Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways

Abstract

The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.

Key points

  • Amyloid-β (Aβ) in the brain interstitial fluid can be cleared via perivascular drainage pathways or deposited as neuritic plaques in the brain parenchyma or as cerebral amyloid angiopathy (CAA) along vessel walls.

  • Vascular dysfunction caused by CAA reduces perivascular Aβ clearance in animal models, creating a vicious cycle of vascular and parenchymal Aβ accumulation.

  • Factors that favour vascular Aβ deposition over parenchymal deposition include termination of Aβ at or before position 41, missense mutations within the Aβ coding region, and some co-deposited proteins, such as fibrinogen.

  • Amyloid-related imaging abnormalities observed in trials of anti-Aβ immunotherapy might result from mobilization of plaque Aβ into the perivascular drainage system or from antibody targeting of vascular Aβ deposits.

  • Development of methods for imaging perivascular drainage in humans would be a key step towards identifying treatments for enhancing Aβ clearance and reducing vascular and parenchymal deposition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Co-existing amyloid-β in neuritic plaques and vessel walls.
Fig. 2: Impairment of perivascular drainage in cerebral amyloid angiopathy and Alzheimer disease.
Fig. 3: Mechanisms of amyloid-related imaging abnormalities.

References

  1. 1.

    Corriveau, R. A. et al. The science of vascular contributions to cognitive impairment and dementia (VCID): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline. Cell Mol. Neurobiol. 36, 281–288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Boyle, P. A. et al. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann. Neurol. 83, 74–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Satizabal, C. L. et al. Incidence of dementia over three decades in the Framingham Heart Study. N. Engl. J. Med. 374, 523–532 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Iadecola, C. & Gottesman, R. F. Cerebrovascular alterations in Alzheimer disease. Circ. Res. 123, 406–408 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tarasoff-Conway, J. M. et al. Clearance systems in the brain–implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Arvanitakis, Z. et al. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann. Neurol. 69, 320–327 (2011).

    PubMed  Google Scholar 

  7. 7.

    Brenowitz, W. D., Nelson, P. T., Besser, L. M., Heller, K. B. & Kukull, W. A. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol. Ageing 36, 2702–2708 (2015).

    CAS  Google Scholar 

  8. 8.

    Greenberg, S. M. & Charidimou, A. Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria. Stroke 49, 491–497 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Yates, P. A. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82, 1266–1273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    PubMed  Google Scholar 

  11. 11.

    Guillozet, A. L., Weintraub, S., Mash, D. C. & Mesulam, M. M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol. 60, 729–736 (2003).

    PubMed  Google Scholar 

  12. 12.

    Andrade-Moraes, C. H. et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136, 3738–3752 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Villemagne, V. L. & Okamura, N. Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr. Opin. Neurobiol. 36, 43–51 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Villeneuve, S. et al. Cortical thickness mediates the effect of beta-amyloid on episodic memory. Neurology 82, 761–767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sperling, R. A. et al. The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann. Neurol. 85, 181–193 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Greenberg, S. M. et al. Outcome markers for clinical trials in cerebral amyloid angiopathy. Lancet Neurol. 13, 419–428 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Reijmer, Y. D. et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 138, 179–188 (2015).

    PubMed  Google Scholar 

  18. 18.

    Dichgans, M. & Leys, D. Vascular cognitive impairment. Circ. Res. 120, 573–591 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    van Veluw, S. J. et al. Histopathology of diffusion imaging abnormalities in cerebral amyloid angiopathy. Neurology 92, e933–e943 (2019).

    PubMed  Google Scholar 

  20. 20.

    van Veluw, S. J. et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 16, 730–740 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Eng, J. A., Frosch, M. P., Choi, K., Rebeck, G. W. & Greenberg, S. M. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann. Neurol. 55, 250–256 (2004).

    PubMed  Google Scholar 

  22. 22.

    van Veluw, S. J. et al. Different microvascular alterations underlie microbleeds and microinfarcts. Ann. Neurol. 86, 279–292 (2019).

    PubMed  Google Scholar 

  23. 23.

    Dumas, A. et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann. Neurol. 72, 76–81 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Peca, S. et al. Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy. Neurology 81, 1659–1665 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    van Opstal, A. M. et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study. Lancet Neurol. 16, 115–122 (2017). This study, along with Dumas et al. and Peca et al., demonstrated impairment of vascular reactivity to physiological stimulation in CAA, a mechanism that may contribute to tissue injury and delayed perivascular clearance.

    PubMed  Google Scholar 

  26. 26.

    Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Grabowski, T. J., Cho, H. S., Vonsattel, J. P., Rebeck, G. W. & Greenberg, S. M. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann. Neurol. 49, 697–705 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Fotiadis, P. et al. Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study. Lancet Neurol. 15, 811–819 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Goos, J. D. et al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40, 3455–3460 (2009).

    PubMed  Google Scholar 

  30. 30.

    Boyle, P. A. et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85, 1930–1936 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Szentistvanyi, I., Patlak, C. S., Ellis, R. A. & Cserr, H. F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844 (1984).

    CAS  PubMed  Google Scholar 

  32. 32.

    Zhang, E. T., Richards, H. K., Kida, S. & Weller, R. O. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 83, 233–239 (1992).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kida, S., Pantazis, A. & Weller, R. O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol. 19, 480–488 (1993).

    CAS  PubMed  Google Scholar 

  34. 34.

    Weller, R. O. et al. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am. J. Pathol. 153, 725–733 (1998). This study was an early statement of the experimental support for a link between CAA and the perivascular fluid drainage process.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. & Carare, R. O. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 18, 253–266 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Carare, R. O., Hawkes, C. A., Jeffrey, M., Kalaria, R. N. & Weller, R. O. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol. Appl. Neurobiol. 39, 593–611 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131–144 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    Albargothy, N. J. et al. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 136, 139–152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Keable, A. et al. Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim. Biophys. Acta 1862, 1037–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Plog, B. A. & Nedergaard, M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol. 13, 379–394 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Benveniste, H. et al. The glymphatic system and waste clearance with brain aging: a review. Gerontology 65, 106–119 (2019).

    PubMed  Google Scholar 

  43. 43.

    Nedergaard, M. Neuroscience. Garbage truck of the brain. Science 340, 1529–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6, e27679 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7, e40070 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wilcock, D. M., Vitek, M. P. & Colton, C. A. Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease. Neuroscience 159, 1055–1069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bakker, E. N. et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol. Neurobiol. 36, 181–194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. 32, 543–551 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schley, D., Carare-Nnadi, R., Please, C. P., Perry, V. H. & Weller, R. O. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238, 962–974 (2006).

    CAS  PubMed  Google Scholar 

  51. 51.

    Weller, R. O., Djuanda, E., Yow, H. Y. & Carare, R. O. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 117, 1–14 (2009).

    CAS  PubMed  Google Scholar 

  52. 52.

    Bedussi, B., Almasian, M., de Vos, J., VanBavel, E. & Bakker, E. N. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J. Cereb. Blood Flow Metab. 38, 719–726 (2018).

    PubMed  Google Scholar 

  53. 53.

    Diem, A. K. et al. Arterial pulsations cannot drive intramural periarterial drainage: significance for Aβ drainage. Front. Neurosci. 11, 475 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Aldea, R., Weller, R. O., Wilcock, D. M., Carare, R. O. & Richardson, G. Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front. Ageing Neurosci. 11, 1 (2019).

    CAS  Google Scholar 

  55. 55.

    Mateo, C., Knutsen, P. M., Tsai, P. S., Shih, A. Y. & Kleinfeld, D. Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96, 936–948 (2017). This study identified a link between resting neuronal activity and vasomotion, the proposed motor force for perivascular clearance.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    He, Y. et al. Ultra-slow single-vessel BOLD and CBV-based fMRI spatiotemporal dynamics and their correlation with neuronal intracellular calcium signals. Neuron 97, 925–939 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron https://doi.org/10.1016/j.neuron.2019.10.033 (2019).

  58. 58.

    Geurts, L. J., Zwanenburg, J. J. M., Klijn, C. J. M., Luijten, P. R. & Biessels, G. J. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study. Stroke 50, 62–68 (2019).

    Google Scholar 

  59. 59.

    Eide, P. K. & Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol. Open 4, 2058460115609635 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ringstad, G., Vatnehol, S. A. S. & Eide, P. K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140, 2691–2705 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Arbel-Ornath, M. et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol. 126, 353–364 (2013).

    CAS  PubMed  Google Scholar 

  62. 62.

    Xu, Z. et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener. 10, 58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

    PubMed  Google Scholar 

  64. 64.

    Charidimou, A. et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 88, 1157–1164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    van Veluw, S. J. et al. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. J. Cereb. Blood Flow Metab. 36, 576–580 (2016).

    PubMed  Google Scholar 

  66. 66.

    Bouvy, W. H. et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer’s disease: a 7 Tesla MRI study. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X19838087 (2019).

  67. 67.

    Garcia-Alloza, M. et al. Cerebrovascular lesions induce transient beta-amyloid deposition. Brain 134, 3697–3707 (2011).

    PubMed  Google Scholar 

  68. 68.

    Wang, M. et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J. Neurosci. 37, 2870–2877 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Weller, R. O., Yow, H. Y., Preston, S. D., Mazanti, I. & Nicoll, J. A. Cerebrovascular disease is a major factor in the failure of elimination of Abeta from the aging human brain: implications for therapy of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 977, 162–168 (2002).

    CAS  PubMed  Google Scholar 

  70. 70.

    Hawkes, C. A. et al. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging. Cell 12, 224–236 (2013).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  73. 73.

    Holth, J. K. et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kang, J. E. et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Shokri-Kojori, E. et al. beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    PubMed  Google Scholar 

  77. 77.

    Thal, D. R., Ghebremedhin, E., Orantes, M. & Wiestler, O. D. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 62, 1287–1301 (2003).

    PubMed  Google Scholar 

  78. 78.

    Thal, D. R. et al. Two types of sporadic cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61, 282–293 (2002).

    PubMed  Google Scholar 

  79. 79.

    Makela, M., Paetau, A., Polvikoski, T., Myllykangas, L. & Tanskanen, M. Capillary amyloid-beta protein deposition in a population-based study (Vantaa 85+). J. Alzheimers Dis. 49, 149–157 (2016).

    PubMed  Google Scholar 

  80. 80.

    Attems, J. & Jellinger, K. A. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology–a pilot study. Acta Neuropathol. 107, 83–90 (2004).

    PubMed  Google Scholar 

  81. 81.

    Vonsattel, J. P. et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann. Neurol. 30, 637–649 (1991).

    CAS  PubMed  Google Scholar 

  82. 82.

    Robbins, E. M. et al. Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J. Neurosci. 26, 365–371 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    CAS  PubMed  Google Scholar 

  84. 84.

    Jaunmuktane, Z. et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 525, 247–250 (2015). This initial report of human tissue transmitting early-onset CAA provides strong evidence for amyloid seeding as a mechanism of disease initiation.

    CAS  PubMed  Google Scholar 

  85. 85.

    Banerjee, G. et al. Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann. Neurol. 85, 284–290 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Miller, D. L. et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch. Biochem. Biophys. 301, 41–52 (1993).

    CAS  PubMed  Google Scholar 

  87. 87.

    Gravina, S. A. et al. Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J. Biol. Chem. 270, 7013–7016 (1995).

    CAS  PubMed  Google Scholar 

  88. 88.

    Kakuda, N. et al. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol. Commun. 5, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Roher, A. E. et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 10836–10840 (1993).

    CAS  PubMed  Google Scholar 

  90. 90.

    Attems, J., Lintner, F. & Jellinger, K. A. Amyloid beta peptide 1-42 highly correlates with ocapillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol. 107, 283–291 (2004).

    CAS  PubMed  Google Scholar 

  91. 91.

    Wisniewski, H. M. & Wegiel, J. Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol. 87, 233–241 (1994).

    CAS  PubMed  Google Scholar 

  92. 92.

    Frackowiak, J., Miller, D. L., Potempska, A., Sukontasup, T. & Mazur-Kolecka, B. Secretion and accumulation of Abeta by brain vascular smooth muscle cells from AbetaPP-Swedish transgenic mice. J. Neuropathol. Exp. Neurol. 62, 685–696 (2003).

    CAS  PubMed  Google Scholar 

  93. 93.

    Calhoun, M. E. et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl Acad. Sci. USA 96, 14088–14093 (1999). This demonstration of CAA pathology in transgenic mice with neuronal expression of mutant amyloid precursor protein helped to establish the principle that neuronally derived amyloid-β can reach sites of deposition in vessel walls.

    CAS  PubMed  Google Scholar 

  94. 94.

    Herzig, M. C. et al. Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954–960 (2004).

    CAS  PubMed  Google Scholar 

  95. 95.

    Jarrett, J. T., Berger, E. P. & Lansbury, P. T. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    McGowan, E. et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191–199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Harigaya, Y. et al. Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem. Biophys. Res. Commun. 276, 422–427 (2000).

    CAS  PubMed  Google Scholar 

  98. 98.

    Revesz, T. et al. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J. Neuropathol. Exp. Neurol. 62, 885–898 (2003).

    CAS  PubMed  Google Scholar 

  99. 99.

    Wattendorff, A. R., Frangione, B., Luyendijk, W. & Bots, G. T. Hereditary cerebral haemorrhage with amyloidosis, Dutch type (HCHWA-D): clinicopathological studies. J. Neurol. Neurosurg. Psychiatry 58, 699–705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Levy, E. et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    CAS  PubMed  Google Scholar 

  101. 101.

    Maat-Schieman, M. L., van Duinen, S. G., Bornebroek, M., Haan, J. & Roos, R. A. Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D): II–A review of histopathological aspects. Brain Pathol. 6, 115–120 (1996).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kamino, K. et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am. J. Hum. Genet. 51, 998–1014 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Bugiani, O. et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch. Neurol. 67, 987–995 (2010).

    PubMed  Google Scholar 

  104. 104.

    Cras, P. et al. Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala–>Gly mutation. Acta Neuropathol. 96, 253–260 (1998).

    CAS  PubMed  Google Scholar 

  105. 105.

    Obici, L. et al. A novel AbetaPP mutation exclusively associated with cerebral amyloid angiopathy. Ann. Neurol. 58, 639–644 (2005).

    CAS  PubMed  Google Scholar 

  106. 106.

    Basun, H. et al. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch. Neurol. 65, 499–505 (2008).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Kumar-Singh, S. et al. Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am. J. Pathol. 161, 507–520 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Mann, D. M. et al. Predominant deposition of amyloid-beta 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am. J. Pathol. 148, 1257–1266 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Shin, Y. et al. Abeta species, including IsoAsp23 Abeta, in Iowa-type familial cerebral amyloid angiopathy. Acta Neuropathol. 105, 252–258 (2003).

    CAS  PubMed  Google Scholar 

  110. 110.

    Greenberg, S. M. et al. Hemorrhagic stroke associated with the Iowa amyloid precursor protein mutation. Neurology 60, 1020–1022 (2003).

    CAS  PubMed  Google Scholar 

  111. 111.

    Brooks, W. S. et al. Hemorrhage is uncommon in new Alzheimer family with Flemish amyloid precursor protein mutation. Neurology 63, 1613–1617 (2004).

    CAS  PubMed  Google Scholar 

  112. 112.

    Clements, A., Walsh, D. M., Williams, C. H. & Allsop, D. Effects of the mutations Glu22 to Gln and Ala21 to Gly on the aggregation of a synthetic fragment of the Alzheimer’s amyloid beta/A4 peptide. Neurosci. Lett. 161, 17–20 (1993).

    CAS  PubMed  Google Scholar 

  113. 113.

    Melchor, J. P., McVoy, L. & Van Nostrand, W. E. Charge alterations of E22 enhance the pathogenic properties of the amyloid beta-protein. J. Neurochem. 74, 2209–2212 (2000).

    CAS  PubMed  Google Scholar 

  114. 114.

    Van Nostrand, W. E., Melchor, J. P., Romanov, G., Zeigler, K. & Davis, J. Pathogenic effects of cerebral amyloid angiopathy mutations in the amyloid beta-protein precursor. Ann. N. Y. Acad. Sci. 977, 258–265 (2002).

    PubMed  Google Scholar 

  115. 115.

    Nilsberth, C. et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  116. 116.

    Fossati, S. et al. Differential activation of mitochondrial apoptotic pathways by vasculotropic amyloid-beta variants in cells composing the cerebral vessel walls. FASEB J. 24, 229–241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Miravalle, L. et al. Substitutions at codon 22 of Alzheimer’s abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem. 275, 27110–27116 (2000).

    CAS  PubMed  Google Scholar 

  118. 118.

    Tsubuki, S., Takaki, Y. & Saido, T. C. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. Lancet 361, 1957–1958 (2003).

    CAS  PubMed  Google Scholar 

  119. 119.

    Morelli, L. et al. Differential degradation of amyloid beta genetic variants associated with hereditary dementia or stroke by insulin-degrading enzyme. J. Biol. Chem. 278, 23221–23226 (2003).

    CAS  PubMed  Google Scholar 

  120. 120.

    Monro, O. R. et al. Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-beta peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol. Ageing. 23, 405–412 (2002).

    CAS  Google Scholar 

  121. 121.

    Sleegers, K. et al. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129, 2977–2983 (2006).

    PubMed  Google Scholar 

  122. 122.

    Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26 (2006).

    CAS  PubMed  Google Scholar 

  123. 123.

    Wilcock, D. M., Schmitt, F. A. & Head, E. Cerebrovascular contributions to aging and Alzheimer’s disease in Down syndrome. Biochim. Biophys. Acta 1862, 909–914 (2016).

    CAS  PubMed  Google Scholar 

  124. 124.

    Nochlin, D., Bird, T. D., Nemens, E. J., Ball, M. J. & Sumi, S. M. Amyloid angiopathy in a Volga German family with Alzheimer’s disease and a presenilin-2 mutation (N141I). Ann. Neurol. 43, 131–135 (1998).

    CAS  PubMed  Google Scholar 

  125. 125.

    Dermaut, B. et al. Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer’s disease due to a novel presenilin 1 mutation. Brain 124, 2383–2392 (2001).

    CAS  PubMed  Google Scholar 

  126. 126.

    Sanchez-Valle, R. et al. A novel mutation in the PSEN1 gene (L286P) associated with familial early-onset dementia of Alzheimer type and lobar haematomas. Eur. J. Neurol. 14, 1409–1412 (2007).

    CAS  PubMed  Google Scholar 

  127. 127.

    Mann, D. M., Pickering-Brown, S. M., Takeuchi, A. & Iwatsubo, T. Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am. J. Pathol. 158, 2165–2175 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Ryan, N. S. et al. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer’s disease. Neurobiol. Ageing. 36, 3140–3151 (2015).

    CAS  Google Scholar 

  129. 129.

    Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–521 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Marini, S. et al. Association of apolipoprotein E with intracerebral hemorrhage risk by race/ethnicity: a meta-analysis. JAMA Neurol. 76, 480–491 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLOS Genet. 10, e1004606 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Makela, M. et al. Alzheimer risk loci and associated neuropathology in a population-based study (Vantaa 85+). Neurol. Genet. 4, e211 (2018). In this study and Beecham et al., associations between CAA pathology and genetic variants that promote Alzheimer disease pathology were examined.

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Eikelenboom, P. & Stam, F. C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. 57, 239–242 (1982).

    CAS  PubMed  Google Scholar 

  134. 134.

    Snow, A. D. et al. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am. J. Pathol. 133, 456–463 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Kalaria, R. N. & Grahovac, I. Serum amyloid P immunoreactivity in hippocampal tangles, plaques and vessels: implications for leakage across the blood–brain barrier in Alzheimer’s disease. Brain Res. 516, 349–353 (1990).

    CAS  PubMed  Google Scholar 

  136. 136.

    Rozemuller, J. M. et al. Distribution pattern and functional state of α1-antichymotrypsin in plaques and vascular amyloid in Alzheimer’s disease. An immunohistochemical study with monoclonal antibodies against native and inactivated α1-antichymotrypsin. Acta Neuropathol. 82, 200–207 (1991).

    CAS  PubMed  Google Scholar 

  137. 137.

    Van Gool, D., De Strooper, B., Van Leuven, F., Triau, E. & Dom, R. α2-macroglobulin expression in neuritic-type plaques in patients with Alzheimer’s disease. Neurobiol. Ageing. 14, 233–237 (1993).

    Google Scholar 

  138. 138.

    Verbeek, M. M. et al. Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer’s disease. Am. J. Pathol. 144, 104–116 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    McGeer, P. L., Klegeris, A., Walker, D. G., Yasuhara, O. & McGeer, E. G. Pathological proteins in senile plaques. Tohoku J. Exp. Med. 174, 269–277 (1994).

    CAS  PubMed  Google Scholar 

  140. 140.

    Harr, S. D., Uint, L., Hollister, R., Hyman, B. T. & Mendez, A. J. Brain expression of apolipoproteins E, J, and A-I in Alzheimer’s disease. J. Neurochem. 66, 2429–2435 (1996).

    CAS  PubMed  Google Scholar 

  141. 141.

    Verbeek, M. M., Otte-Holler, I., Veerhuis, R., Ruiter, D. J. & De Waal, R. M. Distribution of Aβ-associated proteins in cerebrovascular amyloid of Alzheimer’s disease. Acta Neuropathol. 96, 628–636 (1998).

    CAS  PubMed  Google Scholar 

  142. 142.

    Hashimoto, T. et al. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J. 21, 1524–1534 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Kowa, H. et al. Mostly separate distributions of CLAC- versus Abeta40- or thioflavin S-reactivities in senile plaques reveal two distinct subpopulations of beta-amyloid deposits. Am. J. Pathol. 165, 273–281 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Zabel, M. et al. A shift in microglial β-amyloid binding in Alzheimer’s disease is associated with cerebral amyloid angiopathy. Brain Pathol. 23, 390–401 (2013).

    CAS  PubMed  Google Scholar 

  145. 145.

    Camacho, J. et al. Brain ApoA-I, ApoJ and ApoE immunodetection in cerebral amyloid angiopathy. Front. Neurol 10, 187 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Ghiso, J. et al. The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293, 27–30 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Webster, S., O’Barr, S. & Rogers, J. Enhanced aggregation and beta structure of amyloid beta peptide after coincubation with C1q. J. Neurosci. Res. 39, 448–456 (1994).

    CAS  PubMed  Google Scholar 

  148. 148.

    Snow, A. D. et al. An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar aβ-amyloid in rat brain. Neuron 12, 219–234 (1994).

    CAS  PubMed  Google Scholar 

  149. 149.

    Ma, J., Yee, A., Brewer, H. B. J., Das, S. & Potter, H. Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372, 92–94 (1994).

    CAS  PubMed  Google Scholar 

  150. 150.

    Endo, Y. et al. Apolipoprotein E and clusterin inhibit the early phase of amyloid-beta aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathol. Commun. 7, 12 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 541, 163–166 (1991).

    CAS  PubMed  Google Scholar 

  152. 152.

    Wisniewski, T., Golabek, A. A., Kida, E., Wisniewski, K. E. & Frangione, B. Conformational mimicry in Alzheimer’s disease. Role of apolipoproteins in amyloidogenesis. Am. J. Pathol. 147, 238–244 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    CAS  PubMed  Google Scholar 

  154. 154.

    Liu, Y. et al. APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 86, 127–134 (2015).

    PubMed  Google Scholar 

  155. 155.

    Greenberg, S. M., Rebeck, G. W., Vonsattel, J. P. V., Gomez-Isla, T. & Hyman, B. T. Apolipoprotein E e4 and cerebral hemorrhage associated with amyloid angiopathy. Ann. Neurol. 38, 254–259 (1995).

    CAS  PubMed  Google Scholar 

  156. 156.

    Nicoll, J. A. & McCarron, M. O. APOE gene polymorphism as a risk factor for cerebral amyloid angiopathy-related hemorrhage. Amyloid 8, 51–55 (2001).

    CAS  PubMed  Google Scholar 

  157. 157.

    Olichney, J. M. et al. The apolipoprotein E epsilon 4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer’s disease and Lewy body variant. Neurology 47, 190–196 (1996).

    CAS  PubMed  Google Scholar 

  158. 158.

    Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7, 180–184 (1994).

    CAS  PubMed  Google Scholar 

  159. 159.

    Deane, R. et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Verghese, P. B. et al. ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc. Natl Acad. Sci. USA 110, E1807–E1816 (2013).

    CAS  PubMed  Google Scholar 

  161. 161.

    Huynh, T. V., Davis, A. A., Ulrich, J. D. & Holtzman, D. M. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J. Lipid. Res. 58, 824–836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Guo, S. et al. Effects of apoE isoforms on beta-amyloid-induced matrix metalloproteinase-9 in rat astrocytes. Brain Res. 1111, 222–226 (2006).

    CAS  PubMed  Google Scholar 

  163. 163.

    Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    CAS  PubMed  Google Scholar 

  164. 164.

    Fryer, J. D. et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J. Neurosci. 23, 7889–7896 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000).

    CAS  PubMed  Google Scholar 

  166. 166.

    Holtzman, D. M. et al. Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J. Clin. Invest. 103, 15–21 (1999).

    Google Scholar 

  167. 167.

    Fryer, J. D. et al. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J. Neurosci. 25, 2803–2810 (2005). This study, Fryer et al. (2003), Holtzman et al. (2000) and Holtzman et al. (1999) demonstrate the complex relationship between CAA pathology and the presence of apolipoprotein E, its isoforms, and its human and mouse forms.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Liao, F. et al. Murine versus human apolipoprotein E4: differential facilitation of and colocalization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol. Commun. 3, 70 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Thal, D. R. et al. Capillary cerebral amyloid angiopathy identifies a distinct APOE epsilon4-associated subtype of sporadic Alzheimer’s disease. Acta Neuropathol. 120, 169–183 (2010).

    CAS  PubMed  Google Scholar 

  170. 170.

    McGeer, P. L., Kawamata, T. & Walker, D. G. Distribution of clusterin in Alzheimer brain tissue. Brain Res. 579, 337–341 (1992).

    CAS  PubMed  Google Scholar 

  171. 171.

    Miners, J. S., Clarke, P. & Love, S. Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Aβ. Brain Pathol. 27, 305–313 (2017).

    CAS  PubMed  Google Scholar 

  172. 172.

    Hammad, S. M., Ranganathan, S., Loukinova, E., Twal, W. O. & Argraves, W. S. Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J. Biol. Chem. 272, 18644–18649 (1997).

    CAS  PubMed  Google Scholar 

  173. 173.

    Narayan, P. et al. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-beta(1-40) peptide. Nat. Struct. Mol. Biol. 19, 79–83 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Yerbury, J. J. et al. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 2312–2322 (2007).

    CAS  PubMed  Google Scholar 

  175. 175.

    Wojtas, A. M. et al. Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc. Natl Acad. Sci. USA 114, E6962–E6971 (2017).

    CAS  PubMed  Google Scholar 

  176. 176.

    Bell, R. D. et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood. Flow Metab. 27, 909–918 (2007).

    CAS  PubMed  Google Scholar 

  177. 177.

    DeMattos, R. B. et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 99, 10843–10848 (2002).

    CAS  PubMed  Google Scholar 

  178. 178.

    Oh, S. B. et al. Clusterin contributes to early stage of Alzheimer’s disease pathogenesis. Brain Pathol. 29, 217–231 (2019).

    CAS  PubMed  Google Scholar 

  179. 179.

    Drummond, E. et al. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol. 133, 933–954 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Xiong, F., Ge, W. & Ma, C. Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimers Dement. 15, 429–440 (2019).

    PubMed  Google Scholar 

  181. 181.

    Manousopoulou, A. et al. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 43, 492–504 (2017).

    CAS  PubMed  Google Scholar 

  182. 182.

    Hondius, D. C. et al. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol. Commun. 6, 46 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Inoue, Y. et al. Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy. Acta Neuropathol. 134, 605–617 (2017).

    CAS  PubMed  Google Scholar 

  184. 184.

    Cortes-Canteli, M. et al. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron 66, 695–709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Hultman, K., Strickland, S. & Norris, E. H. The APOE ε4/ε4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 33, 1251–1258 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 7, 367–385 (2011).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl. J. Med. 370, 322–333 (2014).

    CAS  PubMed  Google Scholar 

  188. 188.

    Ostrowitzki, S. et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 9, 95 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  190. 190.

    Carlson, C. et al. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer’s disease. Alzheimers Dement. (Amst) 2, 75–85 (2016).

    Google Scholar 

  191. 191.

    Cummings, J. L. et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90, e1889–e1897 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Leurent, C. et al. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. Ann. Clin. Transl Neurol. 6, 795–806 (2019). The initial clinical trial of anti-amyloid-β immunotherapy in patients diagnosed with CAA cerebral amyloid angiopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Ultsch, M. et al. Structure of crenezumab complex with Aβ shows loss of β-hairpin. Sci. Rep. 6, 39374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Raman, M. R. et al. Spontaneous amyloid-related imaging abnormalities in a cognitively normal adult. Neurology 83, 1771–1772 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. 195.

    Ryan, N. S. et al. Spontaneous ARIA (amyloid-related imaging abnormalities) and cerebral amyloid angiopathy related inflammation in presenilin 1-associated familial Alzheimer’s disease. J. Alzheimers Dis. 44, 1069–1074 (2015).

    CAS  PubMed  Google Scholar 

  196. 196.

    Ketter, N. et al. Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. J. Alzheimers Dis. 57, 557–573 (2017).

    CAS  PubMed  Google Scholar 

  197. 197.

    Penninkilampi, R., Brothers, H. M. & Eslick, G. D. Safety and efficacy of anti-amyloid-β immunotherapy in Alzheimer’s disease: a systematic review and meta-analysis. J. Neuroimmune Pharmacol. 12, 194–203 (2017).

    PubMed  Google Scholar 

  198. 198.

    Goos, J. D. et al. Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology 74, 1954–1960 (2010).

    CAS  PubMed  Google Scholar 

  199. 199.

    Haeberlein, S. B. et al. 24-Month analysis of change from baseline in clinical dementia rating scale cognitive and functional domains in PRIME: a randomized phase 1b study of the anti-amyloid beta monoclonal antibody aducanumab [abstract O1-09-06]. Alzheimers Dement. 14 (Suppl. 7), P242 (2018).

    Google Scholar 

  200. 200.

    Andjelkovic, M. et al. Update on the safety and tolerability of gangenerumab in the ongoing open-label extension of the SCarlet RoAD study in patients with prodromal Alzheimer’s disease after approximately 2 years of study duration [abstract O1-09-05]. Alzheimers Dement. 14 (Suppl. 7), P241–P242 (2018).

    Google Scholar 

  201. 201.

    Sperling, R. et al. Amyloid-related imaging abnormalities in patients with Alzheimer disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 11, 241–249 (2012). An analysis of amyloid-related imaging abnormalities in clinical trials of the anti-amyloid-β antibody bapineuzumab and in which candidate mechanisms were proposed.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Arrighi, H. M. et al. Amyloid-related imaging abnormalities-haemosiderin (ARIA-H) in patients with Alzheimer’s disease treated with bapineuzumab: a historical, prospective secondary analysis. J. Neurol. Neurosurg. Psychiatry. 87, 106–112 (2016).

    PubMed  Google Scholar 

  203. 203.

    Brashear, H. R. et al. Clinical evaluation of amyloid-related imaging abnormalities in bapineuzumab phase III studies. J Alzheimers Dis. 66, 1409–1424 (2018).

    CAS  PubMed  Google Scholar 

  204. 204.

    Liu, E. et al. Biomarker pattern of ARIA-E participants in phase 3 randomized clinical trials with bapineuzumab. Neurology 90, e877–e886 (2018).

    CAS  PubMed  Google Scholar 

  205. 205.

    Boche, D., Denham, N., Holmes, C. & Nicoll, J. A. Neuropathology after active Abeta42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol. 120, 369–384 (2010).

    CAS  PubMed  Google Scholar 

  206. 206.

    Sakai, K. et al. Aβ immunotherapy for Alzheimer’s disease: effects on apoE and cerebral vasculopathy. Acta Neuropathol. 128, 777–789 (2014).

    CAS  PubMed  Google Scholar 

  207. 207.

    Mandybur, T. I. Cerebral amyloid angiopathy: the vascular pathology and complications. J. Neuropathol. Exp. Neurol. 45, 79–90 (1986).

    CAS  PubMed  Google Scholar 

  208. 208.

    Kinnecom, C. et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology 68, 1411–1416 (2007).

    CAS  PubMed  Google Scholar 

  209. 209.

    Auriel, E. et al. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. JAMA Neurol. 73, 197–202 (2016).

    PubMed  Google Scholar 

  210. 210.

    Piazza, F. et al. Anti-amyloid beta autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. Ann. Neurol. 73, 449–458 (2013). The first report of anti-amyloid-β antibodies in the CSF of individuals with CAA, offering the strongest link between this spontaneous syndrome and ARIA seen in clinical trials of anti-amyloid-β antibodies.

    CAS  PubMed  Google Scholar 

  211. 211.

    Zago, W. et al. Vascular alterations in PDAPP mice after anti-Aβ immunotherapy: implications for amyloid-related imaging abnormalities. Alzheimers Dement. 9, S105-S115 (2013).

    Google Scholar 

  212. 212.

    Blockx, I. et al. Monitoring blood–brain barrier integrity following amyloid-β immunotherapy using gadolinium-enhanced MRI in a PDAPP mouse model. J. Alzheimers Dis. 54, 723–735 (2016).

    CAS  PubMed  Google Scholar 

  213. 213.

    Gottesman, R. F. et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 74, 1246–1254 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. 214.

    Boche, D. et al. Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131, 3299–3310 (2008). This study identified changes in CAA severity in post-mortem brain tissue from individiuals who were previously immunized against amyloid-β.

    CAS  PubMed  Google Scholar 

  215. 215.

    Han, B. H. et al. Resorufin analogs preferentially bind cerebrovascular amyloid: potential use as imaging ligands for cerebral amyloid angiopathy. Mol. Neurodegener. 6, 86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Mawuenyega, K. G. et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330, 1774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    de Leon, M. J. et al. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J. Nucl. Med. 58, 1471–1476 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    CAS  PubMed  Google Scholar 

  219. 219.

    Mullan, M. et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet. 1, 345–347 (1992).

    CAS  PubMed  Google Scholar 

  220. 220.

    Rovelet-Lecrux, A. et al. APP locus duplication in a Finnish family with dementia and intracerebral haemorrhage. J. Neurol. Neurosurg. Psychiatry. 78, 1158–1159 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221.

    Belza, M. G. & Urich, H. Cerebral amyloid angiopathy in Down’s syndrome. Clin. neuropathology 5, 257–260 (1986).

    CAS  Google Scholar 

  222. 222.

    Nicoll, J. A. et al. High frequency of apolipoprotein E epsilon 2 allele in hemorrhage due to cerebral amyloid angiopathy. Ann. Neurol. 41, 716–721 (1997).

    CAS  PubMed  Google Scholar 

  223. 223.

    Greenberg, S. M. et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology 50, 961–965 (1998).

    CAS  PubMed  Google Scholar 

  224. 224.

    Cotman, S. L., Halfter, W. & Cole, G. J. Agrin binds to β-amyloid (Aβ), accelerates Aβ fibril formation, and is localized to Aβ deposits in Alzheimer’s disease brain. Mol. Cell Neurosci. 15, 183–198 (2000).

    CAS  PubMed  Google Scholar 

  225. 225.

    van Horssen, J. et al. Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer’s disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol. 102, 604–614 (2001).

    PubMed  Google Scholar 

  226. 226.

    Wilhelmus, M. M. et al. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol. Appl. Neurobiol. 32, 119–130 (2006).

    CAS  PubMed  Google Scholar 

  227. 227.

    Wilhelmus, M. M. et al. Small heat shock protein HspB8: its distribution in Alzheimer’s disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol. 111, 139–149 (2006).

    CAS  PubMed  Google Scholar 

  228. 228.

    van Horssen, J. et al. Collagen XVIII: a novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer’s disease brains. Brain Pathol. 12, 456–462 (2002).

    PubMed  Google Scholar 

  229. 229.

    Verbeek, M. M., Otte-Höller, I., Wesseling, P., Ruiter, D. J. & de Waal, R. M. Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am. J. Pathol. 144, 372–382 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Zhao, L. et al. Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. Neurobiol. Ageing 36, 2963–2971 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

S.M.G. acknowledges research funding from the National Institutes of Health (R01 NS096730, R01 AG26484, U24 NS100591).

Author information

Affiliations

Authors

Contributions

S.M.G., M.H.-G., J.P. and S.J.v.V wrote the article. All authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Steven M. Greenberg.

Ethics declarations

Competing interests

S.M.G. has served as a consultant or safety monitor for Alzheimer immunotherapy trials for Biogen, DIAN-TU and Roche. R.S. has served as a consultant or received clinical research funding from Biogen, Eisai, Eli Lilly, Janssen, Roche and Takeda. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks J. Nicoll, M. Verbeek and M. Yamada for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greenberg, S.M., Bacskai, B.J., Hernandez-Guillamon, M. et al. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol 16, 30–42 (2020). https://doi.org/10.1038/s41582-019-0281-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing