Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging therapies in Parkinson disease — repurposed drugs and new approaches

Abstract

Parkinson disease (PD) treatment options have conventionally focused on dopamine replacement and provision of symptomatic relief. Current treatments cause undesirable adverse effects, and a large unmet clinical need remains for treatments that offer disease modification and that address symptoms resistant to levodopa. Advances in high-throughput drug screening methods for small molecules, developments in disease modelling and improvements in analytical technologies have collectively contributed to the emergence of novel compounds, repurposed drugs and new technologies. In this Review, we focus on disease-modifying and symptomatic therapies under development for PD. We review cellular therapies and repurposed drugs, such as nilotinib, inosine, isradipine, iron chelators and anti-inflammatories, and discuss how their success in preclinical models has paved the way for clinical trials. We provide an update on immunotherapies and vaccines. In addition, we review non-pharmacological interventions targeting motor symptoms, including gene therapy, adaptive deep brain stimulation (DBS) and optogenetically inspired DBS. Given the many clinical phenotypes of PD, individualization of therapy and precision of treatment are likely to become important in the future.

Key points

  • Emerging therapies for Parkinson disease (PD) have focused largely on disease modification and on dopamine resistance symptoms, which are both important unmet needs.

  • Some new disease-modifying therapies target α-synuclein and its pathways, whereas others target different genes and proteins implicated in PD pathogenesis, including leucine-rich repeat kinase 2, parkin and glucocerebrosidase.

  • Disease-modifying pharmacotherapies (such as nilotinib, inosine and isradipine) are being repurposed to treat PD; antibody therapies, vaccines and immune-mediated therapies that aim to clear abnormal proteins have also emerged as promising approaches.

  • Cellular therapies can be divided into rescue and restoration therapies; rescue therapy aims to salvage neurons and slow the progression of the disease whereas restoration therapy focuses on replacing neurons.

  • Adaptive deep brain stimulation is an alternative symptomatic therapy that can be used to target dopamine-responsive and dopamine-resistant symptoms.

  • Current efforts to overcome challenges in therapeutic development have focused on individualization of therapy and precision in treatment; these principles are especially important given the heterogeneity of clinical PD subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of potential therapies for Parkinson disease.
Fig. 2: Basal ganglia neurotransmitter network.
Fig. 3: Extraction and induction of dopaminergic cells for neuronal restoration.
Fig. 4: Neuromodulation.

Similar content being viewed by others

References

  1. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  Google Scholar 

  2. Lang, A. E. & Espay, A. J. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov. Disord. 33, 660–677 (2018).

    PubMed  Google Scholar 

  3. Van Rooden, S. M. et al. The identification of Parkinson’s disease subtypes using cluster analysis: a systematic review. Mov. Disord. 25, 969–978 (2010).

    PubMed  Google Scholar 

  4. Marras, C. & Lang, A. Parkinson’s disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry 84, 409–415 (2013).

    PubMed  Google Scholar 

  5. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017).

    CAS  PubMed  Google Scholar 

  6. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. V. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006).

    PubMed  Google Scholar 

  7. Pfeiffer, R. F. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 22, S119–S122 (2016).

    PubMed  Google Scholar 

  8. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    CAS  PubMed  Google Scholar 

  9. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  10. Bendor, J. T., Logan, T. P. & Edwards, R. H. The function of α-synuclein. Neuron 79, 1044–1066 (2013).

    CAS  PubMed  Google Scholar 

  11. Wong, Y. C. & Krainc, D. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med. 23, 1–13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dehay, B. et al. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 14, 855–866 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320 (1998).

    CAS  PubMed  Google Scholar 

  14. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    CAS  PubMed  Google Scholar 

  15. Martinez-Vicente, M. et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chinta, S. J., Mallajosyula, J. K., Rane, A. & Andersen, J. K. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486, 235–239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guardia-Laguarta, C. et al. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Paillusson, S. et al. α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 134, 129–149 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Olanow, C. W. & Kordower, J. H. Targeting α-synuclein as a therapy for Parkinson’s disease: the battle begins. Mov. Disord. 32, 203–207 (2017).

    PubMed  Google Scholar 

  20. Mittal, S. et al. β2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson’s disease. Science 357, 891–898 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Searles Nielsen, S., Gross, A., Camacho-Soto, A., Willis, A. W. & Racette, B. A. β2-adrenoreceptor medications and risk of Parkinson disease. Ann. Neurol. 84, 683–693 (2018).

    CAS  PubMed  Google Scholar 

  22. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    CAS  PubMed  Google Scholar 

  23. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 30, 12535–12544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Torra, A. et al. Overexpression of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinson’s disease-related neurodegeneration. Mol. Ther. 26, 1552–1567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xilouri, M., Brekk, O. R., Kirik, D. & Stefanis, L. LAMP2A as a therapeutic target in Parkinson disease. Autophagy 9, 2166–2168 (2013).

    CAS  PubMed  Google Scholar 

  27. Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in -synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S. & Greene, L. A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci. 30, 1166–1175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karuppagounder, S. S. et al. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep. 4, 4874 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pagan, F. et al. Nilotinib effects in Parkinson’s disease and dementia with lewy bodies. J. Parkinsons Dis. 6, 503–517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Simuni, T. et al. A phase 2a study of nilotinib in patients with advanced and early Parkinson’s disease. study design [abstract]. Mov. Disord. 33 (Suppl. 2), 238 (2018).

    Google Scholar 

  32. Savolainen, M. H. et al. The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on α-synuclein clearance and autophagy in A30P transgenic mouse. Neurobiol. Dis. 68, 1–15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Myöhänen, T. T. et al. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson’s disease. Br. J. Pharmacol. 166, 1097–1113 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Perni, M. et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl Acad. Sci. USA 114, E1009–E1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Richter, F. et al. A molecular tweezer ameliorates motor deficits in mice overexpressing α-synuclein. Neurotherapeutics 14, 1107–1119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).

    CAS  PubMed  Google Scholar 

  37. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    CAS  PubMed  Google Scholar 

  38. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Paumier, K. L. et al. Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol. Dis. 82, 185–199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46, 857–868 (2005).

    CAS  PubMed  Google Scholar 

  42. Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLOS ONE 6, e19338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bae, E.-J. et al. Antibody-aided clearance of extracellular -synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mandler, M. et al. Next-generation active immunization approach for synucleinopathies: Implications for Parkinson’s disease clinical trials. Acta Neuropathol. 127, 861–879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jankovic, J. et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti—synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 75, 1206–1214 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Schneeberger, A., Tierney, L. & Mandler, M. Active immunization therapies for Parkinson’s disease and multiple system atrophy. Mov. Disord. 31, 214–224 (2016).

    PubMed  Google Scholar 

  47. Poulopoulos, M., Levy, O. A. & Alcalay, R. N. The neuropathology of genetic Parkinson’s disease. Mov. Disord. 27, 831–842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Doherty, K. M. et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 70, 571–579 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Blanz, J. & Saftig, P. Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J. Neurochem. 139 (Suppl. 1), 198–215 (2016).

    CAS  PubMed  Google Scholar 

  50. Frigerio, R. et al. Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol. Aging 32, 857–863 (2011).

    CAS  PubMed  Google Scholar 

  51. West, A. B. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp. Neurol. 298, 236–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303–1307 (2009).

    CAS  PubMed  Google Scholar 

  53. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, I., Kim, J. W., Dawson, V. L. & Dawson, T. M. LRRK2 pathobiology in Parkinson’s disease. J. Neurochem. 131, 554–565 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Esteves, A. R., Swerdlow, R. H. & Cardoso, S. M. LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp. Neurol. 261, 206–216 (2014).

    CAS  PubMed  Google Scholar 

  57. Cresto, N. et al. The unlikely partnership between LRRK2 and α-synuclein in Parkinson’s disease. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Henderson, M. X., Peng, C., Trojanowski, J. Q. & Lee, V. M. Y. LRRK2 activity does not dramatically alter α-synuclein pathology in primary neurons. Acta Neuropathol. Commun. 6, 45 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sardi, S. P., Cedarbaum, J. M. & Brundin, P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov. Disord. 33, 684–696 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Ness, D. et al. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. PLOS ONE 8, e66164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Herzig, M. C. et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum. Mol. Genet. 20, 4209–4223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fuji, R. N. et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci. Transl Med. 7, 273ra15 (2015).

    PubMed  Google Scholar 

  64. Fan, Y. et al. Interrogating Parkinson’s disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem. J. 475, 23–44 (2017).

    Google Scholar 

  65. Di Maio, R. et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl Med. 10, eaar5429 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Tayebi, N. et al. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 79, 104–109 (2003).

    CAS  PubMed  Google Scholar 

  67. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brockmann, K. et al. GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov. Disord. 30, 407–411 (2015).

    CAS  PubMed  Google Scholar 

  69. Choi, J. H. et al. Aggregation of α-synuclein in brain samples from subjects with glucocerebrosidase mutations. Mol. Genet. Metab. 104, 185–188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bendikov-Bar, I., Maor, G., Filocamo, M. & Horowitz, M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol. Dis. 50, 141–145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lieberman, R. L., D’Aquino, J. A., Ringe, D. & Petsko, G. A. Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry 48, 4816–4827 (2009).

    CAS  PubMed  Google Scholar 

  73. McNeill, A. et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137, 1481–1495 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Sardi, S. P. et al. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc. Natl Acad. Sci. USA 114, 2699–2704 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Double, D. L., Reyes, R., Werry, W. L. & Halliday, H. M. Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog. Neurobiol. 92, 316–329 (2010).

    CAS  PubMed  Google Scholar 

  76. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18, 101–113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pacelli, C. et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015).

    CAS  PubMed  Google Scholar 

  78. Surmeier, D. J. & Schumacker, P. T. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J. Biol. Chem. 288, 10736–10741 (2013).

    CAS  PubMed  Google Scholar 

  79. Sanchez-Padilla, J. et al. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat. Neurosci. 17, 832–840 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Goldberg, J. A. et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci. 15, 1414–1421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gudala, K., Kanukula, R. & Bansal, D. Reduced risk of Parkinson’s disease in users of calcium channel blockers: a meta-analysis. Int. J. Chronic Dis. 2015, 697404 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Oakley, A. E. et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68, 1820–1825 (2007).

    CAS  PubMed  Google Scholar 

  84. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. & Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13, 1045–1060 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dexter, D. T. et al. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J. Neural Transm. 118, 223–231 (2011).

    CAS  PubMed  Google Scholar 

  86. Martin-Bastida, A. et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci. Rep. 7, 1398 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Ton, T. G. et al. Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov. Disord. 21, 964–969 (2006).

    PubMed  Google Scholar 

  88. Gagne, J. J. & Power, M. C. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74, 995–1002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1285 (1988).

    CAS  PubMed  Google Scholar 

  90. Mogi, M. et al. Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147–150 (1994).

    CAS  PubMed  Google Scholar 

  91. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    CAS  PubMed  Google Scholar 

  92. Dobbs, R. J. et al. Association of circulating TNF-α and IL-6 with ageing and parkinsonism. Acta Neurol. Scand. 100, 34–41 (1999).

    CAS  PubMed  Google Scholar 

  93. Blum-Degena, D. et al. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20 (1995).

    Google Scholar 

  94. Mosley, R. L., Hutter-Saunders, J. A., Stone, D. K. & Gendelman, H. E. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009381 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Wahner, A. D., Bronstein, J. M., Bordelon, Y. M. & Ritz, B. Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology 69, 1836–1842 (2007).

    CAS  PubMed  Google Scholar 

  96. Samii, A., Etminan, M., Wiens, M. O. & Jafari, S. NSAID use and the risk of parkinsons disease: systematic review and meta-analysis of observational studies. Drugs Aging 26, 769–779 (2009).

    CAS  PubMed  Google Scholar 

  97. Gao, X., Chen, H., Schwarzschild, M. A. & Ascherio, A. Use of ibuprofen and risk of Parkinson disease. Neurology 76, 863–869 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shameli, A. et al. A critical role for α-synuclein in development and function of T lymphocytes. Immunobiology 221, 333–340 (2016).

    CAS  PubMed  Google Scholar 

  99. Smith, T. J. et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J. Clin. Oncol. 24, 3187–3205 (2006).

    CAS  PubMed  Google Scholar 

  100. Gendelman, H. E. et al. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinsons Dis. 3, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Gellhaar, S., Sunnemark, D., Eriksson, H., Olson, L. & Galter, D. Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson’s and Alzheimer’s disease. Cell Tissue Res. 369, 445–454 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 57, 168–175 (2005).

    CAS  PubMed  Google Scholar 

  103. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    CAS  PubMed  Google Scholar 

  104. Posener, J. A. et al. Safety, tolerability, and pharmacodynamics of AZD3241, a myeloperoxidase inhibitor, in Parkinson’s disease [abstract]. Mov. Disord. 29 (Suppl. 1), 698 (2014).

    Google Scholar 

  105. Jucaite, A. et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 138, 2687–2700 (2015).

    PubMed  Google Scholar 

  106. Harkavyi, A. et al. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J. Neuroinflammation 5, 19 (2008).

    PubMed  PubMed Central  Google Scholar 

  107. Athauda, D. & Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today 21, 802–818 (2016).

    CAS  PubMed  Google Scholar 

  108. Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390, 1664–1675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yin, F., Boveris, A. & Cadenas, E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Twig, G. & Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14, 1939–1951 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, W. et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat. Med. 22, 54–63 (2016).

    CAS  PubMed  Google Scholar 

  112. Corona, J. C. & Duchen, M. R. PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem. Res. 40, 308–316 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Pinto, M. et al. Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation. Mol. Neurodegener. 11, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Simuni, T. et al. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 14, 795–803 (2015).

    CAS  Google Scholar 

  115. De Lau, L. M. L., Koudstaal, P. J., Hofman, A. & Breteler, M. M. B. Serum uric acid levels and the risk of Parkinson disease. Ann. Neurol. 58, 797–800 (2005).

    PubMed  Google Scholar 

  116. Weisskopf, M. G., O’Reilly, E., Chen, H., Schwarzschild, M. A. & Ascherio, A. Plasma urate and risk of Parkinson’s disease. Am. J. Epidemiol. 166, 561–567 (2007).

    CAS  PubMed  Google Scholar 

  117. Gong, L. et al. Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: linking to Akt/GSK3β signaling pathway. J. Neurochem. 123, 876–885 (2012).

    CAS  PubMed  Google Scholar 

  118. Schwarzschild, M. A. et al. Inosine to increase serum and cerebrospinal fluid urate in parkinson disease a randomized clinical trial. JAMA Neurol. 71, 141–150 (2014).

    PubMed  Google Scholar 

  119. Helmich, R. C., Janssen, M. J. R., Oyen, W. J. G., Bloem, B. R. & Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann. Neurol. 69, 269–281 (2011).

    PubMed  Google Scholar 

  120. Doder, M., Rabiner, E. A., Turjanski, N., Lees, A. J. & Brooks, D. J. Tremor in Parkinson’s disease and serotonergic dysfunction: An11C-WAY 100635 PET study. Neurology 60, 601–605 (2003).

    CAS  PubMed  Google Scholar 

  121. Katzenschlager, R., Sampaio, C., Costa, J. & Lees, A. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst. Rev. 2, CD003735 (2002).

    Google Scholar 

  122. Friedman, J. H. et al. Benztropine versus clozapine for the treatment of tremor in Parkinson’s disease. Neurology 48, 1077–1081 (1997).

    CAS  PubMed  Google Scholar 

  123. Thomas, A. A. & Friedman, J. H. Current use of clozapine in Parkinson disease and related disorders. Clin. Neuropharmacol. 33, 14–16 (2010).

    CAS  PubMed  Google Scholar 

  124. Yaw, T. K., Fox, S. H. & Lang, A. E. Clozapine in Parkinsonian rest tremor: a review of outcomes, adverse reactions, and possible mechanisms of action. Mov. Disord. Clin. Pract. 3, 116–124 (2016).

    PubMed  Google Scholar 

  125. Foster, N. L. et al. Peripheral beta-adrenergic blockade treatment of parkinsonian tremor. Ann. Neurol. 16, 505–508 (1984).

    CAS  PubMed  Google Scholar 

  126. Connolly, B. S. & Lang, A. E. Pharmacological treatment of Parkinson disease: a review. JAMA 311, 1670–1683 (2014).

    PubMed  Google Scholar 

  127. Snijders, A. H. et al. Physiology of freezing of gait. Ann. Neurol. 80, 644–659 (2016).

    PubMed  Google Scholar 

  128. Henderson, E. J. et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 249–258 (2016).

    CAS  PubMed  Google Scholar 

  129. Chung, K. A., Lobb, B. M., Nutt, J. G. & Horak, F. B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 75, 1263–1269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Moreau, C. et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. 11, 589–596 (2012).

    CAS  PubMed  Google Scholar 

  131. Ahlskog, J. E. & Muenter, M. D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 16, 448–458 (2001).

    CAS  PubMed  Google Scholar 

  132. Hodgson, R. A. et al. Preladenant, a selective A2Areceptor antagonist, is active in primate models of movement disorders. Exp. Neurol. 225, 384–390 (2010).

    CAS  PubMed  Google Scholar 

  133. Hauser, R. et al. Phase-3 clinical trials of adjunctive therapy with preladenant, an adenosine 2a antagonist, in patients with Parkinson’s disease [abstract]. Neurology 82 (Suppl. 10), P7.087 (2014).

    Google Scholar 

  134. Hauser, R. A. et al. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol. 72, 1491–1500 (2015).

    PubMed  Google Scholar 

  135. Stocchi, F. et al. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88, 2198–2206 (2017).

    CAS  PubMed  Google Scholar 

  136. Fernandez, H. H. et al. Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkonsonism Relat. Disord. 16, 16–20 (2010).

    CAS  Google Scholar 

  137. LeWitt, P. A. et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces off time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann. Neurol. 63, 295–302 (2008).

    CAS  PubMed  Google Scholar 

  138. Hauser, R. A. et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov. Disord. 23, 2177–2185 (2008).

    PubMed  Google Scholar 

  139. Sako, W., Murakami, N., Motohama, K., Izumi, Y. & Kaji, R. The effect of istradefylline for Parkinson’s disease: a meta-analysis. Sci. Rep. 7, 18018 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Carta, M., Carlsson, T., Muñoz, A., Kirik, D. & Björklund, A. Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson’s disease. Mov. Disord. 25, S174–179 (2010).

    PubMed  Google Scholar 

  141. Bibbiani, F., Oh, J. D. & Chase, T. N. Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57, 1829–1834 (2001).

    CAS  PubMed  Google Scholar 

  142. Luginger, E., Wenning, G., Bösch, S. & Poewe, W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov. Disord. 15, 873–878 (2000).

    CAS  PubMed  Google Scholar 

  143. Picconi, B., Hernández, L. F., Obeso, J. A. & Calabresi, P. Motor complications in Parkinson’s disease: striatal molecular and electrophysiological mechanisms of dyskinesias. Mov. Disord. 33, 867–876 (2018).

    PubMed  Google Scholar 

  144. Lentz, T. B., Gray, S. J. & Samulski, R. J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48, 179–188 (2012).

    CAS  PubMed  Google Scholar 

  145. Eberling, J. L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980–1983 (2008).

    CAS  PubMed  Google Scholar 

  146. LeWitt, P. A. et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011).

    CAS  PubMed  Google Scholar 

  147. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sánchez-Pernaute, R., Harvey-White, J., Cunningham, J. & Bankiewicz, K. S. Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol. Ther. 4, 324–330 (2001).

    PubMed  Google Scholar 

  149. Fan, D.-S. et al. Behavioral recovery in 6-hydroxydopamine-lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic-amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum. Gene Ther. 9, 2527–2535 (1998).

    CAS  PubMed  Google Scholar 

  150. Christine, C. W. et al. VY-AADC01 in medically refractory Parkinson’s disease: safety and efficacy of a phase 1b dose-ranging study 12 months and beyond [abstract]. Ann. Neurol. 84, S1–S280 (2018).

    Google Scholar 

  151. Emborg, M. E. et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab. 27, 501–509 (2007).

    CAS  PubMed  Google Scholar 

  152. Niethammer, M. et al. Long-term follow-up of a randomized AAV2- GAD gene therapy trial for Parkinson’s disease. JCI Insight 2, e90133 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Rosenblad, C. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci. 11, 1554–1566 (1999).

    CAS  PubMed  Google Scholar 

  154. Rosenblad, C., Kirik, D. & Bjorklund, A. Neurturin enhances the survival of intrastriatal fetal dopaminergic transplants. Neuroreport 10, 1783–1787 (1999).

    CAS  PubMed  Google Scholar 

  155. Lin, L. F. H., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. GDNF: a glial cell line - derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    CAS  PubMed  Google Scholar 

  156. Miyoshi, Y. et al. Glial cell line-derived neurotrophic factor-levodopa interactions and reduction of side effects in parkinsonian monkeys. Ann. Neurol. 42, 208–214 (1997).

    CAS  PubMed  Google Scholar 

  157. Zhang, Z. et al. Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J. Pharmacol. Exp. Ther. 282, 1396–1401 (1997).

    CAS  PubMed  Google Scholar 

  158. Kotzbauer, P. T. et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384, 467–470 (1996).

    CAS  PubMed  Google Scholar 

  159. Gasmi, M. et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: Long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol. Dis. 27, 67–76 (2007).

    CAS  PubMed  Google Scholar 

  160. Herzog, C. D. et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov. Disord. 22, 1124–1132 (2007).

    PubMed  Google Scholar 

  161. Kordower, J. H. et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60, 706–715 (2006).

    CAS  PubMed  Google Scholar 

  162. Marks, W. J. et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008).

    PubMed  Google Scholar 

  163. Marks, W. J. et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    CAS  PubMed  Google Scholar 

  164. Lindholm, P. et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448, 73–77 (2007).

    CAS  PubMed  Google Scholar 

  165. Tsukahara, T., Takeda, M., Shimohama, S., Ohara, O. & Hashimoto, N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery 37, 733–741 (1995).

    CAS  PubMed  Google Scholar 

  166. Yasuhara, T. et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur. J. Neurosci. 19, 1494–1504 (2004).

    PubMed  Google Scholar 

  167. Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015).

    CAS  PubMed  Google Scholar 

  168. Barker, R. A., Barrett, J., Mason, S. L. & Björklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 85–91 (2013).

    Google Scholar 

  169. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577 (1990).

    CAS  PubMed  Google Scholar 

  170. Ma, Y. et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. 52, 628–634 (2002).

    PubMed  Google Scholar 

  171. Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    CAS  PubMed  Google Scholar 

  172. Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54, 403–414 (2003).

    PubMed  Google Scholar 

  173. Roy, N. S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259–1268 (2006).

    CAS  PubMed  Google Scholar 

  174. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  177. Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    CAS  PubMed  Google Scholar 

  178. Barker, R. A., Parmar, M., Studer, L. & Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21, 569–573 (2017).

    CAS  PubMed  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03119636 (2017).

  180. Okun, M. S. Deep-brain stimulation — entering the era of human neural-network modulation. N. Engl. J. Med. 371, 1369–1373 (2014).

    PubMed  Google Scholar 

  181. Williams, A. et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 9, 581–591 (2010).

    PubMed  PubMed Central  Google Scholar 

  182. Weaver, F. M. et al. Bilateral deep brain stimulation versus best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301, 63–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Okun, M. S. et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann. Neurol. 65, 586–595 (2009).

    PubMed  PubMed Central  Google Scholar 

  184. Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).

    CAS  PubMed  Google Scholar 

  185. Follett, K. A. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010).

    CAS  PubMed  Google Scholar 

  186. Grabli, D. et al. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J. Neurosci. 33, 11986–11993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Hickey, P. & Stacy, M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front. Neurosci. 10, 173 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Jenkinson, N., Nandi, D., Miall, R. C., Stein, J. F. & Aziz, T. Z. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15, 2621–2624 (2004).

    PubMed  Google Scholar 

  189. Stefani, A. et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130, 1596–1607 (2007).

    PubMed  Google Scholar 

  190. Plaha, P. & Gill, S. S. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16, 1883–1887 (2005).

    PubMed  Google Scholar 

  191. Chastan, N. et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132, 172–184 (2009).

    CAS  PubMed  Google Scholar 

  192. Weiss, D. et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 136, 2098–2108 (2013).

    PubMed  PubMed Central  Google Scholar 

  193. Quinn, E. J. et al. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov. Disord. 30, 1750–1758 (2015).

    PubMed  Google Scholar 

  194. Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gittis, A. Probing new targets for movement disorders. Science 361, 462 (2018).

    PubMed  Google Scholar 

  196. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).

    CAS  PubMed  Google Scholar 

  197. Fischer, D. L. et al. Subthalamic nucleus deep brain stimulation does not modify the functional deficits or axonopathy induced by nigrostriatal α-synuclein overexpression. Sci. Rep. 7, 16356 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. van Horne, C. G. et al. Implantation of autologous peripheral nerve grafts into the substantia nigra of subjects with idiopathic Parkinson’s disease treated with bilateral STN DBS: a report of safety and feasibility. J. Neurosurg. 126, 1140–1147 (2017).

    PubMed  Google Scholar 

  199. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  200. Mortiboys, H., Aasly, J. & Bandmann, O. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136, 3038–3050 (2013).

    PubMed  Google Scholar 

  201. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    CAS  PubMed  Google Scholar 

  202. Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 12, 1129–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    CAS  PubMed  Google Scholar 

  204. Pickrell, A. M. & Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in parkinson’s disease. Neuron 85, 257–273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in parkinson’s disease. Cell 144, 689–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Ottolini, D., Calì, T., Negro, A. & Brini, M. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168 (2013).

    CAS  PubMed  Google Scholar 

  207. Feng, C. W. et al. Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar. Drugs 14, E187 (2016).

    PubMed  Google Scholar 

  208. Ablat, N. et al. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules 21, E1107 (2016).

    PubMed  Google Scholar 

  209. Zavodszky, E. et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat. Commun. 5, 3828 (2014).

    CAS  PubMed  Google Scholar 

  210. Temkin, P. et al. The retromer supports AMPA receptor trafficking during LTP. Neuron 94, 74–82 (2017).

    CAS  PubMed  Google Scholar 

  211. Kim, S. et al. GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc. Natl Acad. Sci. USA 115, 798–803 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Shults, C. W. et al. Effects of coenzyme Q 10 in early Parkinson disease: evidence of slowing of the functional decline. Arch. Neurol. 59, 1541–1550 (2002).

    PubMed  Google Scholar 

  213. Beal, M. F. et al. A randomized clinical trial of high-dosage coenzyme Q10 in early parkinson disease no evidence of benefit. JAMA Neurol. 75, 543–552 (2014).

    Google Scholar 

  214. Poulter, M. O., Payne, K. B. & Steiner, J. P. Neuroimmunophilins: a novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 128, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  215. Kieburtz, K. et al. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology 68, 20–28 (2007).

    CAS  Google Scholar 

  216. Mischley, L. K., Lau, R. C., Shankland, E. G., Wilbur, T. K. & Padowski, J. M. Phase IIb study of intranasal glutathione in Parkinson’s disease. J. Parkinsons Dis. 7, 289–299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Monti, D. A. et al. N-Acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLOS ONE 11, e0157602 (2016).

    PubMed  PubMed Central  Google Scholar 

  218. Lin, K. Der et al. Statin therapy prevents the onset of Parkinson disease in patients with diabetes. Ann. Neurol. 80, 532–540 (2016).

    CAS  PubMed  Google Scholar 

  219. Liu, G. et al. Statins may facilitate Parkinson’s disease: insight gained from a large, national claims database. Mov. Disord. 32, 913–917 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Ravina, B. et al. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66, 664–671 (2006).

    Google Scholar 

  221. Jin, H. et al. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta 1842, 1282–1294 (2014).

    CAS  PubMed  Google Scholar 

  222. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria- targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010).

    PubMed  Google Scholar 

  223. Bido, S., Soria, F. N., Fan, R. Z., Bezard, E. & Tieu, K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Sci. Rep. 7, 7495 (2017).

    PubMed  PubMed Central  Google Scholar 

  224. Shaltouki, A., Hsieh, C. H., Kim, M. J. & Wang, X. Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol. 136, 607–620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Di Paolo, T. et al. AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat. Disord. 20, 1119–1123 (2014).

    PubMed  Google Scholar 

  226. Tison, F. et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov. Disord. 31, 1373–1380 (2016).

    CAS  PubMed  Google Scholar 

  227. Muramatsu, S. I. et al. A phase i study of aromatic l-amino acid decarboxylase gene therapy for parkinson’s disease. Mol. Ther. 18, 1731–1735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Mittermeyer, G. et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum. Gene Ther. 23, 377–381 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Palfi, S. et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383, 1138–1146 (2014).

    Google Scholar 

  230. Kaplitt, M. G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    CAS  PubMed  Google Scholar 

  231. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    CAS  PubMed  Google Scholar 

  232. Slevin, J. T. et al. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line—derived neurotrophic factor. J. Neurosurg. 102, 216–222 (2005).

    CAS  PubMed  Google Scholar 

  233. Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466 (2006).

    CAS  PubMed  Google Scholar 

  234. Patel, N. K. et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: A two-year outcome study. Ann. Neurol. 57, 298–302 (2005).

    CAS  PubMed  Google Scholar 

  235. T. G. Study Group. Randomized Parkinson’s trial of GDNF administered via intermittent intraputamenal convection-enhanced delivery [abstract]. Mov. Disord. 32 (Suppl. 2), 1420 (2017).

    Google Scholar 

  236. Bartus, R. T. et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80, 1698–1701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Warren Olanow, C. et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol. 78, 248–257 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by NIH grants R01 NR014852 and R01NS096008; NIH/National Center for Advancing Translational Sciences Clinical and Translational Science Awards to the University of Florida (UL1TR001427, KL2TR001429 and TL1TR001428); and the Parkinson's Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article and reviewed the manuscript before submission. A.E., V.V.-M. and M.S.O. made a substantial contribution to discussion of article content.

Corresponding author

Correspondence to Ahmad Elkouzi.

Ethics declarations

Competing interests

V.V.-M. is supported by a grant for the deep brain stimulation brain bank from Abbott. M.S.O. serves as a consultant for the Parkinson's Foundation and has received research grants from NIH, NPF, the Michael J. Fox Foundation, the Parkinson Alliance, the Smallwood Foundation, the Bachmann–Strauss Foundation, the Tourette Syndrome Association and the UF Foundation. M.S.O. has previously received honoraria but in the past >60 months has received no support from industry. M.S.O. has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients and Cambridge (movement disorder books). M.S.O. is an associate editor for the New England Journal of Medicine: Journal Watch Neurology. M.S.O. has participated in continuing medical education and educational activities on movement disorders (in the past 36 months) sponsored by PeerView, Prime, QuantiaMD, WebMD, Medicus, MedNet, Henry Stewart and Vanderbilt University. M.S.O. has participated as a site principal investigator (PI) and/or co-PI for several NIH, foundation and industry-sponsored trials over the years but has not received honoraria. A.E. and R.S.E. have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkouzi, A., Vedam-Mai, V., Eisinger, R.S. et al. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 15, 204–223 (2019). https://doi.org/10.1038/s41582-019-0155-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0155-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing