Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of biophysics and mechanobiology in podocyte physiology

Abstract

Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.

Key points

  • Podocytes are crucial for maintaining glomerular filtration and must have enough biophysical resilience to adapt to (or balance) mechanical forces in their environment.

  • Loss of biophysical resilience and aberrant mechanobiological signalling is a key feature of the pathophysiology of podocytopathies.

  • Podocytes maintain their biophysical resilience through a complex cytoskeletal signalling network comprising force-sensitive proteins and pathways.

  • Next-generation in vitro models that incorporate organoids, mechanical stimulation and biomimetic substrates offer promising avenues for interrogating podocyte mechanobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of podocyte morphology in glomerular biomechanics.
Fig. 2: Effects of external mechanical stresses on podocytes.
Fig. 3: Podocyte intracellular mechanical forces.
Fig. 4: Pathways influencing podocyte biomechanics.

Similar content being viewed by others

References

  1. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ning, L., Suleiman, H. Y. & Miner, J. H. Synaptopodin is dispensable for normal podocyte homeostasis but is protective in the context of acute podocyte injury. J. Am. Soc. Nephrol. 31, 2815–2832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015).

    Article  PubMed  Google Scholar 

  4. Steinhausen, M., Endlich, K. & Wiegman, D. L. Glomerular blood flow. Kidney Int. 38, 769–784 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Collard, D. et al. Estimation of intraglomerular pressure using invasive renal arterial pressure and flow velocity measurements in humans. J. Am. Soc. Nephrol. 31, 1905–1914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Endlich, N. & Endlich, K. The challenge and response of podocytes to glomerular hypertension. Semin. Nephrol. 32, 327–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Butt, L. et al. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int. 100, 1054–1062 (2021).

    Article  PubMed  Google Scholar 

  8. Levey, A. S., Coresh, J., Tighiouart, H., Greene, T. & Inker, L. A. Measured and estimated glomerular filtration rate: current status and future directions. Nat. Rev. Nephrol. 16, 51–64 (2020).

    Article  PubMed  Google Scholar 

  9. Mammoto, A., Mammoto, T. & Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Forst, A.-L. et al. Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J. Am. Soc. Nephrol. 27, 848–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. & Dryer, S. E. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol. Cell Physiol. 305, C276–C289 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Schultz, K. et al. Piezo mediates Rho activation and actin stress fibre formation in Drosophila nephrocytes. Preprint at bioRxiv https://doi.org/10.1101/2021.10.23.465463 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dalghi, M. G. et al. Expression and distribution of PIEZO1 in the mouse urinary tract. Am. J. Physiol. Ren. Physiol. 317, F303–F321 (2019).

    Article  CAS  Google Scholar 

  14. Ziegler, W. H., Liddington, R. C. & Critchley, D. R. The structure and regulation of vinculin. Trends Cell Biol. 16, 453–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Burridge, K. Talin: a protein designed for mechanotransduction. Emerg. Top. Life Sci. 2, 673–675 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eng, D. G. et al. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 88, 999–1012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaverina, N. V., Eng, D. G., Schneider, R. R., Pippin, J. W. & Shankland, S. J. Partial podocyte replenishment in experimental FSGS derives from nonpodocyte sources. Am. J. Physiol. Ren. Physiol. 310, F1397–F1413 (2016).

    Article  CAS  Google Scholar 

  18. Kaverina, N. V. et al. Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 96, 597–611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melica, M. E. et al. Differentiation of crescent-forming kidney progenitor cells into podocytes attenuates severe glomerulonephritis in mice. Sci. Transl. Med. 14, eabg3277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. 25, 707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puelles, V. G. et al. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 4, e99271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte’s response to stress: the enigma of foot process effacement. Am. J. Physiol. Ren. Physiol. 304, F333–F347 (2012).

    Article  Google Scholar 

  24. Basgen, J. M., Wong, J. S., Ray, J., Nicholas, S. B. & Campbell, K. N. Podocyte foot process effacement precedes albuminuria and glomerular hypertrophy in CD2-associated protein deficient mice. Front. Med. 8, 745319 (2021).

    Article  Google Scholar 

  25. Butt, L. et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, S. et al. An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Sci. Adv. 8, eabn6027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suleiman, H. Y. et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2, e94137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vivarelli, M., Massella, L., Ruggiero, B. & Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol. 12, 332–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Tullus, K., Webb, H. & Bagga, A. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child. Adolesc. Health 2, 880–890 (2018).

    Article  PubMed  Google Scholar 

  30. Maas, R. J., Deegens, J. K., Smeets, B., Moeller, M. J. & Wetzels, J. F. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol. 12, 768–776 (2016).

    Article  PubMed  Google Scholar 

  31. Azeloglu, E. U. et al. Interconnected network motifs control podocyte morphology and kidney function. Sci. Signal. 7, ra12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shiiki, H. et al. Cell proliferation and apoptosis of the glomerular epithelial cells in rats with puromycin aminonucleoside nephrosis. Pathobiology 66, 221–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Fogo, A. B. Animal models of FSGS: lessons for pathogenesis and treatment. Semin. Nephrol. 23, 161–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Calizo, R. C. et al. Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity. Nat. Commun. 10, 2061 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Embry, A. E. et al. Similar biophysical abnormalities in glomeruli and podocytes from two distinct models. J. Am. Soc. Nephrol. 29, 1501–1512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogelmann, S. U., Nelson, W. J., Myers, B. D. & Lemley, K. V. Urinary excretion of viable podocytes in health and renal disease. Am. J. Physiol. -Ren. Physiol. 285, F40–F48 (2003).

    Article  CAS  Google Scholar 

  37. Wozniak, M. A., Modzelewska, K., Kwong, L. & Keely, P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta Mol. Cell Res. 1692, 103–119 (2004).

    Article  CAS  Google Scholar 

  38. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ichimura, K. et al. Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy. Sci. Rep. 5, 8993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qu, C. et al. Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. J. Am. Soc. Nephrol. 33, 155–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reynolds, P. A. The mechanobiology of kidney podocytes in health and disease. Clin. Sci. 134, 1245–1253 (2020).

    Article  CAS  Google Scholar 

  42. Grgic, I. et al. Imaging of podocyte foot processes by fluorescence microscopy. J. Am. Soc. Nephrol. 23, 785–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siegerist, F. et al. Structured illumination microscopy and automatized image processing as a rapid diagnostic tool for podocyte effacement. Sci. Rep. 7, 11473 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  44. Endlich, N., Siegerist, F. & Endlich, K. Are podocytes motile? Pflügers Arch. Eur. J. Physiol. 469, 951–957 (2017).

    Article  CAS  Google Scholar 

  45. Brähler, S. et al. Intravital and kidney slice imaging of podocyte membrane dynamics. J. Am. Soc. Nephrol. 27, 3285–3290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Christov, M. et al. Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 3, e95091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Clark, A. R. et al. Single-cell transcriptomics reveal disrupted kidney filter cell-cell interactions after early and selective podocyte injury. Am. J. Pathol. 192, 281–294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pozzi, A. et al. β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shukrun, R. et al. A human integrin-α3 mutation confers major renal developmental defects. PLoS ONE 9, e90879 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Lausecker, F. et al. Vinculin is required to maintain glomerular barrier integrity. Kidney Int. 93, 643–655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Artelt, N. et al. The role of palladin in podocytes. J. Am. Soc. Nephrol. 29, 1662–1678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J. Clin. Invest. 124, 1098–1113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dai, C. et al. Essential role of integrin-linked kinase in podocyte biology: bridging the integrin and slit diaphragm signaling. J. Am. Soc. Nephrol. 17, 2164–2175 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, H. et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J. Am. Soc. Nephrol. 21, 1145–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schlaepfer, D. D., Mitra, S. K. & Ilic, D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692, 77–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Webb, D. J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6, 154–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wu, C. Focal adhesion: a focal point in current cell biology and molecular medicine. Cell Adhes. Migr. 1, 13–18 (2007).

    Google Scholar 

  62. Sever, S. & Schiffer, M. Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney Int. 93, 1298–1307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ron, A. et al. Cell shape information is transduced through tension-independent mechanisms. Nat. Commun. 8, 2145 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  64. Unnersjö-Jess, D. et al. Advanced optical imaging reveals preferred spatial orientation of podocyte processes along the axis of glomerular capillaries. Kidney Int. 104, 1164–1169 (2023).

    Article  PubMed  Google Scholar 

  65. Schell, C. et al. The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier. Proc. Natl Acad. Sci. USA 114, E4621–E4630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maier, J. I. et al. EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Rep. 34, 108883 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Ge, X. et al. LIM-nebulette reinforces podocyte structural integrity by linking actin and vimentin filaments. J. Am. Soc. Nephrol. 31, 2372–2391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rogg, M. et al. α-Parvin defines a specific integrin adhesome to maintain the glomerular filtration barrier. J. Am. Soc. Nephrol. 33, 786–808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Greiten, J. K. et al. The role of filamins in mechanically stressed podocytes. FASEB J. 35, e21560 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Kliewe, F. et al. Studying the role of fascin-1 in mechanically stressed podocytes. Sci. Rep. 7, 9916 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  71. Lal, M. A. et al. Rhophilin-1 is a key regulator of the podocyte cytoskeleton and is essential for glomerular filtration. J. Am. Soc. Nephrol. 26, 647–662 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Rogg, M. et al. SRGAP1 controls small rho GTPases to regulate podocyte foot process maintenance. J. Am. Soc. Nephrol. 32, 563–579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pan, Y. et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes 67, 717–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Matsuda, J., Maier, M., Aoudjit, L., Baldwin, C. & Takano, T. ARHGEF7 (β-PIX) is required for the maintenance of podocyte architecture and glomerular function. J. Am. Soc. Nephrol. 31, 996–1008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sipkema, P., van der Linden, P. J. W., Westerhof, N. & Yin, F. C. P. Effect of cyclic axial stretch of rat arteries on endothelial cytoskeletal morphology and vascular reactivity. J. Biomech. 36, 653–659 (2003).

    Article  PubMed  Google Scholar 

  76. Jülicher, F., Kruse, K., Prost, J. & Joanny, J. F. Active behavior of the cytoskeleton. Phys. Rep. 449, 3–28 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  77. Steward, R. L., Cheng, C.-M., Wang, D. L. & LeDuc, P. R. Probing cell structure responses through a shear and stretching mechanical stimulation technique. Cell Biochem. Biophys. 56, 115–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Osborn, E. A., Rabodzey, A., Dewey, C. F. & Hartwig, J. H. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am. J. Physiol. Cell Physiol. 290, C444–C452 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Endlich, N. & Endlich, K. Stretch, tension and adhesion – adaptive mechanisms of the actin cytoskeleton in podocytes. Eur. J. Cell Biol. 85, 229–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, C.-A., Chang, J.-M., Chang, E.-E., Chen, H.-C. & Yang, Y.-L. TGF-β1 modulates podocyte migration by regulating the expression of integrin-β1 and -β3 through different signaling pathways. Biomed. Pharmacother. 105, 974–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Dessapt, C. et al. Mechanical forces and TGFβ1 reduce podocyte adhesion through α3β1 integrin downregulation. Nephrol. Dial. Transplant. 24, 2645–2655 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Reiser, J. Circulating permeability factor suPAR: from concept to discovery to clinic. Trans. Am. Clin. Climatol. Assoc. 124, 133–138 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Hayek, S. S. et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat. Med. 23, 945–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, B. et al. The calcineurin–NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. J. Mol. Med. 90, 1407–1420 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, Z. et al. Control of podocyte and glomerular capillary wall structure and elasticity by WNK1 kinase. Front. Cell Dev. Biol. 8, 618898 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Hu, M. et al. A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci. Rep. 7, 43934 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  90. Wyss, H. M. et al. Biophysical properties of normal and diseased renal glomeruli. Am. J. Physiol. Cell Physiol. 300, C397–C405 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Anderson, S. & Brenner, B. M. Effects of aging on the renal glomerulus. Am. J. Med. 80, 435–442 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Lv, T. et al. uPAR: an essential factor for tumor development. J. Cancer 12, 7026–7040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Melica, M. E. et al. Substrate stiffness modulates renal progenitor cell properties via a ROCK-mediated mechanotransduction mechanism. Cells 8, 1561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Treacy, N. J. et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact. Mater. 21, 142–156 (2023).

    CAS  PubMed  Google Scholar 

  95. Naylor, R. W., Morais, M. R. P. T. & Lennon, R. Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Randles, M. J. et al. Identification of an altered matrix signature in kidney aging and disease. J. Am. Soc. Nephrol. 32, 1713–1732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nozu, K. et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 23, 158–168 (2019).

    Article  PubMed  Google Scholar 

  98. Funk, S. D., Lin, M.-H. & Miner, J. H. Alport syndrome and Pierson syndrome: diseases of the glomerular basement membrane. Matrix Biol. 71-72, 250–261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gyarmati, G. et al. Intravital imaging reveals glomerular capillary distension and endothelial and immune cell activation early in Alport syndrome. JCI Insight 7, e152676 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zieman, S. J. & Kass, D. A. Advanced glycation endproduct crosslinking in the cardiovascular system. Drugs 64, 459–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kliewe, F. et al. Fibronectin is up-regulated in podocytes by mechanical stress. FASEB J. 33, 14450–14460 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fissell, W. H. & Miner, J. H. What is the glomerular ultrafiltration barrier? J. Am. Soc. Nephrol. 29, 2262–2264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pippin, J. W. et al. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J. Clin. Invest. 132, e156250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nardone, G. et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8, 15321 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Elbediwy, A. et al. Enigma proteins regulate YAP mechanotransduction. J. Cell Sci. 131, jcs221788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rausch, V. & Hansen, C. G. The hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol. 30, 32–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J. et al. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes 69, 2446–2457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, D. et al. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury. Acta Pharmacol. Sin. 42, 436–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Qian, X. et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol. 58, 47–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Marshall, C. B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am. J. Physiol. Ren. Physiol. 311, F831–F843 (2016).

    Article  CAS  Google Scholar 

  113. Schwartzman, M. et al. Podocyte-specific deletion of Yes-associated protein causes FSGS and progressive renal failure. J. Am. Soc. Nephrol. 27, 216–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, J., Wang, X., He, Q. & Harris, R. C. TAZ is important for maintenance of the integrity of podocytes. Am. J. Physiol. Ren. Physiol. 322, F419–F428 (2022).

    Article  CAS  Google Scholar 

  115. Meliambro, K. et al. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J. Biol. Chem. 292, 21137–21148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meliambro, K. et al. KIBRA upregulation increases susceptibility to glomerular injury and correlates with kidney function decline. JCI Insight 8, e165002 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhuang, Q. et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in Adriamycin-induced focal segmental glomerulosclerosis. Lab. Invest. 101, 258–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Haley, K. E. et al. YAP translocation precedes cytoskeletal rearrangement in podocyte stress response: a podometric investigation of diabetic nephropathy. Front. Physiol. 12, 625762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Adegbite, B. O. et al. Patient-specific pharmacokinetics and dasatinib nephrotoxicity. Clin. J. Am. Soc. Nephrol. 18, 1175–1185 (2023).

    Article  PubMed  Google Scholar 

  120. Rinschen, M. M. et al. YAP-mediated mechanotransduction determines the podocyte’s response to damage. Sci. Signal. 10, eaaf8165 (2017).

    Article  PubMed  Google Scholar 

  121. Koehler, S., Huber, T. B. & Denholm, B. A protective role for Drosophila filamin in nephrocytes via Yorkie mediated hypertrophy. Life Sci. Alliance 5, e202101281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. La, T. M. et al. Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes. FASEB J. 34, 16449–16463 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Gu, C. et al. Dynamin autonomously regulates podocyte focal adhesion maturation. J. Am. Soc. Nephrol. 28, 446–451 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Schiffer, M. et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat. Med. 21, 601–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Falkenberg, C. V. et al. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PLoS Comput. Biol. 13, e1005433 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Babelova, A. et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS ONE 8, e80328 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  128. Shen, J. et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J. Pathol. 240, 149–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Szrejder, M. et al. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165610 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Li, S.-Y. et al. FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy. Sci. Rep. 9, 15552 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  131. Robins, R. et al. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int. 92, 349–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Scott, R. P. et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Asao, R. et al. Rac1 in podocytes promotes glomerular repair and limits the formation of sclerosis. Sci. Rep. 8, 5061 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  134. Wang, L. et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 81, 1075–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  136. Vivante, A. & Hildebrandt, F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 12, 133–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ilatovskaya, D. V. & Staruschenko, A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am. J. Physiol. Ren. Physiol. 309, F393–F397 (2015).

    Article  CAS  Google Scholar 

  138. Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Greka, A. & Mundel, P. Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J. Am. Soc. Nephrol. 22, 1969–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tian, D. et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci. Signal. 3, ra77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Matsuda, J., Asano-Matsuda, K., Kitzler, T. M. & Takano, T. Rho GTPase regulatory proteins in podocytes. Kidney Int. 99, 336–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Fan, X. et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 1, e86934 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hwang, D.-Y. et al. Mutations of the SLIT2–ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum. Genet. 134, 905–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Daehn, I. S. & Duffield, J. S. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat. Rev. Drug. Discov. 20, 770–788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reidy, K. & Tufro, A. Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr. Nephrol. 26, 1407–1412 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sang, Y. et al. Semaphorin3A-inhibitor ameliorates doxorubicin-induced podocyte injury. Int. J. Mol. Sci. 21, 4099 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Meng, Z. et al. The Hippo pathway mediates Semaphorin signaling. Sci. Adv. 8, eabl9806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Regué, L., Mou, F. & Avruch, J. G protein‐coupled receptors engage the mammalian Hippo pathway through F‐actin: F‐actin, assembled in response to Galpha12/13 induced RhoA‐GTP, promotes dephosphorylation and activation of the YAP oncogene. Bioessays 35, 430–435 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ma, S. & Guan, K.-L. Polycystic kidney disease: a Hippo connection. Genes Dev. 32, 737–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ma, S., Meng, Z., Chen, R. & Guan, K.-L. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Rogg, M. et al. A YAP/TAZ–ARHGAP29–RhoA signaling axis regulates podocyte protrusions and integrin adhesions. Cells 12, 1795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, R., Xie, R., Meng, Z., Ma, S. & Guan, K.-L. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat. Cell Biol. 21, 1565–1577 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Abdallah, M. et al. Influence of hydrolyzed polyacrylamide hydrogel stiffness on podocyte morphology, phenotype, and mechanical properties. ACS Appl. Mater. Interfaces 11, 32623–32632 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Dorison, A. et al. Kidney organoids generated using an allelic series of NPHS2 point variants reveal distinct intracellular podocin mistrafficking. J. Am. Soc. Nephrol. 34, 88–109 (2023).

    Article  PubMed  Google Scholar 

  155. Chang, S.-Y. et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2, e95978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang, L. et al. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab. Chip 17, 1749–1760 (2017).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  157. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 10069 (2017).

    Article  Google Scholar 

  158. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Roye, Y. et al. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines 12, 967 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Anandakrishnan, N. & Azeloglu, E. U. Kidney tissue engineering for precision medicine. Nat. Rev. Nephrol. 16, 623–624 (2020).

    Article  PubMed  Google Scholar 

  161. Takasato, M. & Little, M. H. A strategy for generating kidney organoids: recapitulating the development in human pluripotent stem cells. Dev. Biol. 420, 210–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ungricht, R. et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell 29, 160–175.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  164. Li, S. R. et al. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nat. Commun. 13, 7918 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  165. Hiratsuka, K. et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. Sci. Adv. 8, eabq0866 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  166. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  168. Bas-Cristobal Menendez, A. et al. Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Sci. Rep. 12, 20699 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  169. Tuffin, J. et al. GlomSpheres as a 3D co-culture spheroid model of the kidney glomerulus for rapid drug-screening. Commun. Biol. 4, 1351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Azeloglu, E. U. & Costa, K. D. Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. Methods Mol. Biol. 736, 303–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Artelt, N. et al. Comparative analysis of podocyte foot process morphology in three species by 3D super-resolution microscopy. Front. Med. 5, 292 (2018).

    Article  Google Scholar 

  172. Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yasuda-Yamahara, M. et al. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS ONE 13, e0200487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gbadegesin, R. A. et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J. Am. Soc. Nephrol. 25, 1991–2002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Chiara Mariottini for critical reading of the manuscript before submission and NIH for funding (R25 DK124917 to EUA). J.H. was partly funded by T32 HD075735.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Evren U. Azeloglu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Thomas Benzing, Richard Miller and Hani Suleiman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Buttress force

Reaction force exerted by podocytes countering dilation of the glomerular capillary.

Filopodia

Thin, spike-like projections found beyond the lamellipodia.

Foot process effacement

Morphological change in podocytes caused by cytoskeletal rearrangement in which the interdigitating foot processes become simplified and broadened, resulting in proteinuria.

Lamellipodia

Membrane protrusions found at the leading edge of cells.

Shear stress

Stress resulting from deformation (for example, due to fluid flow) parallel to the face of a material.

Stress fibres

Actomyosin bundles that serve as the primary source of contractile force in non-muscle cells.

Tensile stress

Stress resulting from a force that is stretching or elongating a material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haydak, J., Azeloglu, E.U. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00815-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00815-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing