J. APOE and neuroenergetics: an emerging paradigm in Alzheimer’s disease. Neurobiol. Aging 34, 1007–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Brandon, J. A., Farmer, B. C., Williams, H. C. & Johnson, L. A. APOE and Alzheimer’s disease: neuroimaging of metabolic and cerebrovascular dysfunction. Front. Aging Neurosci. 10, 180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Huang, T. L. et al. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 65, 1409–1414 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Barberger-Gateau, P. et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 69, 1921–1930 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Barberger-Gateau, P., Samieri, C., Féart, C. & Plourde, M. Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein E genotype. Curr. Alzheimer Res. 8, 479–491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van de Rest, O. et al. APOE ε4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 86, 2063–2070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Laitinen, M. H. et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement. Geriatr. Cogn. Disord. 22, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Stonehouse, W. et al. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am. J. Clin. Nutr. 97, 1134–1143 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Li, L. et al. A gene-environment interplay between omega-3 supplementation and APOE epsilon4 provides insights for Alzheimer’s disease precise prevention amongst high-genetic-risk population. Eur. J. Neurol. 29, 422–431 (2022).

    Article  PubMed  Google Scholar 

  119. Scarmeas, N., Stern, Y., Mayeux, R. & Luchsinger, J. A. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol. 63, 1709–1717 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Keenan, T. D. et al. AREDS and AREDS2 Research Groups. Adherence to a Mediterranean diet and cognitive function in the age-related eye disease studies 1 & 2. Alzheimers Dement. 16, 831–842 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sullivan, P. M. Influence of Western diet and APOE genotype on Alzheimer’s disease risk. Neurobiol. Dis. 138, 104790 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Mayeux, R. et al. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 45, 555–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Christensen, H. et al. The association of APOE genotype and cognitive decline in interaction with risk factors in a 65-69 year old community sample. BMC Geriatr. 8, 14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Richardson, J. R. et al. Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol. 71, 284–290 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Engstrom, A. K., Snyder, J. M., Maeda, N. & Xia, Z. Gene-environment interaction between lead and apolipoprotein E4 causes cognitive behavior deficits in mice. Mol. Neurodegener. 12, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhang, L., Wang, H., Abel, G. M., Storm, D. R. & Xia, Z. The Effects of gene-environment interactions between cadmium exposure and apolipoprotein E4 on memory in a mouse model of Alzheimer’s disease. Toxicol. Sci. 173, 189–201 (2020).

    Article  PubMed  Google Scholar 

  127. Wang, Y. et al. Effect of aluminum combined with ApoEepsilon4 on Tau phosphorylation and Abeta deposition. J. Trace Elem. Med. Biol. 64, 126700 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Yassine, H. N. & Finch, C. E. APOE alleles and diet in brain aging and Alzheimer’s disease. Front. Aging Neurosci. 12, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun, Y., Zhang, Y. K., Chen, H. & Chen, R. S. The association between TREM2 gene and late-onset Alzheimer’s disease in Chinese Han population. Gerontology 68, 302–308 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Weng, P. H. et al. CHRNA7 polymorphisms and dementia risk: interactions with apolipoprotein ε4 and cigarette smoking. Sci. Rep. 6, 27231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fletcher, J., Topping, M., Zheng, F. & Lu, Q. The effects of education on cognition in older age: evidence from genotyped siblings. Soc. Sci. Med. 280, 114044 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jin, X., Shu, C., Zeng, Y., Liang, L. & Ji, J. S. Interaction of greenness and polygenic risk score of Alzheimer’s disease on risk of cognitive impairment. Sci. Total Environ. 796, 148767 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Samuelsson, J. et al. Interactions between dietary patterns and genetic factors in relation to incident dementia among 70-year-olds. Eur. J. Nutr. 61, 871–884 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Harwood, D. G. et al. The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 25, 511–518 (2010).

    Article  PubMed  Google Scholar 

  135. Ladd-Acosta, C. & Fallin, M. D. The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8, 271–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Grau-Perez, M., Agha, G., Pang, Y., Bermudez, J. D. & Tellez-Plaza, M. Mendelian randomization and the environmental epigenetics of health: a systematic review. Curr. Environ. Health Rep. 6, 38–51 (2019).

    Article  PubMed  Google Scholar 

  137. Grossi, E., Stoccoro, A., Tannorella, P., Migliore, L. & Coppedè, F. Artificial neural networks link one-carbon metabolism to gene-promoter methylation in Alzheimer’s disease. J. Alzheimers Dis. 53, 1517–1522 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, D., Wang, Y., Jing, H., Meng, Q. & Yang, J. Mendelian randomization integrating GWAS and mQTL data identified novel pleiotropic DNA methylation loci for neuropathology of Alzheimer’s disease. Neurobiol. Aging 97, 18–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, Y. et al. A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease. Nat. Commun. 12, 4472 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, D., Wang, Y., Jing, H., Meng, Q. & Yang, J. Novel DNA methylation loci and genes showing pleiotropic association with Alzheimer’s dementia: a network Mendelian randomization analysis. Epigenetics 17, 746–758 (2022).

    Article  PubMed  Google Scholar 

  141. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Castillo-Fernandez, J. E., Spector, T. D. & Bell, J. T. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med. 6, 60 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Elboudwarej, E. et al. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J. Autoimmun. 68, 23–29 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mohandas, N. et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin. Epigenet. 10, 25 (2018).

    Article  Google Scholar 

  145. Webster, A. P. et al. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med. 10, 64 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tarr, I. S. et al. Monozygotic twins and triplets discordant for amyotrophic lateral sclerosis display differential methylation and gene expression. Sci. Rep. 9, 8254 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mastroeni, D., McKee, A., Grover, A., Rogers, J. & Coleman, P. D. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4, e6617 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chouliaras, L. et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol. Aging 34, 2091–2099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. D’Addario, C. et al. Transcriptional and epigenetic phenomena in peripheral blood cells of monozygotic twins discordant for Alzheimer’s disease, a case report. J. Neurol. Sci. 372, 211–216 (2017).

    Article  PubMed  Google Scholar 

  150. Konki, M. et al. Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer’s disease. Clin. Epigenet. 11, 130 (2019).

    Article  CAS  Google Scholar 

  151. Zhang, M. et al. Genetic and epigenetic study of an Alzheimer’s disease family with monozygotic triplets. Brain 142, 3375–3381 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Stoccoro, A. & Coppedè, F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag. 8, 181–193 (2018).

    Article  PubMed  Google Scholar 

  153. Coppedè, F. Epigenetic regulation in Alzheimer’s disease: is it a potential therapeutic target? Expert Opin. Ther. Targets 25, 283–298 (2021).

    Article  PubMed  Google Scholar 

  154. Lunnon, K. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 17, 1164–1170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. De Jager, P. L. et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156–1163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Smith, R. G. et al. Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement. 14, 1580–1588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Smith, A. R. et al. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clin. Epigenet. 11, 52 (2019).

    Article  Google Scholar 

  158. Watson, C. T. et al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med. 8, 5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lardenoije, R. et al. Alzheimer’s disease-associated (hydroxy)methylomic changes in the brain and blood. Clin. Epigenet. 11, 164 (2019).

    Article  CAS  Google Scholar 

  160. Gasparoni, G. et al. DNA methylation analysis on purified neurons and glia dissects age and Alzheimer’s disease-specific changes in the human cortex. Epigenetics Chromatin 11, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Brokaw, D. L. et al. Cell death and survival pathways in Alzheimer’s disease: an integrative hypothesis testing approach utilizing -omic data sets. Neurobiol. Aging 95, 15–25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Smith, R. G. et al. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nat. Commun. 12, 3517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang, L. et al. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease. Nat. Commun. 11, 6114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, L. et al. Sex-specific DNA methylation differences in Alzheimer’s disease pathology. Acta Neuropathol. Commun. 9, 77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pellegrini, C. et al. A meta-analysis of brain DNA methylation across sex, age, and Alzheimer’s disease points for accelerated epigenetic aging in neurodegeneration. Front. Aging Neurosci. 13, 639428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Marzi, S. J. et al. A histone acetylome-wide association study of Alzheimer’s disease identifies disease associated H3K27ac differences in the entorhinal cortex. Nat. Neurosci. 21, 1618–1627 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Klein, H. U. et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Nativio, R. et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat. Genet. 52, 1024–1035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zheng, Y. et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s disease. Brain 142, 787–807 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lee, M. Y. et al. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer’s disease. Aging Cell 19, e13153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fransquet, P. D. et al. DNA methylation analysis of candidate genes associated with dementia in peripheral blood. Epigenomics 12, 2109–2123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Walker, R. M. et al. Epigenome-wide analyses identify DNA methylation signatures of dementia risk. Alzheimers Dement. 12, e12078 (2020).

    Google Scholar 

  173. Vasanthakumar, A. et al. Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clin. Epigenet. 12, 84 (2020).

    Article  CAS  Google Scholar 

  174. Barbash, S. & Soreq, H. Threshold-independent meta-analysis of Alzheimer’s disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Curr. Alzheimer Res. 9, 425–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Takousis, P. et al. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimers Dement. 15, 1468–1477 (2019).

    Article  PubMed  Google Scholar 

  176. Chen, L., Guo, X., Li, Z. & He, Y. Relationship between long non-coding RNAs and Alzheimer’s disease: a systematic review. Pathol. Res. Pract. 215, 12–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Singh, S. & Li, S. S. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int. J. Mol. Sci. 13, 10143–10153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Martin, E. M. & Fry, R. C. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu. Rev. Public Health 39, 309–333 (2018).

    Article  PubMed  Google Scholar 

  179. Grova, N., Schroeder, H., Olivier, J. L. & Turner, J. D. Epigenetic and neurological impairments associated with early life exposure to persistent organic pollutants. Int. J. Genomics. 2019, 2085496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hu, J. & Yu, Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: a critical review. Chemosphere 226, 259e272 (2019).

    Article  Google Scholar 

  181. Cai, M., Zhang, X., He, W. & Zhang, J. The involvement of metals in Alzheimer’s disease through epigenetic mechanisms. Front. Genet. 11, 614666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ijomone, O. M. et al. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 81, 51–65 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chung, F. F. & Herceg, Z. The promises and challenges of toxico-epigenomics: environmental chemicals and their impacts on the epigenome. Environ. Health Perspect. 128, 15001 (2020).

    Article  PubMed  Google Scholar 

  184. Ruiz-Hernandez, A. et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin. Epigenet. 7, 55 (2015).

    Article  Google Scholar 

  185. Ryu, H. W. et al. Influence of toxicologically relevant metals on human epigenetic regulation. Toxicol. Res. 31, 1–9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lee, H. J., Park, M. K. & Seo, Y. R. Pathogenic mechanisms of heavy metal induced-Alzheimer’s disease. Toxicol. Environ. Health Sci. 10, 1–10 (2018).

    Article  CAS  Google Scholar 

  187. Long, J. M., Maloney, B., Rogers, J. T. & Lahiri, D. K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: implications in Alzheimer’s disease. Mol. Psychiatry 24, 345–363 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Nisa, F. Y. et al. Role of neurotoxicants in the pathogenesis of Alzheimer’s disease: a mechanistic insight. Ann. Med. 53, 1476–1501 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yang, X. et al. The relationship between cognitive impairment and global dna methylation decrease among aluminum potroom workers. J. Occup. Environ. Med. 57, 713–717 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Li, H. et al. MiR-29a/b1 regulates BACE1 in aluminum-induced Aβ deposition in vitro. ACS Chem. Neurosci. 12, 3250–3265 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Bustaffa, E., Stoccoro, A., Bianchi, F. & Migliore, L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch. Toxicol. 88, 1043–1067 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Alvarado-Cruz, I., Alegría-Torres, J. A., Montes-Castro, N., Jiménez-Garza, O. & Quintanilla-Vega, B. Environmental epigenetic changes, as risk factors for the development of diseases in children: a systematic review. Ann. Glob. Health 84, 212–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chervona, Y. et al. Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol. Biomark. Prev. 21, 2252–2260 (2012).

    Article  CAS  Google Scholar 

  194. Cronican, A. A. et al. Genome-wide alteration of histone H3K9 acetylation pattern in mouse offspring prenatally exposed to arsenic. PLoS One 8, e53478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Howe, C. G. & Gamble, M. V. Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr. Environ. Health Rep. 3, 225–237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ferragut Cardoso, A. P., Udoh, K. T. & States, J. C. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol. Appl. Pharmacol. 409, 115306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fuso, A., Seminara, L., Cavallaro, R. A., D’Anselmi, F. & Scarpa, S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol. Cell. Neurosci. 28, 195–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Fry, R. C. et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet. 3, e207 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wu, J. et al. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J. Neurosci. 28, 3–9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Basha, M. R. et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci. 25, 823–829 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zawia, N. H., Lahiri, D. K. & Cardozo-Pelaez, F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med. 46, 1241–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Masoud, A. M., Bihaqi, S. W., Machan, J. T., Zawia, N. H. & Renehan, W. E. Early-life exposure to lead (Pb) alters the expression of microRNA that target proteins associated with Alzheimer’s disease. J. Alzheimers Dis. 51, 1257–1264 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Lahiri, D. K. et al. Transgenerational latent early-life associated regulation unites environment and genetics across generations. Epigenomics 8, 373–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Masoud, A. M. et al. Altered microRNA, mRNA, and protein expression of neurodegeneration-related biomarkers and their transcriptional and epigenetic modifiers in a human tau transgenic mouse model in response to developmental lead exposure. J. Alzheimers Dis. 63, 273–282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bakulski, K. M. et al. Single-cell analysis of the gene expression effects of developmental lead (Pb) exposure on the mouse hippocampus. Toxicol. Sci. 176, 396–409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Li, Y. et al. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ. Health Perspect. 124, 666–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Svoboda, L. K. et al. Tissue and sex-specific programming of DNA methylation by perinatal lead exposure: implications for environmental epigenetics studies. Epigenetics 16, 1102–1122 (2021).

    Article  PubMed  Google Scholar 

  208. Bakulski, K. M., Rozek, L. S., Dolinoy, D. C., Paulson, H. L. & Hu, H. Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr. Alzheimer Res. 9, 563–573 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Montrose, L. et al. Neonatal lead (Pb) exposure and DNA methylation profiles in dried bloodspots. Int. J. Environ. Res. Public Health 17, 6775 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  210. Wang, T., Zhang, J. & Xu, Y. Epigenetic basis of lead-induced neurological disorders. Int. J. Environ. Res. Public Health 17, 4878 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  211. Dash, M. et al. Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model. Neurotoxicology 55, 154–159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Perera, B. P. U., Svoboda, L. & Dolinoy, D. C. Genomic tools for environmental epigenetics and implications for public health. Curr. Opin. Toxicol. 18, 27–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Collotta, M., Bertazzi, P. A. & Bollati, V. Epigenetics and pesticides. Toxicology 307, 35–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Yu, G. et al. Epigenetics in neurodegenerative disorders induced by pesticides. Genes Environ. 43, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fedeli, D. et al. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 340, 411–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Bordoni, L. et al. Early impairment of epigenetic pattern in neurodegeneration: additional mechanisms behind pyrethroid toxicity. Exp. Gerontol. 124, 110629 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Giambò, F. et al. Genetic and epigenetic alterations induced by pesticide exposure: integrated analysis of gene expression, microRNA expression, and DNA methylation datasets. Int. J. Environ. Res. Public Health 18, 8697 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Candido, S. et al. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol. Rep. 42, 911–922 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Ferrari, L., Carugno, M. & Bollati, V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin. Epigenet. 11, 129 (2019).

    Article  CAS  Google Scholar 

  220. Li, Z. et al. Genomic DNA methylation signatures in different tissues after ambient air particulate matter exposure. Ecotoxicol. Environ. Saf. 179, 175–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Shou, Y. et al. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf. 174, 344–352 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Calderón-Garcidueñas, L. et al. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 183, 109226 (2020).

    Article  PubMed  Google Scholar 

  223. Schuller, A. & Montrose, L. Influence of woodsmoke exposure on molecular mechanisms underlying Alzheimer’s disease: existing literature and gaps in our understanding. Epigenet. Insights 13, 2516865720954873 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Honkova, K. et al. Genome-wide dna methylation in policemen working in cities differing by major sources of air pollution. Int. J. Mol. Sci. 23, 1666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kajiwara, Y. et al. FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS One 4, e5071 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Nicolia, V. et al. DNA methylation profiles of selected pro-inflammatory cytokines in Alzheimer disease. J. Neuropathol. Exp. Neurol. 76, 27–31 (2017).

    CAS  PubMed  Google Scholar 

  227. Feinberg, A. P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med. 378, 1323–1334 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Coppedè, F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic. Biol. Med. 170, 19–33 (2021).

    Article  PubMed  Google Scholar 

  229. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Scarpa, S., Fuso, A., D’Anselmi, F. & Cavallaro, R. A. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer’s disease? FEBS Lett. 541, 145–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  231. Fuso, A. et al. Changes in presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol. Aging 32, 187–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Lee, S., Lemere, C. A., Frost, J. L. & Shea, T. B. Dietary supplementation with S-adenosyl methionine delayed amyloid-β and tau pathology in 3xTg-AD mice. J. Alzheimers Dis. 28, 423–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Fuso, A. et al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol. Aging 33, 1482.e1-16 (2012).

    Article  PubMed  Google Scholar 

  234. Do Carmo, S. et al. Rescue of early Bace-1 and global DNA demethylation by S-adenosylmethionine reduces amyloid pathology and improves cognition in an Alzheimer’s model. Sci. Rep. 6, 34051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Monti, N. et al. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 15, 781–799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Bestry, M. et al. Association of prenatal alcohol exposure with offspring DNA methylation in mammals: a systematic review of the evidence. Clin. Epigenet. 14, 12 (2022).

    Article  CAS  Google Scholar 

  237. Lu, M. et al. Genome-wide associations between alcohol consumption and blood DNA methylation: evidence from twin study. Epigenomics 13, 939–951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Resendiz, M., Mason, S., Lo, C. L. & Zhou, F. C. Epigenetic regulation of the neural transcriptome and alcohol interference during development. Front. Genet. 5, 285 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  240. Maas, S. et al. Validating biomarkers and models for epigenetic inference of alcohol consumption from blood. Clin. Epigenet. 13, 198 (2021).

    Article  Google Scholar 

  241. Kapoor, M. et al. Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nat. Commun. 12, 5071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Mews, P. et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717–721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Joubert, B. R. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98, 680–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Liu, Y. et al. GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am. J. Hum. Genet. 94, 485–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gupta, R. et al. Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clin. Epigenet. 11, 1 (2019).

    Article  CAS  Google Scholar 

  246. Philibert, R. et al. The reversion of cg05575921 methylation in smoking cessation: a potential tool for incentivizing healthy aging. Genes 11, 1415 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  247. Corley, J. et al. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl. Psychiatry 9, 248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Levine, A. et al. Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. J. Transl. Med. 3, 107ra109 (2011).

    Google Scholar 

  249. Lin, C. et al. Resveratrol prevents nicotine-induced teratogenesis in cultured mouse embryos. Reprod. Toxicol. 34, 340–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. Wątroba, M. et al. Sirtuins, epigenetics and longevity. Ageing Res. Rev. 40, 11–19 (2017).

    Article  PubMed  Google Scholar 

  251. Hou, Y. et al. Changes in methylation patterns of multiple genes from peripheral blood leucocytes of Alzheimer’s disease patients. Acta Neuropsychiatr. 25, 66–76 (2013).

    Article  PubMed  Google Scholar 

  252. Brooks, A. C. & Henderson, B. J. Systematic review of nicotine exposure’s effects on neural stem and progenitor cells. Brain Sci. 11, 172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Nagu, P., Parashar, A., Behl, T. & Mehta, V. Gut microbiota composition and epigenetic molecular changes connected to the pathogenesis of Alzheimer’s disease. J. Mol. Neurosci. 71, 1436–1455 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Sharma, V. K. et al. Dysbiosis and Alzheimer’s disease: a role for chronic stress? Biomolecules 11, 678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Puigoriol-Illamola, D., Martínez-Damas, M., Griñán-Ferré, C. & Pallàs, M. Chronic mild stress modified epigenetic mechanisms leading to accelerated senescence and impaired cognitive performance in mice. Int. J. Mol. Sci. 21, 1154 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  256. Migliore, L. & Coppedè, F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 674, 73–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  257. Ionescu-Tucker, A. & Cotman, C. W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 107, 86–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Coppedè, F. One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr. Genomics 11, 246–260 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Guillaumet-Adkins, A. et al. Epigenetics and oxidative stress in aging. Oxid. Med. Cell. Longev. 2017, 9175806 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Cyr, A. R. & Domann, F. E. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid. Redox Signal. 15, 551–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Delatte, B. et al. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci. Rep. 5, 12714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Gu, X., Sun, J., Li, S., Wu, X. & Li, L. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol. Aging 34, 1069–1079 (2005).

    Article  Google Scholar 

  263. Bosch-Presegué, L. et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42, 210–223 (2011).

    Article  PubMed  Google Scholar 

  264. Snigdha, S. et al. H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J. Neurosci. 36, 3611–3622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Griñán-Ferré, C. et al. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-amyloid plaques in an early-onset Alzheimer’s disease mouse model. Aging 11, 11591–11608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Chan, A. & Shea, T. B. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J. Neurochem. 102, 753–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  267. Chan, A., Tchantchou, F., Rogers, E. J. & Shea, T. B. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J. Neurochem. 110, 831–836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Chan, A., Rogers, E. & Shea, T. B. Dietary deficiency in folate and vitamin E under conditions of oxidative stress increases phospho-tau levels: potentiation by ApoE4 and alleviation by S-adenosylmethionine. J. Alzheimers Dis. 17, 483–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  269. Tchantchou, F., Graves, M., Falcone, D. & Shea, T. B. S-adenosylmethionine mediates glutathione efficacy by increasing glutathione S-transferase activity: implications for S-adenosyl methionine as a neuroprotective dietary supplement. J. Alzheimers Dis. 14, 323–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  270. Dinda, B., Dinda, M., Kulsi, G., Chakraborty, A. & Dinda, S. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: a review. Eur. J. Med. Chem. 169, 185–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  271. Griñán-Ferré, C. et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res. Rev. 67, 101271 (2021).

    Article  PubMed  Google Scholar 

  272. Zhao, F., Zhang, J. & Chang, N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur. J. Pharmacol. 824, 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Piccarducci, R. et al. Apolipoprotein E polymorphism and oxidative stress in human peripheral blood cells: can physical activity reactivate the proteasome system through epigenetic mechanisms? Oxid. Med. Cell. Longev. 2021, 8869849 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Ayissi, V. B., Ebrahimi, A. & Schluesenner, H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res. 58, 22–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Cosín-Tomas, M. et al. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. Nutrients 11, 1764 (2019).

    Article  PubMed Central  Google Scholar 

  276. Vahid, F., Zand, H., Nosrat-Mirshekarlou, E., Najafi, R. & Hekmatdoost, A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Zhao, Y. N. et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem. Biophys. Res. Commun. 435, 597–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  278. Wang, Z. H. et al. MicroRNA-214 participates in the neuroprotective effect of resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother. 74, 252–256 (2015).

    Article  CAS  PubMed  Google Scholar 

  279. Izquierdo, V., Palomera-Ávalos, V., Pallàs, M. & Griñán-Ferré, C. Resveratrol supplementation attenuates cognitive and molecular alterations under maternal high-fat diet intake: epigenetic inheritance over generations. Int. J. Mol. Sci. 22, 1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. An, Y. et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenet. 11, 139 (2019).

    Article  Google Scholar 

  281. Lahiri, D. K. & Maloney, B. Gene × environment interaction by a longitudinal epigenome-wide association study (LEWAS) overcomes limitations of genome-wide association study (GWAS). Epigenomics 4, 685–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  282. Oh, E. S. & Petronis, A. Origins of human disease: the chrono-epigenetic perspective. Nat. Rev. Genet. 22, 533–546 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  284. Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7, 1198–1211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Curtis, S. W. et al. Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of biological aging. Aging 11, 5498–5517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Coninx, E. et al. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging 12, 20817–20834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. McCartney, D. L. et al. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimer Dement. 10, 429–437 (2018).

    Article  Google Scholar 

  288. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Molina-Serrano, D., Kyriakou, D. & Kirmizis, A. Histone modifications as an intersection between diet and longevity. Front. Genet. 12, 192 (2019).

    Article  Google Scholar 

  290. Yi, S. J. & Kim, K. New insights into the role of histone changes in aging. Int. J. Mol. Sci. 21, 8241 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  291. Fuso, A., Nicolia, V., Cavallaro, R. A. & Scarpa, S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J. Nutr. Biochem. 22, 242–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  292. Číž, M., Dvořáková, A., Skočková, V. & Kubala, L. The role of dietary phenolic compounds in epigenetic modulation involved in inflammatory processes. Antioxidants 9, 691 (2020).

    Article  PubMed Central  Google Scholar 

  293. Pop, S., Enciu, A. M., Tarcomnicu, I., Gille, E. & Tanase, C. Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation. Phytochem. Rev. 18, 1005–1024 (2019).

    Article  CAS  Google Scholar 

  294. Liang, Z. Z. et al. Identification of epigenetic modifications mediating the antagonistic effect of selenium against cadmium-induced breast carcinogenesis. Environ. Sci. Pollut. Res. Int. 29, 22056–22068 (2022).

    Article  CAS  PubMed  Google Scholar 

  295. Speckmann, B. & Grune, T. Epigenetic effects of selenium and their implications for health. Epigenetics 10, 179–190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Schulz, L. C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl Acad. Sci. USA 107, 16757–16758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Tobi, E. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Jousse, C. et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J. 25, 3271–3278 (2011).

    Article  CAS  PubMed  Google Scholar 

  299. Modgil, S., Lahiri, D. K., Sharma, V. L. & Anand, A. Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl. Neurodegener. 3, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Toraño, E. G., García, M. G., Fernández-Morera, J. L., Niño-García, P. & Fernández, A. F. The impact of external factors on the epigenome: in utero and over lifetime. Biomed. Res. Int. 2016, 2568635 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Dias, B. & Ressler, K. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  302. Bohacek, J. & Mansuy, I. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 16, 641–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  303. Nilsson, E. E. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl. Res. 165, 12–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  304. Zhang, W., Yang, J., Lv, Y., Li, S. & Qiang, M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. Chemosphere 228, 586–594 (2019).

    Article  CAS  PubMed  Google Scholar 

  305. Viluksela, M. & Pohjanvirta, R. Multigenerational and transgenerational effects of dioxins. Int. J. Mol. Sci. 20, 2947 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  306. Soubry, A. POHaD: why we should study future fathers. Environ. Epigenet. 4, dvy007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Zeid, D. & Gould, T. J. Impact of nicotine, alcohol, and cocaine exposure on germline integrity and epigenome. Neuropharmacology 173, 108127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Sharma, R. P. Blood chromatin as a biosensor of the epigenetic milieu: a tool for studies in living psychiatric patients. Epigenomics 4, 551–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Gauvrit, T., Benderradji, H., Buée, L., Blum, D. & Vieau, D. Early-life environment influence on late-onset Alzheimer’s disease. Front. Cell Dev. Biol. 10, 834661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Lahiri, D. K., Maloney, B. & Zawia, N. H. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol. Psychiatry 14, 992–1003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lucia Migliore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks D. Lahiri, N. Zawia and A. Fuso for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliore, L., Coppedè, F. Gene–environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 18, 643–660 (2022). https://doi.org/10.1038/s41582-022-00714-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00714-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research