Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recessive cerebellar and afferent ataxias — clinical challenges and future directions

Abstract

Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype–phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.

Key points

  • Cerebellar and afferent ataxias have a wide range of aetiologies, including paraneoplastic syndromes, infections, autoimmune disorders, drugs, toxicities, vitamin deficiencies and genetics.

  • Autosomal recessive disorders that have cerebellar involvement and a dorsal root ganglionopathy include Friedreich ataxia, cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), ataxia with vitamin E deficiency, and POLG-related neuropathy–ataxia spectrum disorders.

  • CANVAS is caused by biallelic intronic expansions in the RFC1 gene and can present as unexplained, late-onset ataxia or idiopathic sensory neuronopathy.

  • The main pathophysiological mechanisms of cerebellar and afferent ataxias are mitochondrial dysfunction and DNA break repair defects, possibly owing to the high energy demands of sensory and cerebellar neurons.

  • Promising therapies in Friedreich ataxia aim to increase FXN transcription, increase levels of frataxin, reduce oxidative stress, reduce iron levels or replace the mutated gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular pathways involved in recessive cerebellar and afferent ataxias.
Fig. 2: Therapeutic targets of experimental therapies in Friedreich ataxia.

Similar content being viewed by others

References

  1. Amato, A. A. & Ropper, A. H. Sensory ganglionopathy. N. Engl. J. Med. 383, 1657–1662 (2020). A state-of-the-art review of acquired causes of sensory ganglionopathy.

    Article  PubMed  Google Scholar 

  2. Rossi, M. et al. The genetic nomenclature of recessive cerebellar ataxias. Mov. Disord. 33, 1056–1076 (2018). This article presents the revised nomenclature of recessive cerebellar ataxias, in which an ATX prefix is followed by the gene name.

    Article  PubMed  Google Scholar 

  3. Beaudin, M. et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum 18, 1098–1125 (2019). A scoping systematic review of the literature on recessive cerebellar ataxias with a clinical classification and diagnostic approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruano, L., Melo, C., Silva, M. C. & Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42, 174–183 (2014).

    Article  PubMed  Google Scholar 

  5. Cossee, M. et al. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl Acad. Sci. USA 94, 7452–7457 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, R. et al. Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann. Neurol. 56, 898–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Montermini, L. et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet. 6, 1261–1266 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Gerhardt, J. et al. Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep. 16, 1218–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Biase, I. et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann. Neurol. 61, 55–60 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Plasterer, H. L. et al. Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich’s ataxia. PLoS ONE 8, e63958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delatycki, M. B. & Bidichandani, S. I. Friedreich ataxia — pathogenesis and implications for therapies. Neurobiol. Dis. 132, 104606 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Rodden, L. N. et al. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum. Mol. Genet. 29, 3818–3829 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol. 15, 1346–1354 (2016).

    Article  PubMed  Google Scholar 

  15. Lecocq, C. et al. Delayed-onset Friedreich’s ataxia revisited. Mov. Disord. 31, 62–69 (2016).

    Article  PubMed  Google Scholar 

  16. Reetz, K. et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 14, 174–182 (2015).

    Article  PubMed  Google Scholar 

  17. Koeppen, A. H., Becker, A. B., Qian, J., Gelman, B. B. & Mazurkiewicz, J. E. Friedreich ataxia: developmental failure of the dorsal root entry zone. J. Neuropathol. Exp. Neurol. 76, 969–977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandolfo, M. Neurologic outcomes in Friedreich ataxia: study of a single-site cohort. Neurol. Genet. 6, e415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Indelicato, E. et al. Onset features and time to diagnosis in Friedreich’s ataxia. Orphanet J. Rare Dis. 15, 198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pousset, F. et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 72, 1334–1341 (2015). This study demonstrates the evolution of long-term cardiac complications and predictors of survival in patients with Friedreich ataxia.

    Article  PubMed  Google Scholar 

  21. Takazaki, K. A. G. et al. Pre-clinical left ventricular myocardial remodeling in patients with Friedreich’s ataxia: a cardiac MRI study. PLoS ONE 16, e0246633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanson, E., Sheldon, M., Pacheco, B., Alkubeysi, M. & Raizada, V. Heart disease in Friedreich’s ataxia. World J. Cardiol. 11, 1–12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koeppen, A. H. et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 10, e0116396 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hamedani, A. G. et al. Longitudinal analysis of contrast acuity in Friedreich ataxia. Neurol. Genet. 4, e250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pandolfo, M. & Manto, M. Cerebellar and afferent ataxias. Continuum 19, 1312–1343 (2013).

    PubMed  Google Scholar 

  26. Patel, M. et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann. Clin. Transl. Neurol. 3, 684–694 (2016). This article presents the 5-year longitudinal data in the FA-COMS study, a large international collaborative study on the natural history of Friedreich ataxia.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rummey, C. et al. Psychometric properties of the Friedreich ataxia rating scale. Neurol. Genet. 5, 371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet Neurol. 20, 362–372 (2021). This article presents the 4-year follow-up data in the EFACTS study, a large European study of patients with Friedreich ataxia, including assessment of the sensitivity to change of different outcome scales.

    Article  PubMed  Google Scholar 

  29. Naeije, G. et al. Cerebellar cognitive disorder parallels cerebellar motor symptoms in Friedreich ataxia. Ann. Clin. Transl. Neurol. 7, 1050–1054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Argyropoulos, G. P. D. et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum 19, 102–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pagovich, O. E. et al. Corneal confocal microscopy: neurologic disease biomarker in Friedreich ataxia. Ann. Neurol. 84, 893–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Koeppen, A. H. & Mazurkiewicz, J. E. Friedreich ataxia: neuropathology revised. J. Neuropathol. Exp. Neurol. 72, 78–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Morral, J. A., Davis, A. N., Qian, J., Gelman, B. B. & Koeppen, A. H. Pathology and pathogenesis of sensory neuropathy in Friedreich’s ataxia. Acta Neuropathol. 120, 97–108 (2010).

    Article  PubMed  Google Scholar 

  34. Koeppen, A. H., Becker, A. B., Qian, J. & Feustel, P. J. Friedreich ataxia: hypoplasia of spinal cord and dorsal root ganglia. J. Neuropathol. Exp. Neurol. 76, 101–108 (2017).

    CAS  PubMed  Google Scholar 

  35. Kemp, K. C. et al. Purkinje cell injury, structural plasticity and fusion in patients with Friedreich’s ataxia. Acta Neuropathol. Commun. 4, 53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsou, A. Y. et al. Mortality in Friedreich ataxia. J. Neurol. Sci. 307, 46–49 (2011).

    Article  PubMed  Google Scholar 

  37. Bhidayasiri, R., Perlman, S. L., Pulst, S. M. & Geschwind, D. H. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch. Neurol. 62, 1865–1869 (2005).

    Article  PubMed  Google Scholar 

  38. Coppola, G. et al. Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J. Neurol. 246, 353–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Galea, C. A. et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79, 485–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Delatycki, M. B. et al. G130V, a common FRDA point mutation, appears to have arisen from a common founder. Hum. Genet. 105, 343–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Cossee, M. et al. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45, 200–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Rezende, T. J. R. et al. Developmental and neurodegenerative damage in Friedreich’s ataxia. Eur. J. Neurol. 26, 483–489 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Selvadurai, L. P., Harding, I. H., Corben, L. A. & Georgiou-Karistianis, N. Cerebral abnormalities in Friedreich ataxia: a review. Neurosci. Biobehav. Rev. 84, 394–406 (2018).

    Article  PubMed  Google Scholar 

  44. Harding, I. H. et al. Brain structure and degeneration staging in Friedreich ataxia: magnetic resonance imaging volumetrics from the ENIGMA-ataxia working group. Ann. Neurol. 90, 570–583 (2021). Results of a large-scale international collaboration on imaging findings in Friedreich ataxia, covering the whole spectrum of findings according to age at onset and disease duration.

    Article  PubMed  Google Scholar 

  45. Selvadurai, L. P. et al. Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: the IMAGE-FRDA study. Hum. Brain Mapp. 41, 1920–1933 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rezende, T. J. et al. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov. Disord. 31, 70–78 (2016).

    Article  PubMed  Google Scholar 

  47. Vavla, M. et al. Functional and structural brain damage in Friedreich’s ataxia. Front. Neurol. 9, 747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Selvadurai, L. P. et al. Longitudinal structural brain changes in Friedreich ataxia depend on disease severity: the IMAGE-FRDA study. J. Neurol. 268, 4178–4189 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Cortese, A. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 51, 649–658 (2019). In this study, RFC1 intronic expansions were identified as the underlying genetic defect in CANVAS and the clinical spectrum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rafehi, H. et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 Causes CANVAS. Am. J. Hum. Genet. 105, 151–165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beecroft, S. J. et al. A Maori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain 143, 2673–2680 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scriba, C. K. et al. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain 143, 2904–2910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tsuchiya, M. et al. RFC1 repeat expansion in Japanese patients with late-onset cerebellar ataxia. J. Hum. Genet. 65, 1143–1147 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan, R. et al. RFC1 intronic repeat expansions absent in pathologically confirmed multiple systems atrophy. Mov. Disord. 35, 1277–1279 (2020).

    Article  PubMed  Google Scholar 

  55. Wan, L. et al. Biallelic intronic AAGGG expansion of RFC1 is related to multiple system atrophy. Ann. Neurol. 88, 1132–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Akcimen, F. et al. Investigation of the RFC1 repeat expansion in a Canadian and a Brazilian ataxia cohort: identification of novel conformations. Front. Genet. 10, 1219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan, Y. et al. No biallelic intronic AAGGG repeat expansion in RFC1 was found in patients with late-onset ataxia and MSA. Parkinsonism Relat. Disord. 73, 1–2 (2020).

    Article  PubMed  Google Scholar 

  58. Van Daele, S. H. et al. Diagnostic yield of testing for RFC1 repeat expansions in patients with unexplained adult-onset cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry 91, 1233–1234 (2020).

    Article  PubMed  Google Scholar 

  59. Aboud Syriani, D. et al. Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort. Neurol. Genet. 6, e440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kiktev, D. A., Sheng, Z., Lobachev, K. S. & Petes, T. D. GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 115, E7109–E7118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mousavi, N., Shleizer-Burko, S., Yanicky, R. & Gymrek, M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 47, e90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abu Diab, M. et al. The G-rich repeats in FMR1 and C9orf72 loci are hotspots for local unpairing of DNA. Genetics 210, 1239–1252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cortese, A. et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion. Brain 143, 480–490 (2020). This article presents the largest series of patients with biallelic RFC1 mutations published so far, with detailed clinical phenotyping.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Traschutz, A. et al. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 96, e1369–e1382 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Curro, R. et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain 144, 1542–1550 (2021). This article shows the phenotypic variability of biallelic RFC1 mutations and details the sensory involvement.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Szmulewicz, D. J. et al. Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Neurology 76, 1903–1910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montaut, S. et al. Biallelic RFC1-expansion in a French multicentric sporadic ataxia cohort. J. Neurol. 268, 3337–3343 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Szmulewicz, D. J. et al. Dorsal root ganglionopathy is responsible for the sensory impairment in CANVAS. Neurology 82, 1410–1415 (2014). This article details the neuropathological findings of CANVAS and identifies the ganglionopathy as responsible for sensory involvement.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Burke, D. & Halmagyi, G. M. Normal tendon reflexes despite absent sensory nerve action potentials in CANVAS: a neurophysiological study. J. Neurol. Sci. 387, 75–79 (2018).

    Article  PubMed  Google Scholar 

  70. Baloh, R. H., Jen, J. C., Kim, G. & Baloh, R. W. Chronic cough due to Thr124Met mutation in the peripheral myelin protein zero (MPZ gene). Neurology 62, 1905–1906 (2004).

    Article  PubMed  Google Scholar 

  71. Pelosi, L. et al. Peripheral nerves are pathologically small in cerebellar ataxia neuropathy vestibular areflexia syndrome: a controlled ultrasound study. Eur. J. Neurol. 25, 659–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Kumar, K. R. et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjogren syndrome. Brain 143, e82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Huin, V. et al. Motor neuron pathology in CANVAS due to RFC1 expansions. Brain https://doi.org/10.1093/brain/awab449 (2021).

    Article  PubMed  Google Scholar 

  74. El Euch-Fayache, G., Bouhlal, Y., Amouri, R., Feki, M. & Hentati, F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain 137, 402–410 (2014).

    Article  PubMed  Google Scholar 

  75. Becker, A. E., Vargas, W. & Pearson, T. S. Ataxia with vitamin E deficiency may present with cervical dystonia. Tremor Other Hyperkinet. Mov. 6, 374 (2016).

    Article  Google Scholar 

  76. Yokota, T. et al. Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann. Neurol. 41, 826–832 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Larnaout, A. et al. Friedreich’s ataxia with isolated vitamin E deficiency: a neuropathological study of a Tunisian patient. Acta Neuropathol. 93, 633–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Gabsi, S. et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur. J. Neurol. 8, 477–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Rahman, S. & Copeland, W. C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 15, 40–52 (2019). This article presents the wide spectrum of neurological manifestations associated with POLG mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lax, N. Z. et al. Sensory neuronopathy in patients harbouring recessive polymerase gamma mutations. Brain 135, 62–71 (2012).

    Article  PubMed  Google Scholar 

  81. Mancuso, M. et al. “Mitochondrial neuropathies”: a survey from the large cohort of the Italian Network. Neuromuscul. Disord. 26, 272–276 (2016).

    Article  PubMed  Google Scholar 

  82. Synofzik, M., Srulijes, K., Godau, J., Berg, D. & Schols, L. Characterizing POLG ataxia: clinics, electrophysiology and imaging. Cerebellum 11, 1002–1011 (2012).

    Article  PubMed  Google Scholar 

  83. Lonnqvist, T., Paetau, A., Nikali, K., von Boguslawski, K. & Pihko, H. Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): neuropathological features. J. Neurol. Sci. 161, 57–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Otero, M. G. et al. Novel pathogenic COX20 variants causing dysarthria, ataxia, and sensory neuropathy. Ann. Clin. Transl. Neurol. 6, 154–160 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Dong, H. L. et al. Bi-allelic loss of function variants in COX20 gene cause autosomal recessive sensory neuronopathy. Brain 144, 2457–2470 (2021).

    Article  PubMed  Google Scholar 

  86. Synofzik, M. et al. Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J. Rare Dis. 8, 41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Duquette, A., Brais, B., Bouchard, J. P. & Mathieu, J. Clinical presentation and early evolution of spastic ataxia of Charlevoix-Saguenay. Mov. Disord. 28, 2011–2014 (2013).

    Article  PubMed  Google Scholar 

  88. Levy, A. & Lang, A. E. Ataxia-telangiectasia: a review of movement disorders, clinical features, and genotype correlations. Mov. Disord. 33, 1238–1247 (2018).

    Article  PubMed  Google Scholar 

  89. Suarez, F. et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J. Clin. Oncol. 33, 202–208 (2015).

    Article  PubMed  Google Scholar 

  90. Anheim, M. et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain 132, 2688–2698 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ronsin, S. et al. A new MRI marker of ataxia with oculomotor apraxia. Eur. J. Radiol. 110, 187–192 (2019).

    Article  PubMed  Google Scholar 

  92. van de Warrenburg, B. P. et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch. Neurol. 61, 257–261 (2004). This study details peripheral nerve involvement in dominant spinocerebellar ataxias.

    Article  PubMed  Google Scholar 

  93. Pelosi, L. et al. Spinocerebellar ataxia type 2-neuronopathy or neuropathy? Muscle Nerve 60, 271–278 (2019).

    Article  PubMed  Google Scholar 

  94. Pelosi, L., Mulroy, E., Rodrigues, M. J. & Roxburgh, R. H. Neuronopathy and neuropathy in autosomal dominant spino-cerebellar ataxia (SCA): a preliminary peripheral nerve ultrasound study. Clin. Neurophysiol. 128, 2436–2437 (2017).

    Article  PubMed  Google Scholar 

  95. Estrada, R., Galarraga, J., Orozco, G., Nodarse, A. & Auburger, G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 97, 306–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Synofzik, M., Puccio, H., Mochel, F. & Schöls, L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron 101, 560–583 (2019). An in-depth review of the pathophysiological mechanisms involved in recessive cerebellar ataxias.

    Article  CAS  PubMed  Google Scholar 

  97. Doni, D. et al. The displacement of frataxin from the mitochondrial cristae correlates with abnormal respiratory supercomplexes formation and bioenergetic defects in cells of Friedreich ataxia patients. FASEB J. 35, e21362 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Lynch, D. R. & Farmer, G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal. 5, NS20200093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shan, Y. et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid. Redox Signal. 19, 1481–1493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. D’Oria, V. et al. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int. J. Mol. Sci. 14, 7853–7865 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Koeppen, A. H. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J. Neurol. Sci. 303, 1–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martelli, A. et al. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab. 21, 311–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Du, J. et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biol. 32, 101483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hakonen, A. H. et al. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hum. Mol. Genet. 17, 3822–3835 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Johnson, J., Mercado-Ayon, E., Clark, E., Lynch, D. & Lin, H. Drp1-dependent peptide reverse mitochondrial fragmentation, a homeostatic response in Friedreich ataxia. Pharmacol. Res. Perspect. 9, e00755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bradshaw, T. Y. et al. A reduction in Drp1-mediated fission compromises mitochondrial health in autosomal recessive spastic ataxia of Charlevoix Saguenay. Hum. Mol. Genet. 25, 3232–3244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Girard, M. et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc. Natl Acad. Sci. USA 109, 1661–1666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shiomi, Y. & Nishitani, H. Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes 8, 52 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  109. Zhang, W., Feng, J. & Li, Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci. 10, 37 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Overmeer, R. M. et al. Replication factor C recruits DNA polymerase delta to sites of nucleotide excision repair but is not required for PCNA recruitment. Mol. Cell Biol. 30, 4828–4839 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shivji, M. K., Podust, V. N., Hubscher, U. & Wood, R. D. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34, 5011–5017 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Juhasz, S., Elbakry, A., Mathes, A. & Lobrich, M. ATRX Promotes DNA repair synthesis and sister chromatid exchange during homologous recombination. Mol. Cell 71, 11–24.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Gisatulin, M. et al. Clinical spectrum of the pentanucleotide repeat expansion in the RFC1 gene in ataxia syndromes. Neurology 95, e2912–e2923 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Pizzamiglio, L., Focchi, E. & Antonucci, F. ATM protein kinase: old and new implications in neuronal pathways and brain circuitry. Cells 9, 1969 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  115. Caldecott, K. W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010). A landmark paper on the role of ATM in regulating oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  117. Ghosh, A. et al. SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. Sci. Adv. 5, eaax9778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sykora, P., Croteau, D. L., Bohr, V. A. & Wilson, D. M. 3rd Aprataxin localizes to mitochondria and preserves mitochondrial function. Proc. Natl Acad. Sci. USA 108, 7437–7442 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tahbaz, N., Subedi, S. & Weinfeld, M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res. 40, 3484–3495 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Fuss, J. O., Tsai, C. L., Ishida, J. P. & Tainer, J. A. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim. Biophys. Acta 1853, 1253–1271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bhalla, A. D., Khodadadi-Jamayran, A., Li, Y., Lynch, D. R. & Napierala, M. Deep sequencing of mitochondrial genomes reveals increased mutation load in Friedreich’s ataxia. Ann. Clin. Transl. Neurol. 3, 523–536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moreno-Lorite, J., Perez-Luz, S., Katsu-Jimenez, Y., Oberdoerfer, D. & Diaz-Nido, J. DNA repair pathways are altered in neural cell models of frataxin deficiency. Mol. Cell Neurosci. 111, 103587 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Rojas, P. et al. Neuro-ophthalmological findings in Friedreich’s ataxia. J. Pers. Med. 11, 708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Castelli, L. M., Huang, W. P., Lin, Y. H., Chang, K. Y. & Hautbergue, G. M. Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem. Soc. Trans. 49, 775–792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koeppen, A. H., Ramirez, R. L., Becker, A. B. & Mazurkiewicz, J. E. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol. Commun. 4, 46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nachun, D. et al. Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich’s ataxia patients. Hum. Mol. Genet. 27, 2965–2977 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McGrath-Morrow, S. A. et al. Inflammation and transcriptional responses of peripheral blood mononuclear cells in classic ataxia telangiectasia. PLoS ONE 13, e0209496 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Libri, V. et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 384, 504–513 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Reetz, K. et al. Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA). Neurol. Res. Pract. 1, 33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lynch, D. R., Schadt, K., Kichula, E., McCormack, S. & Lin, K. Y. Friedreich ataxia: multidisciplinary clinical care. J. Multidiscip. Healthc. 14, 1645–1658 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3, e1958 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Soragni, E. et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76, 489–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vilema-Enriquez, G. et al. Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in Friedreich’s ataxia patient cells. J. Biol. Chem. 295, 17973–17985 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Li, L., Matsui, M. & Corey, D. R. Activating frataxin expression by repeat-targeted nucleic acids. Nat. Commun. 7, 10606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, L. et al. Activation of frataxin protein expression by antisense oligonucleotides targeting the mutant expanded repeat. Nucleic Acid. Ther. 28, 23–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Erwin, G. S. et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358, 1617–1622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hui, C. K., Dedkova, E. N., Montgomery, C. & Cortopassi, G. Dimethyl fumarate dose-dependently increases mitochondrial gene expression and function in muscle and brain of Friedreich’s ataxia model mice. Hum. Mol. Genet. 29, 3954–3965 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Jasoliya, M. et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS ONE 14, e0217776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article  PubMed  Google Scholar 

  140. Hayashi, G. et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum. Mol. Genet. 26, 2864–2873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Alfedi, G. et al. Drug repositioning screening identifies etravirine as a potential therapeutic for Friedreich’s ataxia. Mov. Disord. 34, 323–334 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Lynch, D. R. et al. Randomized, double-blind, placebo-controlled study of interferon- γ 1b in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6, 546–553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Acquaviva, F. et al. Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 7, 360–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Sacca, F. et al. Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia. Mov. Disord. 31, 734–741 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Miller, J. L. et al. Erythropoietin and small molecule agonists of the tissue-protective erythropoietin receptor increase FXN expression in neuronal cells in vitro and in Fxn-deficient KIKO mice in vivo. Neuropharmacology 123, 34–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Igoillo-Esteve, M. et al. Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia. JCI Insight 5, e134221 (2020).

    Article  PubMed Central  Google Scholar 

  147. Vyas, P. M. et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum. Mol. Genet. 21, 1230–1247 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Nabhan, J. F. et al. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci. Rep. 6, 20019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat. Med. 20, 542–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Piguet, F. et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol. Ther. 26, 1940–1952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gottesfeld, J. M. Molecular mechanisms and therapeutics for the GAA.TTC expansion disease Friedreich ataxia. Neurotherapeutics 16, 1032–1049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ocana-Santero, G., Diaz-Nido, J. & Herranz-Martin, S. Future prospects of gene therapy for Friedreich’s ataxia. Int. J. Mol. Sci. 22, 1815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lynch, D. R. et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe study). Ann. Neurol. 89, 212–225 (2021). This phase II study produced promising results with respect to the efficacy of omaveloxolone, a molecule that targets oxidative stress, in patients with Friedreich ataxia.

    Article  CAS  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02255435 (2021).

  155. Di Prospero, N. A., Baker, A., Jeffries, N. & Fischbeck, K. H. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 6, 878–886 (2007).

    Article  PubMed  CAS  Google Scholar 

  156. Lynch, D. R., Perlman, S. L. & Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch. Neurol. 67, 941–947 (2010).

    Article  PubMed  Google Scholar 

  157. Kearney, M., Orrell, R. W., Fahey, M., Brassington, R. & Pandolfo, M. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst. Rev. 8, CD007791 (2016).

    Google Scholar 

  158. Zesiewicz, T. et al. Double-blind, randomized and controlled trial of EPI-743 in Friedreich’s ataxia. Neurodegener. Dis. Manag. 8, 233–242 (2018).

    Article  PubMed  Google Scholar 

  159. Yiu, E. M. et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 262, 1344–1353 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03933163 (2021).

  161. Zesiewicz, T. et al. Randomized, clinical trial of RT001: early signals of efficacy in Friedreich’s ataxia. Mov. Disord. 33, 1000–1005 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04102501 (2021).

  163. Marmolino, D. et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS ONE 5, e10025 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rodriguez-Pascau, L. et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia. Neurobiol. Dis. 148, 105162 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Minoryx Therapeutics. Minoryx’s clinical candidate leriglitazone shows clinical benefit in a proof of concept phase 2 study in Friedreich’s ataxia. Minoryx https://www.minoryx.com/media/minoryx’s_clinical_candidate_leriglitazone_shows_clinical_benefit_in_a_proof_of_concept_phase_2_study_in_friedreichs_ataxia/ (2020).

  166. Zhao, H. et al. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci. Rep. 7, 9840 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05168774 (2021).

  168. Pandolfo, M. et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann. Neurol. 76, 509–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Romano, S. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 985–991 (2015). This study shows a positive effect of riluzole on SARA score in patients with hereditary ataxia, including some with Friedreich ataxia.

    Article  CAS  PubMed  Google Scholar 

  170. Rummey, C., Kichula, E. & Lynch, D. R. Clinical trial design for Friedreich ataxia — where are we now and what do we need? Expert Opin. Orphan Drugs 6, 219–230 (2018).

    Article  Google Scholar 

  171. Rummey, C. et al. Test-retest reliability of the Friedreich’s ataxia rating scale. Ann. Clin. Transl. Neurol. 7, 1708–1712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schmitz-Hubsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Burk, K. et al. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov. Disord. 24, 1779–1784 (2009).

    Article  PubMed  Google Scholar 

  174. Rummey, C., Farmer, J. M. & Lynch, D. R. Predictors of loss of ambulation in Friedreich’s ataxia. EClinicalMedicine 18, 100213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Milne, S. C., Corben, L. A., Georgiou-Karistianis, N., Delatycki, M. B. & Yiu, E. M. Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabil. Neural Repair 31, 609–622 (2017).

    Article  PubMed  Google Scholar 

  176. Zesiewicz, T. A. et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 90, 464–471 (2018). An evidence-based guideline on the management of cerebellar ataxia.

    Article  PubMed  PubMed Central  Google Scholar 

  177. van de Warrenburg, B. P. et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 21, 552–562 (2014). An evidence-based guideline on the diagnosis and management of chronic ataxias in adults.

    Article  PubMed  Google Scholar 

  178. Ilg, W. et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13, 248–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Milne, S. C. et al. Rehabilitation for ataxia study: protocol for a randomised controlled trial of an outpatient and supported home-based physiotherapy programme for people with hereditary cerebellar ataxia. BMJ Open 10, e040230 (2020).

    PubMed  PubMed Central  Google Scholar 

  180. van Os, N. J. H. et al. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev. Med. Child Neurol. 59, 680–689 (2017).

    Article  PubMed  Google Scholar 

  181. Corben, L. A. et al. Consensus clinical management guidelines for Friedreich ataxia. Orphanet J. Rare Dis. 9, 184 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chintalaphani, S. R., Pineda, S. S., Deveson, I. W. & Kumar, K. R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9, 98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Henao, A. I. et al. Characteristic brain MRI findings in ataxia-neuropathy spectrum related to POLG mutation. Neuroradiol. J. 29, 46–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lonnqvist, T., Paetau, A., Valanne, L. & Pihko, H. Recessive twinkle mutations cause severe epileptic encephalopathy. Brain 132, 1553–1562 (2009).

    Article  PubMed  Google Scholar 

  185. Szklarczyk, R. et al. A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia. Hum. Mol. Genet. 22, 656–667 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B. wrote the manuscript. All authors researched data for the article, made substantial contributions to discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nicolas Dupre.

Ethics declarations

Competing interests

M.P. has received grants and personal fees from Biomarin, Minoryx and Voyager Therapeutics, and has received, grants from the European Commission — 7th Framework Programme, Fonds National de la Recherche Scientifique (Belgium) and the Friedreich’s Ataxia Research Alliance, and personal fees from Apopharma, Exicure, Design Therapeutics, Aavanti Bio, and UCB. He has a patent for methods to diagnose Friedreich ataxia (WO1997032996A1), royalties for which have been paid by Athena Diagnostics. None of these disclosures represent a conflict of interest that may be perceived as biasing the content of this manuscript. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks L. Corben, C. Tranchant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

R-loops

Three-stranded DNA–RNA hybrid structures that can occur during transcription and cause replication stress, gene silencing, chromatin alterations and genome instability.

Pes cavus

Deformation of the foot with a high plantar longitudinal arch, which can be associated with equinus deformity and clawing of the toes.

Crus I

A hemispheric subdivision of cerebellar lobule VII, located above the horizontal fissure.

Bergmann gliosis

A distinctive reactive histological pattern that occurs after cerebellar insult with hyperplasia of radial astrocytes following Purkinje cell loss.

H reflex

A late-response electrophysiological test performed at the soleus muscle that assesses the integrity of the Aα muscle spindles as afference and α motor neurons as efference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaudin, M., Manto, M., Schmahmann, J.D. et al. Recessive cerebellar and afferent ataxias — clinical challenges and future directions. Nat Rev Neurol 18, 257–272 (2022). https://doi.org/10.1038/s41582-022-00634-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00634-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing