Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions

Abstract

Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2–3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases — similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.

Key points

  • Pathogenic non-coding CGG repeat expansions in different genes cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy and oculopharyngodistal myopathy, respectively.

  • CGG repeat expansion disorders have overlapping clinical, MRI and histopathological features, including parkinsonism, ataxia, dementia, autonomic dysfunctions, myopathy, ubiquitin-positive inclusion bodies, middle cerebellar peduncle hyperintensity and leukoencephalopathy.

  • RNA toxicity, disturbance of membraneless organelle function, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment are likely molecular mechanisms.

  • Development of novel disease models, single-cell expression profiling and greater understanding of pathophysiological mechanisms and the effects of various repeat lengths and repeat interruptions could facilitate the development of therapeutic approaches.

  • Short antisense oligonucleotides, CGG repeat binding molecules, histone acetyltransferase inhibitors, heat shock proteins and heat shock response inducers have therapeutic potential.

  • CGG repeat expansion diseases might represent manifestations of an underlying non-coding CGG expansion neuromyodegenerative syndrome in which different organs are affected to varying degrees according to the gene location of the repeat expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible interventions in the pathogenesis of CGG repeat disease.

Similar content being viewed by others

References

  1. Richard, G. F., Kerrest, A. & Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev. 72, 686–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Richards, R. I. Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum. Mol. Genet. 10, 2187–2194 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Almeida, B., Fernandes, S., Abreu, I. A. & Macedo-Ribeiro, S. Trinucleotide repeats: a structural perspective. Front. Neurol. 4, 76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagerman, R. J. et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57, 127–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Murray, A., Webb, J., Grimley, S., Conway, G. & Jacobs, P. Studies of FRAXA and FRAXE in women with premature ovarian failure. J. Med. Genet. 35, 637–640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishiura, H. et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51, 1222–1232 (2019). This study was the first to demonstrate the association between CGG repeat expansions in genes and NIID, OPML and OPDM.

    Article  CAS  PubMed  Google Scholar 

  8. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Tian, Y. et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am. J. Hum. Genet. 105, 166–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deng, J. et al. Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am. J. Hum. Genet. 106, 793–804 (2020). This study was the first to demonstrate the association between CGG expansions in the GIPC1 gene and OPDM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu, Y. H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16, 1530–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loesch, D. & Hagerman, R. Unstable mutations in the FMR1 gene and the phenotypes. Adv. Exp. Med. Biol. 769, 78–114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Arocena, D. & Hagerman, P. J. Advances in understanding the molecular basis of FXTAS. Hum. Mol. Genet. 19, R83–R89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacquemont, S. et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 291, 460–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Revenga, L. et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur. J. Hum. Genet. 17, 1359–1362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabal-Herrera, A. M., Tassanakijpanich, N., Salcedo-Arellano, M. J. & Hagerman, R. J. Fragile X-associated tremor/ataxia syndrome (FXTAS): pathophysiology and clinical implications. Int. J. Mol. Sci. 21, 4391 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  18. Jacquemont, S. et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am. J. Hum. Genet. 72, 869–878 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zafarullah, M. & Tassone, F. Fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Mol. Biol. 1942, 173–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Gelpi, E. et al. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain 140, e51 (2017).

    Article  PubMed  Google Scholar 

  21. Lechpammer, M. et al. Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases. Croat. Med. J. 58, 310–315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Godler, D. E. et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum. Mol. Genet. 19, 1618–1632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schneider, A. et al. Elevated FMR1-mRNA and lowered FMRP–a double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl. Psychiatry 10, 205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sung, J. H., Ramirez-Lassepas, M., Mastri, A. R. & Larkin, S. M. An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J. Neuropathol. Exp. Neurol. 39, 107–130 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2019).

    Article  Google Scholar 

  27. Sone, J. et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 139, 3170–3186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liang, H. et al. Clinical and pathological features in adult-onset NIID patients with cortical enhancement. J. Neurol. 267, 3187–3198 (2020).

    Article  PubMed  Google Scholar 

  29. Yau, W. Y. et al. Low prevalence of NOTCH2NLC GGC repeat expansion in white patients with movement disorders. Mov. Disord. 36, 251–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, L. et al. A long time radiological follow-up of neuronal intranuclear inclusion disease: two case reports. Medicine 97, e13544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sone, J. et al. Neuronal intranuclear hyaline inclusion disease showing motor-sensory and autonomic neuropathy. Neurology 65, 1538–1543 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chintalaphani, S. R., Pineda, S. S., Deveson, I. W. & Kumar, K. R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9, 98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma, D. et al. Association of NOTCH2NLC repeat expansions with parkinson disease. JAMA Neurol. 77, 1559–1563 (2020). This was the first study to identify CGG expansions in NOTCH2NLC in patients with PD.

    Article  PubMed  Google Scholar 

  34. Greco, C. M. et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129, 243–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Woulfe, J. M. Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol. Appl. Neurobiol. 33, 2–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Okamura, S. et al. A case of neuronal intranuclear inclusion disease with recurrent vomiting and without apparent DWI abnormality for the first seven years. Heliyon 6, e04675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wenzel, H. J., Hunsaker, M. R., Greco, C. M., Willemsen, R. & Berman, R. F. Ubiquitin-positive intranuclear inclusions in neuronal and glial cells in a mouse model of the fragile X premutation. Brain Res. 1318, 155–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Q. Y. et al. Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain 143, 222–233 (2020). This study was the first to demonstrate the association between CGG expansions in NOTCH2NLC and essential tremor.

    Article  PubMed  Google Scholar 

  39. Ng, A. S. L. et al. NOTCH2NLC GGC repeat expansions are associated with sporadic essential tremor: variable disease expressivity on long-term follow-up. Ann. Neurol. 88, 614–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Fang, P. et al. Repeat expansion scanning of the NOTCH2NLC gene in patients with multiple system atrophy. Ann. Clin. Transl. Neurol. 7, 517–526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashi, T. et al. Heterozygous GGC repeat expansion of NOTCH2NLC in a patient with neuronal intranuclear inclusion disease and progressive retinal dystrophy. Ophthalmic Genet. 41, 93–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Jiao, B. et al. Identification of expanded repeats in NOTCH2NLC in neurodegenerative dementias. Neurobiol. Aging 89, 142.e1–142.e7 (2020). The study was the first to demonstrate of the association between CGG expansions in NOTCH2NLC and dementia.

    Article  CAS  Google Scholar 

  43. Okubo, M. et al. GGC repeat expansion of NOTCH2NLC in adult patients with leukoencephalopathy. Ann. Neurol. 86, 962–968 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, Y. et al. Identification of GGC repeat expansion in the NOTCH2NLC gene in amyotrophic lateral sclerosis. Neurology 95, e3394–e3405 (2020). This study was the first to demonstrate CGG expansions in NOTCH2NLC as the cause of amyotrophic lateral sclerosis.

    Article  CAS  PubMed  Google Scholar 

  45. Ogasawara, M. et al. CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol. Commun. 8, 204 (2020). This was the first study to link CGG expansions in NOTCH2NLC with OPDM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Battle, M. A., Maher, V. M. & McCormick, J. J. ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry 42, 7270–7282 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, N. Y., Ray, B., How, T. & Blobe, G. C. Endoglin promotes transforming growth factor β-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J. Biol. Chem. 283, 32527–32533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Von Kap-Herr, C. et al. Assignment of PDZ domain-containing protein GIPC gene (C19orf3) to human chromosome band 19p13.1 by in situ hybridization and radiation hybrid mapping. Cytogenet. Cell Genet. 89, 234–235 (2000).

    Article  Google Scholar 

  49. Durmus, H. et al. Oculopharyngodistal myopathy is a distinct entity: clinical and genetic features of 47 patients. Neurology 76, 227–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Saito, R. et al. Oculopharyngodistal myopathy with coexisting histology of systemic neuronal intranuclear inclusion disease: clinicopathologic features of an autopsied patient harboring CGG repeat expansions in LRP12. Acta Neuropathol. Commun. 8, 75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kong, H. E., Zhao, J., Xu, S., Jin, P. & Jin, Y. Fragile X-associated tremor/ataxia syndrome: from molecular pathogenesis to development of therapeutics. Front. Cell Neurosci. 11, 128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rodriguez, C. M. & Todd, P. K. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol. Dis. 130, 104515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hagerman, P. J. & Hagerman, R. J. The fragile-X premutation: a maturing perspective. Am. J. Hum. Genet. 74, 805–816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Santa Maria, L. et al. FXTAS in an unmethylated mosaic male with fragile X syndrome from Chile. Clin. Genet. 86, 378–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Brouwer, J. R. et al. Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated fragile X full mutation. Exp. Cell Res. 313, 244–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., Winarni, T. I., Zhang, L., Tassone, F. & Hagerman, R. J. Fragile X-associated tremor/ataxia syndrome (FXTAS) in grey zone carriers. Clin. Genet. 84, 74–77 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Galloway, J. N. & Nelson, D. L. Evidence for RNA-mediated toxicity in the fragile X-associated tremor/ataxia syndrome. Future Neurol. 4, 785 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Castro, H. et al. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 26, 2133–2145 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willemsen, R. et al. The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum. Mol. Genet. 12, 949–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Drozd, M. et al. Reduction of Fmr1 mRNA levels rescues pathological features in cortical neurons in a model of FXTAS. Mol. Ther. Nucleic Acids 18, 546–553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burguete, A. S. et al. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. eLife 4, e08881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nussbacher, J. K., Tabet, R., Yeo, G. W. & Lagier-Tourenne, C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron 102, 294–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Derbis, M. et al. Short antisense oligonucleotides alleviate the pleiotropic toxicity of RNA harboring expanded CGG repeats. Nat. Commun. 12, 1265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoem, G. et al. CGG-repeat length threshold for FMR1 RNA pathogenesis in a cellular model for FXTAS. Hum. Mol. Genet. 20, 2161–2170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ajjugal, Y., Kolimi, N. & Rathinavelan, T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci. Rep. 11, 8163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pearson, C. E. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet. 7, e1002018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kearse, M. G. et al. CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol. Cell 62, 314–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Green, K. M., Linsalata, A. E. & Todd, P. K. RAN translation–what makes it run? Brain Res. 1647, 30–42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boivin, M. et al. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 109, 1825–1835.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kozak, M. Features in the 5′ non-coding sequences of rabbit α and β-globin mRNAs that affect translational efficiency. J. Mol. Biol. 235, 95–110 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl Acad. Sci. USA 87, 8301–8305 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Todd, P. K. et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78, 440–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Darling, A. L. & Uversky, V. N. Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules 22, 2027 (2017).

    Article  PubMed Central  Google Scholar 

  75. Dougan, L., Li, J., Badilla, C. L., Berne, B. J. & Fernandez, J. M. Single homopolypeptide chains collapse into mechanically rigid conformations. Proc. Natl Acad. Sci. USA 106, 12605–12610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gohel, D. et al. FMRpolyG alters mitochondrial transcripts level and respiratory chain complex assembly in Fragile X associated tremor/ataxia syndrome [FXTAS]. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1379–1388 (2017).

    Article  Google Scholar 

  77. Krans, A., Kearse, M. G. & Todd, P. K. Repeat-associated non-AUG translation from antisense CCG repeats in fragile X tremor/ataxia syndrome. Ann. Neurol. 80, 871–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oh, S. Y. et al. RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum. Mol. Genet. 24, 4317–4326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hukema, R. K. et al. Reversibility of neuropathology and motor deficits in an inducible mouse model for FXTAS. Hum. Mol. Genet. 24, 4948–4957 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheng, W. et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat. Commun. 9, 51 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Green, K. M. et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8, 2005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Asamitsu, S. et al. CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci. Adv. 7, eabd9440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma, L. et al. Composition of the intranuclear inclusions of fragile X-associated/ataxia syndrome. Acta Neuropathol. Commun. 7, 143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nobile, V. et al. Altered mitochondrial function in cells carrying a premutation or unmethylated full mutation of the FMR1 gene. Hum. Genet. 139, 227–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Ross-Inta, C. et al. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J. 429, 545–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Napoli, E. et al. Warburg effect linked to cognitive-executive deficits in FMR1 premutation. FASEB J. 30, 3334–3351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Napoli, E. et al. Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 20, 3079–3092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaplan, E. S. et al. Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J. Neurochem. 123, 613–621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mouchiroud, L. et al. The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kozlov, A. V., Lancaster, J. R. Jr., Meszaros, A. T. & Weidinger, A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 13, 170–181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Doi, K. et al. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. Bioinformatics 30, 815–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Hafford-Tear, N. J. et al. CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat. Genet. Med. 21, 2092–2102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chiara, M., Zambelli, F., Picardi, E., Horner, D. S. & Pesole, G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief. Bioinform 21, 1971–1986 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Mitsuhashi, S. & Matsumoto, N. Long-read sequencing for rare human genetic diseases. J. Hum. Genet. 65, 11–19 (2020).

    Article  PubMed  Google Scholar 

  97. Juang, B. T. et al. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum. Mol. Genet. 23, 4945–4959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ludwig, A. L. et al. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum. Mol. Genet. 23, 3228–3238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Diep, A. A. et al. Female CGG knock-in mice modeling the fragile X premutation are impaired on a skilled forelimb reaching task. Neurobiol. Learn Mem. 97, 229–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Foote, M. M., Careaga, M. & Berman, R. F. What has been learned from mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome? Clin. Neuropsychol. 30, 960–972 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Csobonyeiova, M., Polak, S. & Danisovic, L. Recent overview of the use of iPSCs Huntington’s disease modeling and therapy. Int. J. Mol. Sci. 21, 2239 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  102. Conforti, P. et al. Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc. Natl Acad. Sci. USA 115, E762–E771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Crespan, E., Hubscher, U. & Maga, G. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1. DNA Repair 29, 101–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Deshmukh, A. L. et al. FAN1, a DNA repair nuclease, as a modifier of repeat expansion disorders. J. Huntingt. Dis. 10, 95–122 (2021).

    Article  CAS  Google Scholar 

  107. Flower, M. et al. MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain 142, 1876–1886 (2019).

    Article  PubMed Central  Google Scholar 

  108. Napierala, M., Michalowski, D., de Mezer, M. & Krzyzosiak, W. J. Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res. 33, 451–463 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, Z. et al. Phenotypic bases of NOTCH2NLC GGC expansion positive neuronal intranuclear inclusion disease in a Southeast Asian cohort. Clin. Genet. 98, 274–281 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, C. M. & Harris, E. N. Antisense oligonucleotides: treatment strategies and cellular internalization. RNA Dis. 3, e1393 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Rodriguez, C. M. et al. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nat. Neurosci. 23, 386–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tran, T. et al. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides. ACS Chem. Biol. 9, 904–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Disney, M. D. et al. A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome. ACS Chem. Biol. 7, 1711–1718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshida, T. et al. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Genes Cell 24, 827–835 (2019).

    Article  CAS  Google Scholar 

  115. Angelbello, A. J., DeFeo, M. E., Glinkerman, C. M., Boger, D. L. & Disney, M. D. Precise targeted cleavage of a r(CUG) repeat expansion in cells by using a small-molecule-deglycobleomycin conjugate. ACS Chem. Biol. 15, 849–855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Siboni, R. B. et al. Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep. 13, 2386–2394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Annear, D. J. et al. Abundancy of polymorphic CGG repeats in the human genome suggest a broad involvement in neurological disease. Sci. Rep. 11, 2515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hu, J. et al. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol. 27, 478–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sellier, C. et al. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep. 3, 869–880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sofola, O. A. et al. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55, 565–571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jin, P. et al. Pur α binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55, 556–564 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Todd, P. K. et al. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLoS Genet. 6, e1001240 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mosbach, V., Poggi, L. & Richard, G. F. Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr. Genet. 65, 17–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Cinesi, C., Aeschbach, L., Yang, B. & Dion, V. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase. Nat. Commun. 7, 13272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. An, M. C. et al. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11, 253–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, J. et al. Naphthyridine-benzoazaquinolone: evaluation of a tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem. Asian J. 11, 1971–1981 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Robin, G. et al. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 26, 2649–2666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kumari, D. et al. The role of DNA damage response pathways in chromosome fragility in fragile X syndrome. Nucleic Acids Res. 37, 4385–4392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Ozeri-Galai, E., Schwartz, M., Rahat, A. & Kerem, B. Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27, 2109–2117 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Entezam, A. & Usdin, K. ATR protects the genome against CGG.CCG-repeat expansion in fragile X premutation mice. Nucleic Acids Res. 36, 1050–1056 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. McKinnon, C. et al. Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol. 131, 411–425 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ryno, L. M., Wiseman, R. L. & Kelly, J. W. Targeting unfolded protein response signaling pathways to ameliorate protein misfolding diseases. Curr. Opin. Chem. Biol. 17, 346–352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Banerjee, A., Apponi, L. H., Pavlath, G. K. & Corbett, A. H. PABPN1: molecular function and muscle disease. Febs J. 280, 4230–4250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shi, C. et al. The inhibition of heat shock protein 90 facilitates the degradation of poly-alanine expanded poly (A) binding protein nuclear 1 via the carboxyl terminus of heat shock protein 70-interacting protein. PLoS ONE 10, e0138936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Abu-Baker, A. et al. Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 12, 2609–2623 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Perie, S. et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol. Ther. 22, 219–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Cho, I. K., Hunter, C. E., Ye, S., Pongos, A. L. & Chan, A. W. S. Combination of stem cell and gene therapy ameliorates symptoms in Huntington’s disease mice. NPJ Regen. Med. 4, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Danielyan, L. et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res. 14, 3–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Yu-Taeger, L. et al. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells 8, 595 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  141. Santamaria, G. et al. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death Differ. 28, 203–218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Olejniczak, M., Urbanek, M. O. & Krzyzosiak, W. J. The role of the immune system in triplet repeat expansion diseases. Med. Inflamm. 2015, 873860 (2015).

    Article  Google Scholar 

  143. Switonski, P. M., Szlachcic, W. J., Gabka, A., Krzyzosiak, W. J. & Figiel, M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol. Neurobiol. 46, 430–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bouchard, J. et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci. 32, 18259–18268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abu-Baker, A. & Rouleau, G. A. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Biochim. Biophys. Acta 1772, 173–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Deng, J. et al. Long-read sequencing identified repeat expansions in the 5′UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J. Med. Genet. 56, 758–764 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. van der Sluijs, B. M., ter Laak, H. J., Scheffer, H., van der Maarel, S. M. & van Engelen, B. G. Autosomal recessive oculopharyngodistal myopathy: a distinct phenotypical, histological, and genetic entity. J. Neurol. Neurosurg. Psychiatry 75, 1499–1501 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Singapore National Medical Research Council for providing funding support to E.-K.T. and Z.-D.Z. The authors are supported by Singapore National Medical Research Council (NMRC) (Clinical and Translational Research in Movement Disorders, NMRC/STaR/0030/2018 and Singapore Parkinson’s Disease Translational Clinical Program (SPARK II), MOH-OFLCG18May-0002).

Author information

Authors and Affiliations

Authors

Contributions

E.-K.T. researched data for the article. Z.-D.Z. and E.-K.T. wrote the manuscript. All authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Eng-King Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks S. Tsuji and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZD., Jankovic, J., Ashizawa, T. et al. Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 18, 145–157 (2022). https://doi.org/10.1038/s41582-021-00612-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00612-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing