Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autonomic manifestations of epilepsy: emerging pathways to sudden death?

Abstract

Epileptic networks are intimately connected with the autonomic nervous system, as exemplified by a plethora of ictal (during a seizure) autonomic manifestations, including epigastric sensations, palpitations, goosebumps and syncope (fainting). Ictal autonomic changes might serve as diagnostic clues, provide targets for seizure detection and help us to understand the mechanisms that underlie sudden unexpected death in epilepsy (SUDEP). Autonomic alterations are generally more prominent in focal seizures originating from the temporal lobe, demonstrating the importance of limbic structures to the autonomic nervous system, and are particularly pronounced in focal-to-bilateral and generalized tonic–clonic seizures. The presence, type and severity of autonomic features are determined by the seizure onset zone, propagation pathways, lateralization and timing of the seizures, and the presence of interictal autonomic dysfunction. Evidence is mounting that not all autonomic manifestations are linked to SUDEP. In addition, experimental and clinical data emphasize the heterogeneity of SUDEP and its infrequent overlap with sudden cardiac death. Here, we review the spectrum and diagnostic value of the mostly benign and self-limiting autonomic manifestations of epilepsy. In particular, we focus on presentations that are likely to contribute to SUDEP and discuss how wearable devices might help to prevent SUDEP.

Key points

  • Autonomic manifestations of seizures are frequent; they are generally more prominent in focal seizures that originate from the temporal lobe and are particularly pronounced in focal-to-bilateral and generalized tonic–clonic seizures (TCSs).

  • Ictal autonomic changes might serve as diagnostic clues, provide targets for seizure detection and help us to understand the mechanisms that underlie sudden unexpected death in epilepsy (SUDEP).

  • Ictal asystole is the most frequent clinically relevant seizure-related arrhythmia. The key clinical expressions include flaccid falls with injuries and other signs of syncope (for example, intense pallor, jerks, stiffening and gasping) during the course of a temporal lobe seizure.

  • SUDEP contrasts with self-limiting autonomic features because it typically occurs in the aftermath of a TCS, whereas ictal apnoea and ictal asystole are associated with focal — mostly temporal lobe — seizures.

  • SUDEP has a spectrum of heterogeneous causes but is predominantly attributable to TCS-triggered postictal apnoea–asystole.

  • SUDEP and sudden cardiac death are partially overlapping entities, and the presence of pre-existing or acute cardiac comorbidities might help to differentiate between these two events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key semiological elements of ictal asystole.
Fig. 2: Key autonomic networks involved in cardiovascular and respiratory homeostasis.
Fig. 3: Modulation of the ictal autonomic response.
Fig. 4: Key pathophysiological events in the SUDEP cascade.

Similar content being viewed by others

References

  1. Shmuely, S., van der Lende, M., Lamberts, R. J., Sander, J. W. & Thijs, R. D. The heart of epilepsy: current views and future concepts. Seizure 44, 176–183 (2017).

    CAS  PubMed  Google Scholar 

  2. Baumgartner, C., Koren, J., Britto-Arias, M., Schmidt, S. & Pirker, S. Epidemiology and pathophysiology of autonomic seizures: a systematic review. Clin. Auton. Res. 29, 137–150 (2019).

    PubMed  Google Scholar 

  3. Russell, A. E. Cessation of the pulse during the onset of epileptic fits, with remarks on the mechanism of fits. Lancet 168, 152–154 (1906).

    Google Scholar 

  4. Fisher, R. S. et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 58, 531–542 (2017).

    PubMed  Google Scholar 

  5. Fisher, R. S. et al. Classification as autonomic versus sensory seizures. Epilepsia 60, 2003–2005 (2019).

    PubMed  Google Scholar 

  6. Mielke, H., Meissner, S., Wagner, K., Joos, A. & Schulze-Bonhage, A. Which seizure elements do patients memorize? A comparison of history and seizure documentation. Epilepsia 61, 1365–1375 (2020).

    PubMed  Google Scholar 

  7. Lacuey, N. et al. The incidence and significance of periictal apnea in epileptic seizures. Epilepsia 59, 573–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Lende, M., Surges, R., Sander, J. W. & Thijs, R. D. Cardiac arrhythmias during or after epileptic seizures. J. Neurol. Neurosurg. Psychiat. 87, 69–74 (2016).

    PubMed  Google Scholar 

  9. Vilella, L. et al. Incidence, recurrence, and risk factors for peri-ictal central apnea and sudden unexpected death in epilepsy. Front. Neurol. 10, 166 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Eggleston, K. S., Olin, B. D. & Fisher, R. S. Ictal tachycardia: the head–heart connection. Seizure 23, 496–505 (2014).

    PubMed  Google Scholar 

  11. Brugada, J. et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 41, 655–720 (2020).

    PubMed  Google Scholar 

  12. Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P. & Fuglsang-Frederiksen, A. Comparing maximum autonomic activity of psychogenic non-epileptic seizures and epileptic seizures using heart rate variability. Seizure 37, 13–19 (2016).

    PubMed  Google Scholar 

  13. Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P. & Fuglsang-Frederiksen, A. Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot. Seizure 24, 1–7 (2015).

    PubMed  Google Scholar 

  14. Bruno, E., Biondi, A. & Richardson, M. P. Pre-ictal heart rate changes: a systematic review and meta-analysis. Seizure 55, 48–56 (2018).

    PubMed  Google Scholar 

  15. Beniczky, S., Arbune, A. A., Jeppesen, J. & Ryvlin, P. Biomarkers of seizure severity derived from wearable devices. Epilepsia 61 (Suppl. 1), S61–S66 (2020).

    PubMed  Google Scholar 

  16. Sivathamboo, S. et al. Cardiorespiratory and autonomic function in epileptic seizures: a video-EEG monitoring study. Epilepsy Behav. 111, 107271 (2020).

    PubMed  Google Scholar 

  17. Surges, R., Scott, C. A. & Walker, M. C. Enhanced QT shortening and persistent tachycardia after generalized seizures. Neurology 74, 421–426 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Chouchou, F. et al. The neural bases of ictal tachycardia in temporal lobe seizures. Clin. Neurophysiol. 128, 1810–1819 (2017).

    PubMed  Google Scholar 

  19. Page, T. & Rugg-Gunn, F. J. Bitemporal seizure spread and its effect on autonomic dysfunction. Epilepsy Behav. 84, 166–172 (2018).

    PubMed  Google Scholar 

  20. Surges, R., Jordan, A. & Elger, C. E. Ictal modulation of cardiac repolarization, but not of heart rate, is lateralized in mesial temporal lobe epilepsy. PLoS ONE 8, e64765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van Westrhenen, A., De Cooman, T., Lazeron, R. H. C., Van Huffel, S. & Thijs, R. D. Ictal autonomic changes as a tool for seizure detection: a systematic review. Clin. Auton. Res. 29, 161–181 (2019).

    PubMed  Google Scholar 

  22. Hirsch, M., Altenmüller, D. M. & Schulze-Bonhage, A. Latencies from intracranial seizure onset to ictal tachycardia: a comparison to surface EEG patterns and other clinical signs. Epilepsia 56, 1639–1647 (2015).

    PubMed  Google Scholar 

  23. Stefanidou, M., Carlson, C. & Friedman, D. The relationship between seizure onset zone and ictal tachycardia: an intracranial EEG study. Clin. Neurophysiol. 126, 2255–2260 (2015).

    PubMed  Google Scholar 

  24. Hampel, K. G., Jahanbekam, A., Elger, C. E. & Surges, R. Seizure-related modulation of systemic arterial blood pressure in focal epilepsy. Epilepsia 57, 1709–1718 (2016).

    CAS  PubMed  Google Scholar 

  25. Nass, R. D., Hampel, K. G., Elger, C. E. & Surges, R. Blood pressure in seizures and epilepsy. Front. Neurol. 10, 501 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Hampel, K. G., Elger, C. E. & Surges, R. Impaired baroreflex sensitivity after bilateral convulsive seizures in patients with focal epilepsy. Front. Neurol. 8, 210 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Bozorgi, A. et al. Significant postictal hypotension: expanding the spectrum of seizure-induced autonomic dysregulation. Epilepsia 54, e127–e130 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Lacuey, N. et al. Cortical structures associated with human blood pressure control. JAMA Neurol. 75, 194–202 (2018).

    PubMed  Google Scholar 

  29. Surges, R., Thijs, R. D., Tan, H. L. & Sander, J. W. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat. Rev. Neurol. 5, 492–504 (2009).

    CAS  PubMed  Google Scholar 

  30. Surges, R., Shmuely, S., Dietze, C., Ryvlin, P. & Thijs, R. D. Identifying patients with epilepsy at high risk of cardiac death: signs, risk factors and initial management of high risk of cardiac death. Epileptic Disord. 23, 17–39 (2021).

    PubMed  Google Scholar 

  31. Mangrum, J. M. & DiMarco, J. P. The evaluation and management of bradycardia. N. Engl. J. Med. 342, 703–709 (2000).

    CAS  PubMed  Google Scholar 

  32. Brignole, M. et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 39, 1883–1948 (2018).

    PubMed  Google Scholar 

  33. Hampel, K. G., Thijs, R. D., Elger, C. E. & Surges, R. Recurrence risk of ictal asystole in epilepsy. Neurology 89, 785–791 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Rossetti, A. O. et al. Ictal asystole with convulsive syncope mimicking secondary generalisation: a depth electrode study. J. Neurol. Neurosurg. Psychiat. 76, 885–887 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Britton, J. W., Ghearing, G. R., Benarroch, E. E. & Cascino, G. D. The ictal bradycardia syndrome: localization and lateralization. Epilepsia 47, 737–744 (2006).

    PubMed  Google Scholar 

  36. Nei, M., Sperling, M. R., Mintzer, S. & Ho, R. T. Long-term cardiac rhythm and repolarization abnormalities in refractory focal and generalized epilepsy. Epilepsia 53, e137–e140 (2012).

    PubMed  Google Scholar 

  37. van der Lende, M. et al. The yield of long-term electrocardiographic recordings in refractory focal epilepsy. Epilepsia 60, 2215–2223 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Rugg-Gunn, F. J., Simister, R. J., Squirrell, M., Holdright, D. R. & Duncan, J. S. Cardiac arrhythmias in focal epilepsy: a prospective long-term study. Lancet 364, 2212–2219 (2004).

    PubMed  Google Scholar 

  39. Serdyuk, S. et al. Cardiac arrhythmias and sudden unexpected death in epilepsy: results of long-term monitoring. Heart Rhythm. 18, 221–228 (2021).

    PubMed  Google Scholar 

  40. Lamberts, R. J. et al. Sudden cardiac arrest in people with epilepsy in the community: circumstances and risk factors. Neurology 85, 212–218 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Lamberts, R. J. et al. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J. Neurol. Neurosurg. Psychiat. 86, 309–313 (2015).

    CAS  PubMed  Google Scholar 

  42. Pang, T. D. et al. Cardiac electrical instability in newly diagnosed/chronic epilepsy tracked by Holter and ECG patch. Neurology 93, 450–458 (2019).

    PubMed  Google Scholar 

  43. Verrier, R. L., Nearing, B. D., Olin, B., Boon, P. & Schachter, S. C. Baseline elevation and reduction in cardiac electrical instability assessed by quantitative T-wave alternans in patients with drug-resistant epilepsy treated with vagus nerve stimulation in the AspireSR E-36 trial. Epilepsy Behav. 62, 85–89 (2016).

    PubMed  Google Scholar 

  44. van Dijk, J. G., van Rossum, I. A. & Thijs, R. D. Timing of circulatory and neurological events in syncope. Front. Cardiovasc. Med. 7, 36 (2020).

    PubMed  PubMed Central  Google Scholar 

  45. Ammirati, F., Colivicchi, F., Velardi, A. & Santini, M. Prevalence and correlates of syncope-related traumatic injuries in tilt-induced vasovagal syncope. Ital. Heart J. 2, 38–41 (2001).

    CAS  PubMed  Google Scholar 

  46. Aydin, M. A. et al. A standardized education protocol significantly reduces traumatic injuries and syncope recurrence: an observational study in 316 patients with vasovagal syncope. Europace 14, 410–415 (2012).

    PubMed  Google Scholar 

  47. Schuele, S. U. et al. Video-electrographic and clinical features in patients with ictal asystole. Neurology 69, 434–441 (2007).

    CAS  PubMed  Google Scholar 

  48. Mastrangelo, V. et al. Ictal vasodepressive syncope in temporal lobe epilepsy. Clin. Neurophysiol. 131, 155–157 (2020).

    PubMed  Google Scholar 

  49. Moseley, B. D., Ghearing, G. R., Munger, T. M. & Britton, J. W. The treatment of ictal asystole with cardiac pacing. Epilepsia 52, e16–e19 (2011).

    PubMed  Google Scholar 

  50. Strzelczyk, A. et al. Management and long-term outcome in patients presenting with ictal asystole or bradycardia. Epilepsia 52, 1160–1167 (2011).

    PubMed  Google Scholar 

  51. Bestawros, M. et al. Ictal asystole and ictal syncope: insights into clinical management. Circ. Arrhythm. Electrophysiol. 8, 159–164 (2015).

    PubMed  Google Scholar 

  52. Casciato, S. et al. Ictal asystole in drug-resistant focal epilepsy: two decades of experience from an epilepsy monitoring unit. Brain Sci. 10, 443 (2020).

    PubMed Central  Google Scholar 

  53. Kohno, R., Abe, H., Akamatsu, N. & Benditt, D. G. Long-term follow-up of ictal asystole in temporal lobe epilepsy: is permanent pacemaker therapy needed? J. Cardiovasc. Electrophysiol. 27, 930–936 (2016).

    PubMed  Google Scholar 

  54. Benditt, D. G., van Dijk, G. & Thijs, R. D. Ictal asystole: life-threatening vagal storm or a benign seizure self-termination mechanism? Circ. Arrhythm. Electrophysiol. 8, 11–14 (2015).

    PubMed  Google Scholar 

  55. Moseley, B. D., Ghearing, G. R., Benarroch, E. E. & Britton, J. W. Early seizure termination in ictal asystole. Epilepsy Res. 97, 220–224 (2011).

    PubMed  Google Scholar 

  56. van Westrhenen, A. et al. Timing of syncope in ictal asystole as a guide when considering pacemaker implantation. J. Cardiovasc. Electrophysiol. https://doi.org/10.1111/jce.15239 (2021).

    Article  PubMed  Google Scholar 

  57. Bateman, L. M., Li, C. S. & Seyal, M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131, 3239–3245 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Seyal, M. & Bateman, L. M. Ictal apnea linked to contralateral spread of temporal lobe seizures: intracranial EEG recordings in refractory temporal lobe epilepsy. Epilepsia 50, 2557–2562 (2009).

    PubMed  Google Scholar 

  59. Lacuey, N., Hampson, J. P., Harper, R. M., Miller, J. P. & Lhatoo, S. Limbic and paralimbic structures driving ictal central apnea. Neurology 92, e655–e669 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Loizon, M. et al. Transient hypoxemia induced by cortical electrical stimulation: a mapping study in 75 patients. Neurology 94, e2323–e2336 (2020).

    CAS  PubMed  Google Scholar 

  61. Jobst, B. C. et al. The insula and its epilepsies. Epilepsy Curr. 19, 11–21 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Janszky, J. et al. Peri-ictal vegetative symptoms in temporal lobe epilepsy. Epilepsy Behav. 11, 125–129 (2007).

    CAS  PubMed  Google Scholar 

  63. Henkel, A., Noachtar, S., Pfänder, M. & Lüders, H. O. The localizing value of the abdominal aura and its evolution: a study in focal epilepsies. Neurology 58, 271–276 (2002).

    PubMed  Google Scholar 

  64. Rocamora, R. et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 23, 670–673 (2014).

    PubMed  Google Scholar 

  65. Baysal-Kirac, L. et al. Neuronal autoantibodies in epilepsy patients with peri-ictal autonomic findings. J. Neurol. 263, 455–466 (2016).

    CAS  PubMed  Google Scholar 

  66. de Bruijn, M. et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann. Neurol. 89, 698–710 (2021).

    PubMed  PubMed Central  Google Scholar 

  67. Dubey, D. et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 58, 1181–1189 (2017).

    CAS  Google Scholar 

  68. Tényi, D. et al. Ictal piloerection is associated with high-grade glioma and autoimmune encephalitis — results from a systematic review. Seizure 64, 1–5 (2019).

    PubMed  Google Scholar 

  69. van Sonderen, A. et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 87, 1449–1456 (2016).

    PubMed  Google Scholar 

  70. Dalmau, J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 18, 1045–1057 (2019).

    CAS  PubMed  Google Scholar 

  71. Yan, L., Zhang, S., Huang, X., Tang, Y. & Wu, J. Clinical study of autonomic dysfunction in patients with anti-NMDA receptor encephalitis. Front. Neurol. 12, 609750 (2021).

    PubMed  PubMed Central  Google Scholar 

  72. Ferrie, C. D. et al. Autonomic status epilepticus in Panayiotopoulos syndrome and other childhood and adult epilepsies: a consensus view. Epilepsia 48, 1165–1172 (2007).

    PubMed  Google Scholar 

  73. Singh, J., Lanzarini, E. & Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: a systematic review. J. Psychiat. Neurosci. 45, 150–181 (2020).

    Google Scholar 

  74. Trivisano, M. et al. Generalized tonic seizures with autonomic signs are the hallmark of SCN8A developmental and epileptic encephalopathy. Epilepsy Behav. 96, 219–223 (2019).

    PubMed  Google Scholar 

  75. Kim, Y. et al. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J. Clin. Invest. 128, 1141–1153 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Palma, J. A. & Benarroch, E. E. Neural control of the heart: recent concepts and clinical correlations. Neurology 83, 261–271 (2014).

    PubMed  Google Scholar 

  77. Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

    CAS  PubMed  Google Scholar 

  78. Beissner, F., Meissner, K., Bär, K.-J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sevcencu, C. & Struijk, J. J. Autonomic alterations and cardiac changes in epilepsy. Epilepsia 51, 725–737 (2010).

    PubMed  Google Scholar 

  80. Nass, R. D. et al. Blood markers of cardiac stress after generalized convulsive seizures. Epilepsia 60, 201–210 (2019).

    CAS  PubMed  Google Scholar 

  81. Myers, K. A., Sivathamboo, S. & Perucca, P. Heart rate variability measurement in epilepsy: how can we move from research to clinical practice? Epilepsia 59, 2169–2178 (2018).

    PubMed  Google Scholar 

  82. Mueller, S. G. et al. Brainstem network disruption: a pathway to sudden unexplained death in epilepsy? Hum. Brain Mapp. 39, 4820–4830 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Allen, L. A. et al. Dysfunctional brain networking among autonomic regulatory structures in temporal lobe epilepsy patients at high risk of sudden unexpected death in epilepsy. Front. Neurol. 8, 544 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Lipsitz, L. A. & Novak, V. in Clinical Autonomic Disorders (eds Low, P. A. & Benarroch, E. E.) Ch. 12, 164–178 (Lippincott Williams & Wilkins, 2008).

  85. Tényi, D. et al. Ictal asystole: a systematic review. Epilepsia 58, 356–362 (2017).

    PubMed  Google Scholar 

  86. Purnell, B. S., Thijs, R. D. & Buchanan, G. F. Dead in the night: sleep-wake and time-of-day influences on sudden unexpected death in epilepsy. Front. Neurol. 9, 1079 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Wulsin, A. C., Solomon, M. B., Privitera, M. D., Danzer, S. C. & Herman, J. P. Hypothalamic–pituitary–adrenocortical axis dysfunction in epilepsy. Physiol. Behav. 166, 22–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Allendorfer, J. B. et al. Physiologic and cortical response to acute psychosocial stress in left temporal lobe epilepsy — a pilot cross-sectional fMRI study. Epilepsy Behav. 36, 115–123 (2014).

    PubMed  Google Scholar 

  89. Ficker, D. M. et al. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 51, 1270–1274 (1998).

    CAS  PubMed  Google Scholar 

  90. Hayashi, M., Shimizu, W. & Albert, C. M. The spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 116, 1887–1906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Verrier, R. L., Pang, T. D., Nearing, B. D. & Schachter, S. C. The epileptic heart: concept and clinical evidence. Epilepsy Behav. 105, 106946 (2020).

    PubMed  Google Scholar 

  92. Devinsky, O. et al. Resolving ambiguities in SUDEP classification. Epilepsia 59, 1220–1233 (2018).

    PubMed  Google Scholar 

  93. Harden, C. et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 88, 1674–1680 (2017).

    PubMed  Google Scholar 

  94. Tomson, T., Nashef, L. & Ryvlin, P. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 7, 1021–1031 (2008).

    PubMed  Google Scholar 

  95. Sveinsson, O., Andersson, T., Carlsson, S. & Tomson, T. The incidence of SUDEP: a nationwide population-based cohort study. Neurology 89, 170–177 (2017).

    PubMed  Google Scholar 

  96. Keller, A. E., Whitney, R., Li, S. A., Pollanen, M. S. & Donner, E. J. Incidence of sudden unexpected death in epilepsy in children is similar to adults. Neurology 91, e107–e111 (2018).

    PubMed  Google Scholar 

  97. Thurman, D. J., Hesdorffer, D. C. & French, J. A. Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia 55, 1479–1485 (2014).

    PubMed  Google Scholar 

  98. Verducci, C. et al. SUDEP in the North American SUDEP Registry: the full spectrum of epilepsies. Neurology 93, e227–e236 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Hebel, J. M., Surges, R., Stodieck, S. R. G. & Lanz, M. SUDEP following the second seizure in new-onset epilepsy due to limbic encephalitis. Seizure 62, 124–126 (2018).

    PubMed  Google Scholar 

  100. Pensel, M. C., Nass, R. D., Taubøll, E., Aurlien, D. & Surges, R. Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert. Rev. Neurother. 20, 497–508 (2020).

    CAS  PubMed  Google Scholar 

  101. Lamberts, R. J., Thijs, R. D., Laffan, A., Langan, Y. & Sander, J. W. Sudden unexpected death in epilepsy: people with nocturnal seizures may be at highest risk. Epilepsia 53, 253–257 (2012).

    PubMed  Google Scholar 

  102. Sveinsson, O., Andersson, T., Mattsson, P., Carlsson, S. & Tomson, T. Clinical risk factors in SUDEP: a nationwide population-based case-control study. Neurology 94, e419–e429 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Hesdorffer, D. C. et al. Combined analysis of risk factors for SUDEP. Epilepsia 52, 1150–1159 (2011).

    PubMed  Google Scholar 

  104. Hesdorffer, D. C. et al. Do antiepileptic drugs or generalized tonic-clonic seizure frequency increase SUDEP risk? A combined analysis. Epilepsia 53, 249–252 (2012).

    PubMed  Google Scholar 

  105. Langan, Y., Nashef, L. & Sander, J. W. Case–control study of SUDEP. Neurology 64, 1131–1133 (2005).

    CAS  PubMed  Google Scholar 

  106. van der Lende, M., Hesdorffer, D. C., Sander, J. W. & Thijs, R. D. Nocturnal supervision and SUDEP risk at different epilepsy care settings. Neurology 91, e1508–e1518 (2018).

    PubMed  Google Scholar 

  107. Langan, Y., Nashef, L. & Sander, J. W. Sudden unexpected death in epilepsy: a series of witnessed deaths. J. Neurol. Neurosurg. Psychiat. 68, 211–213 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12, 966–977 (2013).

    PubMed  Google Scholar 

  109. Bruno, E. & Richardson, M. P. Postictal generalized EEG suppression and postictal immobility: what do we know? Epileptic Disord. 22, 245–251 (2020).

    PubMed  Google Scholar 

  110. Aiba, I. & Noebels, J. L. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci. Transl. Med. 7, 282ra246 (2015).

    Google Scholar 

  111. Aiba, I., Wehrens, X. H. & Noebels, J. L. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc. Natl Acad. Sci. USA 113, E4895–E4903 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jansen, N. A. et al. Apnea associated with brainstem seizures in Cacna1a (S218L) mice is caused by medullary spreading depolarization. J. Neurosci. 39, 9633–9644 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Loonen, I. C. M. et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain 142, 412–425 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Allen, L. A. et al. Cerebellar, limbic, and midbrain volume alterations in sudden unexpected death in epilepsy. Epilepsia 60, 718–729 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Allen, L. A., Harper, R. M., Lhatoo, S., Lemieux, L. & Diehl, B. Neuroimaging of sudden unexpected death in epilepsy (SUDEP): insights from structural and resting-state functional MRI studies. Front. Neurol. 10, 185 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Wandschneider, B. et al. Structural imaging biomarkers of sudden unexpected death in epilepsy. Brain 138, 2907–2919 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Mueller, S. G., Bateman, L. M. & Laxer, K. D. Evidence for brainstem network disruption in temporal lobe epilepsy and sudden unexplained death in epilepsy. Neuroimage Clin. 5, 208–216 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Allen, L. A. et al. Peri-ictal hypoxia is related to extent of regional brain volume loss accompanying generalized tonic–clonic seizures. Epilepsia 61, 1570–1580 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Richerson, G. B. & Buchanan, G. F. The serotonin axis: shared mechanisms in seizures, depression, and SUDEP. Epilepsia 52 (Suppl. 1), 28–38 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Tupal, S. & Faingold, C. L. Fenfluramine, a serotonin-releasing drug, prevents seizure-induced respiratory arrest and is anticonvulsant in the DBA/1 mouse model of SUDEP. Epilepsia 60, 485–494 (2019).

    CAS  PubMed  Google Scholar 

  121. Murugesan, A. et al. Postictal serotonin levels are associated with peri-ictal apnea. Neurology 93, e1485–e1494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Patodia, S. et al. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain 141, 1719–1733 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Liebenthal, J. A., Wu, S., Rose, S., Ebersole, J. S. & Tao, J. X. Association of prone position with sudden unexpected death in epilepsy. Neurology 84, 703–709 (2015).

    PubMed  Google Scholar 

  124. Kato, H., Menon, A. S. & Slutsky, A. S. Mechanisms mediating the heart rate response to hypoxemia. Circulation 77, 407–414 (1988).

    CAS  PubMed  Google Scholar 

  125. Schuele, S. U., Bermeo, A. C., Locatelli, E., Burgess, R. C. & Lüders, H. O. Ictal asystole: a benign condition? Epilepsia 49, 168–171 (2008).

    PubMed  Google Scholar 

  126. Lanz, M., Oehl, B., Brandt, A. & Schulze-Bonhage, A. Seizure induced cardiac asystole in epilepsy patients undergoing long term video-EEG monitoring. Seizure 20, 167–172 (2011).

    CAS  PubMed  Google Scholar 

  127. Chaila E, B. J., Tirupathi, S. & Delanty, N. Ictal bradycardia and asystole associated with intractable epilepsy: a case series. Br. J. Cardiol. 17, 245–248 (2010).

    Google Scholar 

  128. Bank, A. M., Dworetzky, B. A. & Lee, J. W. Sudden unexpected death in epilepsy in a patient with a cardiac pacemaker. Seizure 61, 38–40 (2018).

    PubMed  Google Scholar 

  129. Surges, R. et al. Pathologic cardiac repolarization in pharmacoresistant epilepsy and its potential role in sudden unexpected death in epilepsy: a case-control study. Epilepsia 51, 233–242 (2010).

    PubMed  Google Scholar 

  130. Schuele, S. U., Bermeo, A. C., Alexopoulos, A. V. & Burgess, R. C. Anoxia-ischemia: a mechanism of seizure termination in ictal asystole. Epilepsia 51, 170–173 (2010).

    PubMed  Google Scholar 

  131. Morita, H., Wu, J. & Zipes, D. P. The QT syndromes: long and short. Lancet 372, 750–763 (2008).

    CAS  PubMed  Google Scholar 

  132. Verrier, R. L. et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility — consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J. Am. Coll. Cardiol. 58, 1309–1324 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. Surges, R., Taggart, P., Sander, J. W. & Walker, M. C. Too long or too short? New insights into abnormal cardiac repolarization in people with chronic epilepsy and its potential role in sudden unexpected death. Epilepsia 51, 738–744 (2010).

    PubMed  Google Scholar 

  134. Strzelczyk, A. et al. Postictal increase in T-wave alternans after generalized tonic–clonic seizures. Epilepsia 52, 2112–2117 (2011).

    PubMed  Google Scholar 

  135. Bardai, A. et al. Epilepsy is a risk factor for sudden cardiac arrest in the general population. PLoS ONE 7, e42749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sveinsson, O., Andersson, T., Carlsson, S. & Tomson, T. Circumstances of SUDEP: a nationwide population-based case series. Epilepsia 59, 1074–1082 (2018).

    PubMed  Google Scholar 

  137. Stecker, E. C. et al. Relationship between seizure episode and sudden cardiac arrest in patients with epilepsy: a community-based study. Circ. Arrhythm. Electrophysiol. 6, 912–916 (2013).

    PubMed  Google Scholar 

  138. Keezer, M. R., Sisodiya, S. M. & Sander, J. W. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 15, 106–115 (2016).

    PubMed  Google Scholar 

  139. Zack, M. M. & Luncheon, C. Adults with an epilepsy history, especially those 45 years or older, those with lower family incomes, and those with a history of hypertension, report a history of stroke five times as often as adults without such a history-2010, 2013, and 2015 US National Health Interview Survey. Epilepsy Behav. 83, 236–238 (2018).

    PubMed  Google Scholar 

  140. Devinsky, O. et al. Incidence of cardiac fibrosis in SUDEP and control cases. Neurology 91, e55–e61 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Bilgi, M., Yerdelen, D., Cölkesen, Y. & Müderrisoğlu, H. Evaluation of left ventricular diastolic function by tissue Doppler imaging in patients with newly diagnosed and untreated primary generalized epilepsy. Seizure 22, 537–541 (2013).

    PubMed  Google Scholar 

  142. Fialho, G. L., Pagani, A. G., Wolf, P., Walz, R. & Lin, K. Echocardiographic risk markers of sudden death in patients with temporal lobe epilepsy. Epilepsy Res. 140, 192–197 (2018).

    PubMed  Google Scholar 

  143. Schreiber, J. M. et al. Children with refractory epilepsy demonstrate alterations in myocardial strain. Epilepsia 61, 2234–2243 (2020).

    PubMed  PubMed Central  Google Scholar 

  144. Li, M. C. H., O’Brien, T. J., Todaro, M. & Powell, K. L. Acquired cardiac channelopathies in epilepsy: evidence, mechanisms, and clinical significance. Epilepsia 60, 1753–1767 (2019).

    CAS  PubMed  Google Scholar 

  145. Auerbach, D. S. et al. Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology 87, 1660–1668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Coll, M. et al. Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP. PLoS ONE 12, e0189618 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Bagnall, R. D. et al. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann. Neurol. 79, 522–534 (2016).

    CAS  PubMed  Google Scholar 

  148. Lhatoo, S. D. et al. Nonseizure SUDEP: sudden unexpected death in epilepsy without preceding epileptic seizures. Epilepsia 57, 1161–1168 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Ryvlin, P., Nashef, L. & Tomson, T. Prevention of sudden unexpected death in epilepsy: a realistic goal? Epilepsia 54 (Suppl. 2), 23–28 (2013).

    PubMed  Google Scholar 

  150. Maguire, M. J., Jackson, C. F., Marson, A. G. & Nevitt, S. J. Treatments for the prevention of sudden unexpected death in epilepsy (SUDEP). Cochrane Database Syst. Rev. 4, Cd011792 (2020).

    PubMed  Google Scholar 

  151. Lowerison, M. W. et al. Association of levels of specialized care with risk of premature mortality in patients with epilepsy. JAMA Neurol. 76, 1352–1358 (2019).

    PubMed  PubMed Central  Google Scholar 

  152. Ryvlin, P., Cucherat, M. & Rheims, S. Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures: a meta-analysis of placebo-controlled randomised trials. Lancet Neurol. 10, 961–968 (2011).

    PubMed  Google Scholar 

  153. Ryvlin, P. et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia 59, 562–572 (2018).

    CAS  PubMed  Google Scholar 

  154. Ryvlin, P. & Kahane, P. Does epilepsy surgery lower the mortality of drug-resistant epilepsy? Epilepsy Res. 56, 105–120 (2003).

    CAS  PubMed  Google Scholar 

  155. Sperling, M. R., Harris, A., Nei, M., Liporace, J. D. & O’Connor, M. J. Mortality after epilepsy surgery. Epilepsia 46 (Suppl. 11), 49–53 (2005).

    PubMed  Google Scholar 

  156. Sperling, M. R., Feldman, H., Kinman, J., Liporace, J. D. & O’Connor, M. J. Seizure control and mortality in epilepsy. Ann. Neurol. 46, 45–50 (1999).

    CAS  PubMed  Google Scholar 

  157. Salanova, V., Markand, O. & Worth, R. Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients. Epilepsia 43, 170–174 (2002).

    CAS  PubMed  Google Scholar 

  158. Sperling, M. R., Barshow, S., Nei, M. & Asadi-Pooya, A. A. A reappraisal of mortality after epilepsy surgery. Neurology 86, 1938–1944 (2016).

    PubMed  Google Scholar 

  159. Nilsson, L., Ahlbom, A., Farahmand, B. Y. & Tomson, T. Mortality in a population-based cohort of epilepsy surgery patients. Epilepsia 44, 575–581 (2003).

    PubMed  Google Scholar 

  160. Shankar, R. et al. Steps to prevent SUDEP: the validity of risk factors in the SUDEP and seizure safety checklist: a case control study. J. Neurol. 263, 1840–1846 (2016).

    PubMed  Google Scholar 

  161. Ryvlin, P., Ciumas, C., Wisniewski, I. & Beniczky, S. Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 59 (Suppl. 1), 61–66 (2018).

    PubMed  Google Scholar 

  162. Gutierrez, E. G., Crone, N. E., Kang, J. Y., Carmenate, Y. I. & Krauss, G. L. Strategies for non-EEG seizure detection and timing for alerting and interventions with tonic–clonic seizures. Epilepsia 59 (Suppl. 1), 36–41 (2018).

    PubMed  Google Scholar 

  163. Bertinat, A., Kerr, M., Cramer, J. A. & Braga, P. Living safely with epilepsy: a key learning review. Epileptic Disord. 22, 364–380 (2020).

    PubMed  Google Scholar 

  164. Jha, A. et al. Sudden unexpected death in epilepsy: a personalized prediction tool. Neurology 96, e2627–e2638 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Elger, C. E. & Hoppe, C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 17, 279–288 (2018).

    PubMed  Google Scholar 

  166. Beniczky, S. & Jeppesen, J. Non-electroencephalography-based seizure detection. Curr. Opin. Neurol. 32, 198–204 (2019).

    PubMed  Google Scholar 

  167. Beniczky, S. & Ryvlin, P. Standards for testing and clinical validation of seizure detection devices. Epilepsia 59 (Suppl. 1), 9–13 (2018).

    PubMed  Google Scholar 

  168. Jeppesen, J. et al. Seizure detection using heart rate variability: a prospective validation study. Epilepsia 61 (Suppl. 1), S41–S46 (2020).

    PubMed  Google Scholar 

  169. Jeppesen, J. et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia 60, 2105–2113 (2019).

    PubMed  Google Scholar 

  170. El Atrache, R. et al. Photoplethysmography: a measure for the function of the autonomic nervous system in focal impaired awareness seizures. Epilepsia 61, 1617–1626 (2020).

    PubMed  Google Scholar 

  171. Beniczky, S., Karoly, P., Nurse, E., Ryvlin, P. & Cook, M. Machine learning and wearable devices of the future. Epilepsia 62 (Suppl. 2), S116–S124 (2021).

    PubMed  Google Scholar 

  172. Nasseri, M. et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia 61 (Suppl. 1), S25–S35 (2020).

    PubMed  Google Scholar 

  173. Bruno, E. et al. Day and night comfort and stability on the body of four wearable devices for seizure detection: a direct user-experience. Epilepsy Behav. 112, 107478 (2020).

    PubMed  Google Scholar 

  174. Hampel, K. G., Vatter, H., Elger, C. E. & Surges, R. Cardiac-based vagus nerve stimulation reduced seizure duration in a patient with refractory epilepsy. Seizure 26, 81–85 (2015).

    PubMed  Google Scholar 

  175. Myers, K. A. et al. Heart rate variability in epilepsy: a potential biomarker of sudden unexpected death in epilepsy risk. Epilepsia 59, 1372–1380 (2018).

    PubMed  Google Scholar 

  176. Vilella, L. et al. Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology 92, e171–e182 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Carmenate, Y. I., Gutierrez, E. G., Kang, J. Y. & Krauss, G. L. Postictal stertor: associations with focal and bilateral seizure types. Epilepsy Behav. 110, 107103 (2020).

    PubMed  Google Scholar 

  178. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 15, e73–e189 (2018).

    PubMed  Google Scholar 

  179. Nashef, L., So, E. L., Ryvlin, P. & Tomson, T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53, 227–233 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gert van Dijk for drawing the key semiological features of ictal syncope (Fig. 1) and R. Trompert for providing the neuroanatomical illustrations (Fig. 2). P.R. has received research funding from the EU Horizon 2020 Research and Innovation Programme under grant agreements 785907 (HBP SGA2) and 945539 (HBP SGA3). R.D.T. has received research funding from the Human Measurement Models Programme co-funded by Health~Holland, Top Sector Life Sciences & Health and ZonMw under grant agreement 114025101 (Brain@Home).

Review criteria

We searched PubMed and SCOPUS for articles published in English from 1 September 2010 to 1 December 2020, with the keywords ‘epilep*’, ‘autonomic’, ‘seizure detection’ and ‘SUDEP’. We selected seminal work, clinical studies with the highest level of evidence or the most recent meta-analysis. We have also included earlier articles and reviews if they were particularly pertinent to the discussion.

Author information

Authors and Affiliations

Authors

Contributions

R.D.T. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roland D. Thijs.

Ethics declarations

Competing interests

R.D.T. reports lecture and consultancy fees from Medtronic, Union Chimique Belge (UCB), Theravarance, Novartis, Zogenix and Arvelle and grants from the Dutch National Epilepsy Fund, Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie, the AC Thomson Foundation, Medtronic, NewLife Wearables and The Netherlands Organisation for Health Research and Development (grant no. 843002707). P.R. reports lecture and consultancy fees from Arvelle, Eisai, LivaNova, Medtronic, Novartis and UCB Pharma and research grants from the Hassler Foundation (Switzerland), the Swiss National Science Foundation and the European Commission. R.S. reports lecture and consultancy fees from Arvelle, Bial, Angelini, Desitin, Eisai, LivaNova, Novartis, UCB Pharma and UnEEG and research grants from the Boll foundation (Kerpen, Germany), BONFOR research funding (Medical Faculty, University of Bonn, Germany), the Federal Ministry of Education and Research (Germany), the Federal Ministry of Health (Germany), and the Verein zur Förderung der Epilepsieforschung e.V. (Bonn, Germany).

Additional information

Peer review information

Nature Reviews Neurology thanks R. Verrier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tonic–clonic seizures (TCSs)

Focal or generalized-onset seizures consisting of a tonic followed by a clonic phase.

Central apnoea

Cessation of airflow for at least 10 s with no respiratory effort.

Asystole

Cardiac standstill with no cardiac output and no ventricular depolarization lasting for at least 3 s.

Focal-to-bilateral TCSs

A seizure type with focal onset, with awareness or impaired awareness, either motor or non-motor, progressing to bilateral tonic–clonic activity.

Baroreflex

Reflex mechanism through which baroreceptors maintain blood pressure homeostasis.

QRS complexes

Combination of three marked graphical deflections seen on a typical ECG, corresponding to the contraction of the large ventricular muscles.

T-wave alternans

Beat-to-beat fluctuations in the morphology and/or amplitude of the ST segments and/or T waves on the surface ECG.

Vasovagal syncope

Transient loss of consciousness due to global cerebral hypoperfusion evoked by a vasovagal reflex.

QT intervals

The time from the beginning of the QRS complex to the end of the T wave.

QT dispersion

The difference between the longest and the shortest QT intervals on a 12-lead ECG recording.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thijs, R.D., Ryvlin, P. & Surges, R. Autonomic manifestations of epilepsy: emerging pathways to sudden death?. Nat Rev Neurol 17, 774–788 (2021). https://doi.org/10.1038/s41582-021-00574-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00574-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing