Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear pore complexes — a doorway to neural injury in neurodegeneration

Abstract

The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.

Key points

  • The nuclear pore complex (NPC), which is made up of multiple nucleoporin proteins, mediates nucleocytoplasmic transport, genome organization and gene expression.

  • Accumulating evidence suggests that defects in the NPC and nucleocytoplasmic transport contribute to, or possibly initiate, neurodegenerative diseases such as amyotrophic lateral sclerosis, dementia and Huntington disease.

  • Cell-type-specific NPC composition might underlie differential cellular vulnerability in neurological diseases.

  • Specific nucleoporin mutations can cause a wide range of neurological disorders, including a Huntington disease-like motor neuron disease.

  • Therapeutic strategies with antisense oligonucleotides and small molecules to repair NPC defects or restore altered nucleocytoplasmic transport are in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of nuclear pore complex structure and subcomplexes.
Fig. 2: Alterations in the nuclear pore complex and nucleocytoplasmic transport in neurodegenerative diseases.
Fig. 3: Pathological progression of changes to the nuclear pore complex and nucleocytoplasmic transport in amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Beck, M. & Hurt, E. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2017). A thorough review of fundamental NPC biology.

    Article  CAS  PubMed  Google Scholar 

  2. Raices, M. & D’Angelo, M. A. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat. Rev. Mol. Cell Biol. 13, 687–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Raices, M. & D’Angelo, M. A. Nuclear pore complexes and regulation of gene expression. Curr. Opin. Cell Biol. 46, 26–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chou, C. C. et al. TDP43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coyne, A. N. et al. G(4)C(2) repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron https://doi.org/10.1016/j.neuron.2020.06.027 (2020). The first study to document a specific NPC defect in neurodegeneration and how this nucleoporin defect can initiate NPC injury.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eftekharzadeh, B. et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 99, 925–940.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gasset-Rosa, F. et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94, 48–57.e4 (2017). This study provides evidence that nucleoporin and NPC-associated protein pathology can be associated with HD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giampetruzzi, A. et al. Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat. Commun. 10, 3827 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Grima, J. C. et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron 94, 93–107.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015). This study provided the first evidence that nucleocytoplasmic transport dysfunction might underlie C9orf72 ALS–FTD pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, Y. C. et al. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00859-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jovicic, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basel-Vanagaite, L. et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann. Neurol. 60, 214–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nousiainen, H. O. et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat. Genet. 40, 155–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fichtman, B. et al. Pathogenic variants in NUP214 cause “plugged” nuclear pore channels and acute febrile encephalopathy. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2019.05.003 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shamseldin, H. E. et al. NUP214 deficiency causes severe encephalopathy and microcephaly in humans. Hum. Genet. 138, 221–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, D. H. & Hoelz, A. The structure of the nuclear pore complex (an update). Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-062917-011901 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeGrasse, J. A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteom. 8, 2119–2130 (2009).

    Article  CAS  Google Scholar 

  24. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hakhverdyan, Z. et al. Dissecting the structural dynamics of the nuclear pore complex. Mol. Cell https://doi.org/10.1016/j.molcel.2020.11.032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajoo, S., Vallotton, P., Onischenko, E. & Weis, K. Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc. Natl Acad. Sci. USA 115, E3969–E3977 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinoshita, Y., Kalir, T., Dottino, P. & Kohtz, D. S. Nuclear distributions of NUP62 and NUP214 suggest architectural diversity and spatial patterning among nuclear pore complexes. PLoS ONE 7, e36137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghavami, A., van der Giessen, E. & Onck, P. R. Energetics of transport through the nuclear pore complex. PLoS ONE 11, e0148876 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Paci, G., Zheng, T., Caria, J., Zilman, A. & Lemke, E. A. Molecular determinants of large cargo transport into the nucleus. eLife https://doi.org/10.7554/eLife.55963 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moroianu, J., Blobel, G. & Radu, A. Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc. Natl Acad. Sci. USA 92, 2008–2011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saitoh, H., Cooke, C. A., Burgess, W. H., Earnshaw, W. C. & Dasso, M. Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts. Mol. Biol. Cell 7, 1319–1334 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moroianu, J., Hijikata, M., Blobel, G. & Radu, A. Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc. Natl Acad. Sci. USA 92, 6532–6536 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Melchior, F., Guan, T., Yokoyama, N., Nishimoto, T. & Gerace, L. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import. J. Cell Biol. 131, 571–581 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Melchior, F., Paschal, B., Evans, J. & Gerace, L. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123, 1649–1659 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Moore, M. S. & Blobel, G. Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc. Natl Acad. Sci. USA 91, 10212–10216 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moroianu, J. & Blobel, G. Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc. Natl Acad. Sci. USA 92, 4318–4322 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Knockenhauer, K. E. & Schwartz, T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 164, 1162–1171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, C., Goryaynov, A. & Yang, W. The selective permeability barrier in the nuclear pore complex. Nucleus 7, 430–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aksenova, V. et al. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat. Commun. 11, 4577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, E. S. et al. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 48, 11645–11663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ullman, K. S., Shah, S., Powers, M. A. & Forbes, D. J. The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol. Biol. Cell 10, 649–664 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, P. & Noegel, A. A. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res. 43, 9874–9888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, P. et al. The function of the inner nuclear envelope protein SUN1 in mRNA export is regulated by phosphorylation. Sci. Rep. 7, 9157 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bastos, R., Lin, A., Enarson, M. & Burke, B. Targeting and function in mRNA export of nuclear pore complex protein Nup153. J. Cell Biol. 134, 1141–1156 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell 16, 5610–5620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makise, M. et al. The Nup153-Nup50 protein interface and its role in nuclear import. J. Biol. Chem. 287, 38515–38522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindsay, M. E., Plafker, K., Smith, A. E., Clurman, B. E. & Macara, I. G. Npap60/Nup50 is a tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell 110, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guan, T. et al. Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Mol. Cell. Biol. 20, 5619–5630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buchwalter, A. L., Liang, Y. & Hetzer, M. W. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol. Biol. Cell 25, 2472–2484 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kadota, S. et al. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat. Commun. 11, 2606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010). This study provides evidence that nucleoporins can directly influence gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gozalo, A. et al. Core components of the nuclear pore bind distinct states of chromatin and contribute to polycomb repression. Mol. Cell 77, 67–81.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Pascual-Garcia, P., Jeong, J. & Capelson, M. Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression. Cell Rep. 9, 433–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Vaquerizas, J. M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Capelson, M. & Hetzer, M. W. The role of nuclear pores in gene regulation, development and disease. EMBO Rep. 10, 697–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chatel, G. & Fahrenkrog, B. Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 3, 162–171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. D’Angelo, M. A. Nuclear pore complexes as hubs for gene regulation. Nucleus https://doi.org/10.1080/19491034.2017.1395542 (2017).

    Article  Google Scholar 

  63. Dickmanns, A., Kehlenbach, R. H. & Fahrenkrog, B. Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int. Rev. Cell Mol. Biol. 320, 171–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Hampoelz, B., Andres-Pons, A., Kastritis, P. & Beck, M. Structure and assembly of the nuclear pore complex. Annu. Rev. Biophys. https://doi.org/10.1146/annurev-biophys-052118-115308 (2019).

    Article  PubMed  Google Scholar 

  65. Ibarra, A. & Hetzer, M. W. Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337–349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pascual-Garcia, P. & Capelson, M. Nuclear pores in genome architecture and enhancer function. Curr. Opin. Cell Biol. 58, 126–133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Masrori, P. & Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27, 1918–1929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vahsen, B. F. et al. Non-neuronal cells in amyotrophic lateral sclerosis – from pathogenesis to biomarkers. Nat. Rev. Neurol. 17, 333–348 (2021).

    Article  PubMed  Google Scholar 

  69. Ringholz, G. M. & Greene, S. R. The relationship between amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 6, 387–392 (2006).

    Article  PubMed  Google Scholar 

  70. Wheaton, M. W. et al. Cognitive impairment in familial ALS. Neurology 69, 1411–1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Sreedharan, J. et al. TDP43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, C. H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ferrari, R., Kapogiannis, D., Huey, E. D. & Momeni, P. FTD and ALS: a tale of two diseases. Curr. Alzheimer Res. 8, 273–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neumann, M. et al. Ubiquitinated TDP43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Hayes, L. R., Duan, L., Bowen, K., Kalab, P. & Rothstein, J. D. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. eLife https://doi.org/10.7554/eLife.51685 (2020). This study provides evidence that C9orf72 dipeptide repeat proteins can influence NTR function.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Khosravi, B. et al. Cytoplasmic poly-GA aggregates impair nuclear import of TDP43 in C9orf72 ALS/FTLD. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddw432 (2016).

    Article  PubMed Central  Google Scholar 

  82. Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl Acad. Sci. USA 114, E1111–E1117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boeynaems, S. et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frottin, F., Pérez-Berlanga, M., Hartl, F. U. & Hipp, M. S. Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G(4)C(2) RNA in a cellular model. eLife https://doi.org/10.7554/eLife.62718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nanaura, H. et al. C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers. Nat. Commun. 12, 5301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vanneste, J. et al. C9orf72-generated poly-GR and poly-PR do not directly interfere with nucleocytoplasmic transport. Sci. Rep. 9, 15728 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ramic, M. et al. Epigenetic small molecules rescue nucleocytoplasmic transport and DNA damage phenotypes in C9ORF72 ALS/FTD. Brain Sci. 11, 1543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Semmelink, M. F. W., Steen, A. & Veenhoff, L. M. Measuring and interpreting nuclear transport in neurodegenerative disease–the example of C9orf72 ALS. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nishimura, A. L. et al. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133, 1763–1771 (2010).

    Article  PubMed  Google Scholar 

  90. Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell https://doi.org/10.1016/j.cell.2018.03.025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Saberi, S. et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 135, 459–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Chew, J. et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP43 proteinopathy. Mol. Neurodegener. 14, 9 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y. J. et al. Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science https://doi.org/10.1126/science.aav2606 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cook, C. N. et al. C9orf72 poly(GR) aggregation induces TDP43 proteinopathy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abb3774 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gasset-Rosa, F. et al. Cytoplasmic TDP43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP43, and cell death. Neuron 102, 339–357.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coyne, A. et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP43 dysfunction in sporadic and familial ALS. Sci. Transl. Med. 13, https://doi.org/10.1126/scitranslmed.abe1923 (2021). This study was the first to elucidate a mechanism of NPC injury in sporadic ALS, identify a cause of loss of nuclear TDP43 function in human neurons, and identify a candidate therapeutic strategy to repair NPC injury and subsequent TDP43 dysfunction.

  98. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizielinska, S. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hallberg, E., Wozniak, R. W. & Blobel, G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J. Cell Biol. 122, 513–521 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Stavru, F., Nautrup-Pedersen, G., Cordes, V. C. & Gorlich, D. Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells. J. Cell Biol. 173, 477–483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coyne, A. N. & Rothstein, J. D. The ESCRT-III protein VPS4, but not CHMP4B or CHMP2B, is pathologically increased in familial and sporadic ALS neuronal nuclei. Acta Neuropathol. Commun. 9, 127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thaller, D. J. et al. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife https://doi.org/10.7554/eLife.45284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Toyama, B. H. et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J. Cell Biol. https://doi.org/10.1083/jcb.201809123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Webster, B. M., Colombi, P., Jager, J. & Lusk, C. P. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159, 388–401 (2014). This study identified a role for the ESCRT-III pathway in NPC surveillance during cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Webster, B. M. et al. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO J. 35, 2447–2467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crampton, N., Kodiha, M., Shrivastava, S., Umar, R. & Stochaj, U. Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1. Mol. Biol. Cell 20, 5106–5116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schellenberg, G. D., Bird, T. D., Wijsman, E. M., Moore, D. K. & Martin, G. M. The genetics of Alzheimer’s disease. Biomed. Pharmacother. 43, 463–468 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Van Broeckhoven, C. Presenilins and Alzheimer disease. Nat. Genet. 11, 230–232 (1995).

    Article  PubMed  Google Scholar 

  110. Wilhelmsen, K. C., Clark, L. N., Miller, B. L. & Geschwind, D. H. Tau mutations in frontotemporal dementia. Dement. Geriatr. Cogn. Disord. 10, 88–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Karch, C. M., Cruchaga, C. & Goate, A. M. Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83, 11–26 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Prim. 1, 15056 (2015).

    Article  PubMed  Google Scholar 

  116. Olszewska, D. A., Lonergan, R., Fallon, E. M. & Lynch, T. Genetics of frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 16, 107 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Amador-Ortiz, C. et al. TDP43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Josephs, K. A. et al. Abnormal TDP43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70, 1850–1857 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA 83, 4044–4048 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wood, J. G., Mirra, S. S., Pollock, N. J. & Binder, L. I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl Acad. Sci. USA 83, 4040–4043 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Metuzals, J., Robitaille, Y., Houghton, S., Gauthier, S. & Leblanc, R. Paired helical filaments and the cytoplasmic-nuclear interface in Alzheimer’s disease. J. Neurocytol. 17, 827–833 (1988).

    Article  CAS  PubMed  Google Scholar 

  123. Paonessa, F. et al. Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia. Cell Rep. 26, 582–593.e5 (2019). This study provides evidence of nuclear lamina invaginations resulting from tau mutations in human neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cornelison, G. L., Levy, S. A., Jenson, T. & Frost, B. Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila. Aging Cell 18, e12847 (2019).

    Article  PubMed  CAS  Google Scholar 

  125. Frost, B., Bardai, F. H. & Feany, M. B. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr. Biol. 26, 129–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Gruenbaum, Y. et al. The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 226, 1–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Jahed, Z., Soheilypour, M., Peyro, M. & Mofrad, M. R. The LINC and NPC relationship – it’s complicated! J. Cell Sci. 129, 3219–3229 (2016).

    CAS  PubMed  Google Scholar 

  128. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McColgan, P. & Tabrizi, S. J. Huntington’s disease: a clinical review. Eur. J. Neurol. 25, 24–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Ross, C. A. & Tabrizi, S. J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Bañez-Coronel, M. et al. RAN translation in Huntington disease. Neuron 88, 667–677 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Woerner, A. C. et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351, 173–176 (2016). This study provides evidence that cytoplasmic aggregation can impair nucleocytoplasmic transport.

    Article  CAS  PubMed  Google Scholar 

  133. Lord, S. J., Velle, K. B., Mullins, R. D. & Fritz-Laylin, L. K. SuperPlots: communicating reproducibility and variability in cell biology. J. Cell Biol. https://doi.org/10.1083/jcb.202001064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Coyne, A. N. & Rothstein, J. D. Nuclear lamina invaginations are not a pathological feature of C9orf72 ALS/FTD. Acta Neuropathol. Commun. 9, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bischoff, F. R., Krebber, H., Kempf, T., Hermes, I. & Ponstingl, H. Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport. Proc. Natl Acad. Sci. USA 92, 1749–1753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bernad, R., van der Velde, H., Fornerod, M. & Pickersgill, H. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol. Cell. Biol. 24, 2373–2384 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fornerod, M. et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16, 807–816 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hosp, F. et al. Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep. 11, 1134–1146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Juhlen, R. & Fahrenkrog, B. Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem. Cell Biol. https://doi.org/10.1007/s00418-018-1748-8 (2018). A review of nucleoporin mutations in cell-type-specific diseases, including non-neurological diseases.

    Article  PubMed  Google Scholar 

  143. Nofrini, V., Di Giacomo, D. & Mecucci, C. Nucleoporin genes in human diseases. Eur. J. Hum. Genet. 24, 1388–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bolger, T. A. & Wente, S. R. Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J. Biol. Chem. 286, 39750–39759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 8, 668–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Folkmann, A. W. et al. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 155, 582–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Stiekema, M., van Zandvoort, M., Ramaekers, F. C. S. & Broers, J. L. V. Structural and mechanical aberrations of the nuclear lamina in disease. Cells https://doi.org/10.3390/cells9081884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).

    Article  PubMed  Google Scholar 

  150. De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Padiath, Q. S. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Kang, S. M., Yoon, M. H. & Park, B. J. Laminopathies; mutations on single gene and various human genetic diseases. BMB Rep. 51, 327–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marcelot, A., Worman, H. J. & Zinn-Justin, S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J. 288, 2757–2772 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. D’Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009). This study examined the contribution of ageing to nucleocytoplasmic transport dysfunction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. III & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012). This study identified a subset of nucleoporins as some of the longest-lived proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Fifková, E., Tonks, M. & Cullen-Dockstader, K. Changes in the nuclear pore complexes of the dentate granule cells in aged rats. Exp. Neurol. 95, 755–762 (1987).

    Article  PubMed  Google Scholar 

  159. Topple, A., Smith, G., Fifkova, E. & Cullen-Dockstader, K. Nuclear pore complex frequency in CA1 pyramidal cells of the aging rat. Mech. Ageing Dev. 51, 33–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  160. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pujol, G., Soderqvist, H. & Radu, A. Age-associated reduction of nuclear protein import in human fibroblasts. Biochem. Biophys. Res. Commun. 294, 354–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Robijns, J., Houthaeve, G., Braeckmans, K. & De Vos, W. H. Loss of nuclear envelope integrity in aging and disease. Int. Rev. Cell Mol. Biol. 336, 205–222 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Lusk, C. P. & King, M. C. The nucleus: keeping it together by keeping it apart. Curr. Opin. Cell Biol. 44, 44–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hatch, E. M. & Hetzer, M. W. Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Khadempar, S. et al. CRISPR-Cas9 in genome editing: Its function and medical applications. J. Cell Physiol. 234, 5751–5761 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Ababneh, N. A. et al. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddaa106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. DeVos, S. L. & Miller, T. M. Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics 10, 486–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schoch, K. M. & Miller, T. M. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94, 1056–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03626012 (2022).

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03945279 (2021).

  174. Franks, T. M. et al. Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes Dev. 30, 1155–1171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Agote-Aran, A. et al. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO J. 39, e104467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Krull, I. et al. Two patients with an identical novel mutation in the AAAS gene and similar phenotype of triple A (Allgrove) syndrome. Exp. Clin. Endocrinol. Diabetes 118, 530–536 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Milenkovic, T. et al. Triple A syndrome: 32 years experience of a single centre (1977-2008). Eur. J. Pediatr. 169, 1323–1328 (2010).

    Article  PubMed  Google Scholar 

  179. Vallet, A. E. et al. Neurological features in adult triple-A (Allgrove) syndrome. J. Neurol. 259, 39–46 (2012).

    Article  PubMed  Google Scholar 

  180. Cronshaw, J. M. & Matunis, M. J. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc. Natl Acad. Sci. USA 100, 5823–5827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bonnin, E. et al. Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet. 14, e1007845 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Miyake, N. et al. Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am. J. Hum. Genet. 97, 555–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rosti, R. O. et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J. Med. Genet. 54, 399–403 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, X. et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Neilson, D. E. et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am. J. Hum. Genet. 84, 44–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Melià, M. J. et al. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene. Brain 136, 1508–1517 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Van Bergen, N. J. et al. Pathogenic variants in nucleoporin TPR (translocated promoter region, nuclear basket protein) cause severe intellectual disability in humans. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddab248 (2021).

    Article  Google Scholar 

  188. Strambio-De-Castillia, C., Niepel, M. & Rout, M. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.N.C. is supported by funding from NIH grant K99NS123242. J.D.R. is supported by funding from the ALS Association, ALS Finding a Cure, the Chan Zuckerberg Initiative, the Department of Defense, F Prime, NIH grants P01NS099114, P01NS084974, R01NS094239 and R01NS122236TEDCO, the Muscular Dystrophy Association, The Robert Packard Center for ALS Research Answer ALS Program, and the Virginia Gentleman Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Alyssa N. Coyne or Jeffrey D. Rothstein.

Ethics declarations

Competing interests

A.N.C. and J.D.R. have submitted a patent application (US Patent Application Serial No. 63/111,882) regarding methods for inhibiting CHMP7 expression in neuronal cells for the treatment of neurodegenerative disorders.

Peer review

Peer review information

Nature Reviews Neurology thanks M. Rout and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coyne, A.N., Rothstein, J.D. Nuclear pore complexes — a doorway to neural injury in neurodegeneration. Nat Rev Neurol 18, 348–362 (2022). https://doi.org/10.1038/s41582-022-00653-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00653-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing