Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting the complexities of Alzheimer disease with in vitro models of the human brain

Abstract

Alzheimer disease (AD) is the most prevalent type of dementia. It is marked by severe memory loss and cognitive decline, and currently has limited effective treatment options. Although individuals with AD have common neuropathological hallmarks, emerging data suggest that the disease has a complex polygenic aetiology, and more than 25 genetic loci have been linked to an elevated risk of AD and dementia. Nevertheless, our ability to decipher the cellular and molecular mechanisms that underlie genetic susceptibility to AD, and its progression and severity, remains limited. Here, we discuss ongoing efforts to leverage genomic data from patients using cellular reprogramming technologies to recapitulate complex brain systems and build in vitro discovery platforms. Much attention has already been given to methodologies to derive major brain cell types from pluripotent stem cells. We therefore focus on technologies that combine multiple cell types to recreate anatomical and physiological properties of human brain tissue in vitro. We discuss the advances in the field for modelling four domains that have come into view as key contributors to the pathogenesis of AD: the blood–brain barrier, myelination, neuroinflammation and neuronal circuits. We also highlight opportunities for the field to further interrogate the complex genetic and environmental factors of AD using in vitro models.

Key points

  • This Review discusses ongoing efforts to integrate genomic data from patients with cellular reprogramming technologies to build physiological models of the human brain in vitro.

  • Multicellular in vitro models are beginning to replicate key aspects of human brain tissue and are increasingly complementing existing approaches to provide new molecular and cellular insights into the pathogenesis of Alzheimer disease (AD).

  • Each section provides a summary of our current understanding as it relates to the pathogenesis of AD and discusses the latest advances in technology that are enabling modelling of the blood–brain barrier, myelination, neuroinflammation and neuronal circuits in vitro.

  • The ultimate aim of these efforts is to combine multiple approaches into a single model to recreate the brain in a dish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering the human brain in a dish: current and future challenges.

Similar content being viewed by others

References

  1. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    CAS  PubMed  Google Scholar 

  2. St George-Hyslop, P. H. et al. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235, 885–890 (1987).

    Google Scholar 

  3. Tanzi, R. E. et al. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235, 880–884 (1987).

    CAS  PubMed  Google Scholar 

  4. O’Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).

    CAS  PubMed  Google Scholar 

  6. Goedert, M. & Spillantini, M. G. A century of Alzheimer’s disease. Science 314, 777–781 (2006).

    CAS  PubMed  Google Scholar 

  7. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639 (1992).

    CAS  PubMed  Google Scholar 

  8. Josephs, K. A. et al. β-amyloid burden is not associated with rates of brain atrophy. Ann. Neurol. 63, 204–212 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Williams, D. R. et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130, 1566–1576 (2007).

    PubMed  Google Scholar 

  10. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    CAS  PubMed  Google Scholar 

  11. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977 (1995).

    CAS  PubMed  Google Scholar 

  12. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    CAS  PubMed  Google Scholar 

  13. LaFerla, F. M. & Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).

    CAS  PubMed  Google Scholar 

  15. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Demattos, R. B. et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron 76, 908–920 (2012).

    CAS  PubMed  Google Scholar 

  17. Giau, V. V. et al. Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Sci. Rep. 9, 8368 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Dorszewska, J., Prendecki, M., Oczkowska, A., Dezor, M. & Kozubski, W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr. Alzheimer Res. 13, 952–963 (2016).

    CAS  PubMed  Google Scholar 

  19. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    PubMed  Google Scholar 

  23. Oblak, A. L. et al. Model organism development and evaluation for late-onset Alzheimer’s disease: MODEL-AD. Alzheimers Dement. 6, e12110 (2020).

    Google Scholar 

  24. Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549–552 (2008).

    CAS  PubMed  Google Scholar 

  25. Zeng, H. et al. An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell 19, 326–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    CAS  PubMed  Google Scholar 

  27. Del-Aguila, J. L. et al. A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain. Alzheimers Res. Ther. 11, 71 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lau, S. F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 25800–25809 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yagi, T. et al. Modeling familial Alzheimer’s disease with induced pluripotent stem cells [Japanese]. Rinsho Shinkeigaku 52, 1134–1136 (2012).

    PubMed  Google Scholar 

  31. Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    CAS  PubMed  Google Scholar 

  32. Israel, M. A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwart, D. et al. A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP β-CTFs, not aβ. Neuron 104, 256–270 (2019).

    CAS  PubMed  Google Scholar 

  35. Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmid, B. et al. Generation of a set of isogenic, gene-edited iPSC lines homozygous for all main APOE variants and an APOE knock-out line. Stem Cell Res. 34, 101349 (2019).

    CAS  PubMed  Google Scholar 

  37. Zhao, J. et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nat. Commun. 11, 5540 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    CAS  PubMed  Google Scholar 

  40. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    CAS  PubMed  Google Scholar 

  41. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    CAS  PubMed  Google Scholar 

  42. Nation, D. A. et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zlokovic, B. V. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    CAS  PubMed  Google Scholar 

  45. Attems, J., Lintner, F. & Jellinger, K. A. Amyloid β peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol. 107, 283–291 (2004).

    CAS  PubMed  Google Scholar 

  46. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    CAS  PubMed  Google Scholar 

  47. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Z. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Qian, T. et al. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci. Adv. 3, e1701679 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Lippmann, E. S. et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Neal, E. H. et al. A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Rep. 12, 1380–1388 (2019).

    CAS  Google Scholar 

  52. Lu, T. M. et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc. Natl Acad. Sci. USA 118, e2016950118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tcw, J. et al. An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Rep. 9, 600–614 (2017).

    CAS  Google Scholar 

  54. Emdad, L., D’Souza, S. L., Kothari, H. P., Qadeer, Z. A. & Germano, I. M. Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cell Dev. 21, 404–410 (2012).

    CAS  Google Scholar 

  55. Juopperi, T. A. et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol. Brain 5, 17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shaltouki, A., Peng, J., Liu, Q., Rao, M. S. & Zeng, X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cell 31, 941–952 (2013).

    CAS  Google Scholar 

  57. Zhou, S. et al. Neurosphere based differentiation of human iPSC improves astrocyte differentiation. Stem Cell Int. 2016, 4937689 (2016).

    Google Scholar 

  58. Stebbins, M. J. et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci. Adv. 5, eaau7375 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aisenbrey, E. A. et al. A protocol for rapid pericyte differentiation of human induced pluripotent stem cells. Star. Protoc. 2, 100261 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Blanchard, J. W. et al. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 26, 952–963 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. Oikari, L. E. et al. Altered brain endothelial cell phenotype from a familial Alzheimer mutation and its potential implications for amyloid clearance and drug delivery. Stem Cell Rep. 14, 924–939 (2020).

    CAS  Google Scholar 

  63. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    CAS  PubMed  Google Scholar 

  66. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Montagne, A. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e6 (2019).

    CAS  PubMed  Google Scholar 

  70. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    CAS  PubMed  Google Scholar 

  71. He, L. et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci. Data 5, 180160 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia, F. J. et al. Single-cell dissection of the human cerebrovasculature in health and disease. bioRxiv https://doi.org/10.1101/2021.04.26.440975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang, A. C. et al. A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk. bioRxiv https://doi.org/10.1101/2021.04.26.441262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garcia-Polite, F. et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J. Cereb. Blood Flow. Metab. 37, 2614–2625 (2017).

    CAS  PubMed  Google Scholar 

  75. Balcells, M., Wallins, J. S. & Edelman, E. R. Amyloid beta toxicity dependent upon endothelial cell state. Neurosci. Lett. 441, 319–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Martorell, J. et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc. Res. 103, 37–46 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Balcells, M., Fernandez Suarez, M., Vazquez, M. & Edelman, E. R. Cells in fluidic environments are sensitive to flow frequency. J. Cell Physiol. 204, 329–335 (2005).

    CAS  PubMed  Google Scholar 

  78. Faley, S. L. et al. iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Rep. 12, 474–487 (2019).

    CAS  Google Scholar 

  79. Linville, R. M. et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190–191, 24–37 (2019).

    PubMed  Google Scholar 

  80. Readhead, B. et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99, 64–82 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown, J. A. et al. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Ingram, P. N., Hind, L. E., Jiminez-Torres, J. A., Huttenlocher, A. & Beebe, D. J. An accessible organotypic microvessel model using iPSC-derived endothelium. Adv. Healthc. Mater. 7, 1700497 (2018).

    Google Scholar 

  83. Vatine, G. D. et al. Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood-brain barrier. Cell Stem Cell 20, 831–843 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cho, H. et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci. Rep. 5, 15222 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shin, Y. et al. Blood-brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv. Sci. 6, 1900962 (2019).

    CAS  Google Scholar 

  86. Robert, J. et al. A three-dimensional engineered artery model for in vitro atherosclerosis research. PLoS ONE 8, e79821 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. Robert, J. et al. Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels. eLife 6, e29595 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Caso, F. et al. White matter degeneration in atypical Alzheimer disease. Radiology 277, 162–172 (2015).

    PubMed  Google Scholar 

  90. Brun, A. & Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol. 19, 253–262 (1986).

    CAS  PubMed  Google Scholar 

  91. Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab. Chip 13, 1489–1500 (2013).

    CAS  PubMed  Google Scholar 

  92. Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab. Chip 17, 511–520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mannino, R. G., Qiu, Y. & Lam, W. A. Endothelial cell culture in microfluidic devices for investigating microvascular processes. Biomicrofluidics 12, 042203 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 19, 283–301 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging 32, 1341–1371 (2011).

    CAS  PubMed  Google Scholar 

  97. Behrendt, G. et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61, 273–286 (2013).

    PubMed  Google Scholar 

  98. Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    CAS  PubMed  Google Scholar 

  99. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang, J., Wang, C., Qi, R., Fu, H. & Ma, Q. scREAD: a single-cell RNA-Seq database for Alzheimer’s disease. iScience 23, 101769 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dean, D. C. 3rd et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 74, 41–49 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Dean, D. C. 3rd et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 71, 11–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Gold, B. T., Powell, D. K., Andersen, A. H. & Smith, C. D. Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer’s disease. Neuroimage 52, 1487–1494 (2010).

    PubMed  Google Scholar 

  105. Desai, M. K., Guercio, B. J., Narrow, W. C. & Bowers, W. J. An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia 59, 627–640 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Desai, M. K. et al. Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am. J. Pathol. 177, 1422–1435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Desai, M. K. et al. Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57, 54–65 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  109. De Rossi, P. et al. Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol. Neurodegener. 11, 59 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Bartzokis, G. et al. Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: implications for cognitive decline and dementia. Arch. Gen. Psychiatry 63, 63–72 (2006).

    CAS  PubMed  Google Scholar 

  111. Bartzokis, G. et al. Apolipoprotein E affects both myelin breakdown and cognition: implications for age-related trajectories of decline into dementia. Biol. Psychiatry 62, 1380–1387 (2007).

    CAS  PubMed  Google Scholar 

  112. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Douvaras, P. et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 3, 250–259 (2014).

    CAS  Google Scholar 

  114. Ehrlich, M. et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc. Natl Acad. Sci. USA 114, E2243–E2252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chanda, S. et al. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Rep. 3, 282–296 (2014).

    CAS  Google Scholar 

  116. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Espinosa-Hoyos, D. et al. Engineered 3D-printed artificial axons. Sci. Rep. 8, 478 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, S., Chong, S. Y., Tuck, S. J., Corey, J. M. & Chan, J. R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8, 771–782 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  PubMed  Google Scholar 

  121. Yoon, S. J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

    CAS  PubMed  Google Scholar 

  122. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    CAS  PubMed  Google Scholar 

  123. Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hubler, Z. et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560, 372–376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22, 484–491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R. & Kheirbek, M. A. Preservation of a remote fear memory requires new myelin formation. Nat. Neurosci. 23, 487–499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Hedden, T. et al. Multiple brain markers are linked to age-related variation in cognition. Cereb. Cortex. 26, 1388–1400 (2016).

    PubMed  Google Scholar 

  132. Engvig, A. et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum. Brain Mapp. 33, 2390–2406 (2012).

    PubMed  Google Scholar 

  133. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzhiemer’s disease. Neurobiol. Aging 25, 5–18 (2004).

    CAS  PubMed  Google Scholar 

  134. Wang, L. et al. Oligodendrocyte precursor cells transplantation protects blood-brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death Dis. 11, 9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rajani, R. M. & Williams, A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin. Sci. 131, 369–379 (2017).

    Google Scholar 

  136. Tsai, H. H. et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351, 379–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sochocka, M., Diniz, B. S. & Leszek, J. Inflammatory response in the CNS: friend or foe? Mol. Neurobiol. 54, 8071–8089 (2017).

    CAS  PubMed  Google Scholar 

  138. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  139. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622 (2019).

    CAS  PubMed  Google Scholar 

  143. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016–1033 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Svoboda, D. S. et al. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc. Natl Acad. Sci. USA 116, 25293–25303 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun. 11, 1577 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Mancuso, R. et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat. Neurosci. 22, 2111–2116 (2019).

    CAS  PubMed  Google Scholar 

  149. Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Konttinen, H. et al. PSEN1ΔE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Rep. 13, 669–683 (2019).

    CAS  Google Scholar 

  151. Wissfeld, J. et al. Deletion of Alzheimer’s disease-associated CD33 results in an inflammatory human microglia phenotype. Glia 69, 1393–1412 (2021).

    CAS  PubMed  Google Scholar 

  152. Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Garcia-Reitboeck, P. et al. Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis. Cell Rep. 24, 2300–2311 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Claes, C. et al. Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement. 15, 453–464 (2019).

    PubMed  Google Scholar 

  155. Brownjohn, P. W. et al. Functional studies of missense TREM2 mutations in human stem cell-derived microglia. Stem Cell Rep. 10, 1294–1307 (2018).

    CAS  Google Scholar 

  156. Piers, T. M. et al. A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC-derived microglia. FASEB J. 34, 2436–2450 (2020).

    CAS  PubMed  Google Scholar 

  157. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854.e9 (2020).

    CAS  PubMed  Google Scholar 

  158. Andreone, B. J. et al. Alzheimer’s-associated PLCɣ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat. Neurosci. 23, 927–938 (2020).

    CAS  PubMed  Google Scholar 

  159. Raja, W. K. et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE 11, e0161969 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Guttikonda, S. R. et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. Neurosci. 24, 343–354 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Menassa, D. A. & Gomez-Nicola, D. Microglial dynamics during human brain development. Front. Immunol. 9, 1014 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Wu, T. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 28, 2111–2123 (2019).

    CAS  PubMed  Google Scholar 

  164. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    CAS  PubMed  Google Scholar 

  165. Cao, W. & Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 13, 51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zeng, J., Tang, S. Y., Toh, L. L. & Wang, S. Generation of “off-the-shelf” natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Rep. 9, 1796–1812 (2017).

    CAS  Google Scholar 

  167. Kawamoto, H., Masuda, K., Nagano, S. & Maeda, T. Cloning and expansion of antigen-specific T cells using iPS cell technology: development of “off-the-shelf” T cells for the use in allogeneic transfusion settings. Int. J. Hematol. 107, 271–277 (2018).

    CAS  PubMed  Google Scholar 

  168. Guo, R. et al. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 30, 21–33 (2020).

    CAS  PubMed  Google Scholar 

  169. Canter, R. G., Penney, J. & Tsai, L. H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539, 187–196 (2016).

    PubMed  Google Scholar 

  170. Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70, 1158–1166 (2013).

    PubMed  PubMed Central  Google Scholar 

  171. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  172. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  173. Nitsch, R. M., Farber, S. A., Growdon, J. H. & Wurtman, R. J. Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc. Natl Acad. Sci. USA 90, 5191–5193 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Yamada, K. et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Shi, Y. et al. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci. Transl. Med. 4, 124ra129 (2012).

    Google Scholar 

  177. Balez, R. et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep. 6, 31450 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Duan, L. et al. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol. Neurodegener. 9, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Ghatak, S. et al. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. eLife 8, e50333 (2019).

    PubMed  PubMed Central  Google Scholar 

  180. Oksanen, M. et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Rep. 9, 1885–1897 (2017).

    CAS  Google Scholar 

  181. Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Najm, R. et al. In vivo chimeric Alzheimer’s disease modeling of apolipoprotein E4 toxicity in human neurons. Cell Rep. 32, 107962 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Paşca, S. P. Assembling human brain organoids. Science 363, 126–127 (2019).

    PubMed  Google Scholar 

  184. Giandomenico, S. L. et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Adaikkan, C. & Tsai, L. H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 43, 24–41 (2020).

    CAS  PubMed  Google Scholar 

  186. Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Reichel, A., Begley, D. J. & Abbott, N. J. An overview of in vitro techniques for blood-brain barrier studies. Methods Mol. Med. 89, 307–324 (2003).

    CAS  PubMed  Google Scholar 

  188. Kodama, L. et al. Microglial microRNAs mediate sex-specific responses to tau pathology. Nat. Neurosci. 23, 167–171 (2020).

    CAS  PubMed  Google Scholar 

  189. Alvarez-Dominguez, J. R. et al. Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 26, 108–122 (2020).

    CAS  PubMed  Google Scholar 

  190. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Trapecar, M. et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci. Adv. 7, eabd1707 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Soscia, S. J. et al. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE 5, e9505 (2010).

    PubMed  PubMed Central  Google Scholar 

  193. Allnutt, M. A. et al. Human herpesvirus 6 detection in Alzheimer’s disease cases and controls across multiple cohorts. Neuron 105, 1027–1035 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Jamieson, G. A., Maitland, N. J., Wilcock, G. K., Craske, J. & Itzhaki, R. F. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J. Med. Virol. 33, 224–227 (1991).

    CAS  PubMed  Google Scholar 

  195. Eimer, W. A. et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 99, 56–63 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cairns, D. M. et al. A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci. Adv. 6, eaay8828 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Pardridge, W. M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005).

    PubMed  PubMed Central  Google Scholar 

  198. Crone, C. & Olesen, S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 241, 49–55 (1982).

    CAS  PubMed  Google Scholar 

  199. Butt, A. M., Jones, H. C. & Abbott, N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429, 47–62 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bicker, J., Alves, G., Fortuna, A. & Falcao, A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm. 87, 409–432 (2014).

    CAS  PubMed  Google Scholar 

  201. Deli, M. A., Abraham, C. S., Kataoka, Y. & Niwa, M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol. Neurobiol. 25, 59–127 (2005).

    PubMed  Google Scholar 

  202. Gosselet, F., Saint-Pol, J., Candela, P. & Fenart, L. Amyloid-β peptides, Alzheimer’s disease and the blood-brain barrier. Curr. Alzheimer Res. 10, 1015–1033 (2013).

    CAS  PubMed  Google Scholar 

  203. Pflanzner, T., Kuhlmann, C. R. & Pietrzik, C. U. Blood-brain-barrier models for the investigation of transporter- and receptor-mediated amyloid-β clearance in Alzheimer’s disease. Curr. Alzheimer Res. 7, 578–590 (2010).

    CAS  PubMed  Google Scholar 

  204. Helms, H. C. et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow. Metab. 36, 862–890 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    CAS  PubMed  Google Scholar 

  206. Janzer, R. C. & Raff, M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

    CAS  PubMed  Google Scholar 

  207. Rubin, L. L. et al. A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1735 (1991).

    CAS  PubMed  Google Scholar 

  208. Hatherell, K., Couraud, P. O., Romero, I. A., Weksler, B. & Pilkington, G. J. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199, 223–229 (2011).

    PubMed  Google Scholar 

  209. Wolff, A., Antfolk, M., Brodin, B. & Tenje, M. In vitro blood-brain barrier models–an overview of established models and new microfluidic approaches. J. Pharm. Sci. 104, 2727–2746 (2015).

    CAS  PubMed  Google Scholar 

  210. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Epelman, S., Lavine, K. J. & Randolph, G. J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D. & Ploix, C. C. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).

    PubMed  PubMed Central  Google Scholar 

  214. Sun, B. L. et al. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog. Neurobiol. 163–164, 118–143 (2018).

    PubMed  Google Scholar 

  215. Sievers, J., Parwaresch, R. & Wottge, H. U. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12, 245–258 (1994).

    CAS  PubMed  Google Scholar 

  216. Leone, C. et al. Characterization of human monocyte-derived microglia-like cells. Glia 54, 183–192 (2006).

    PubMed  Google Scholar 

  217. Etemad, S., Zamin, R. M., Ruitenberg, M. J. & Filgueira, L. A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J. Neurosci. Methods 209, 79–89 (2012).

    CAS  PubMed  Google Scholar 

  218. Ohgidani, M. et al. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci. Rep. 4, 4957 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kardel, M. D. & Eaves, C. J. Modeling human hematopoietic cell development from pluripotent stem cells. Exp. Hematol. 40, 601–611 (2012).

    CAS  PubMed  Google Scholar 

  220. van Wilgenburg, B., Browne, C., Vowles, J. & Cowley, S. A. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS ONE 8, e71098 (2013).

    PubMed  PubMed Central  Google Scholar 

  221. Paes, B. et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol. Toxicol. 33, 233–250 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. and M.B.V. researched data for the article, made a substantial contribution to discussion of article content, wrote the article, and reviewed and edited the manuscript before submission. L.-H.T. made a substantial contribution to the discussion of article content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks J. Koistinaho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchard, J.W., Victor, M.B. & Tsai, LH. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol 18, 25–39 (2022). https://doi.org/10.1038/s41582-021-00578-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00578-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing