Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Differences in the epidemiology, management and outcomes of kidney disease in men and women

Abstract

Improved understanding of differences in kidney disease epidemiology, management and outcomes in men and women could help nephrologists to better meet the needs of their patients from a sex- and gender-specific perspective. Evidence of sex differences in the risk and outcomes of acute kidney injury is mixed and dependent on aetiology. Women have a higher prevalence of chronic kidney disease (CKD) stages 3–5 than men, whereas men have a higher prevalence of albuminuria and hence CKD stages 1–2. Men show a faster decline in kidney function, progress more frequently to kidney failure and have higher mortality and risk of cardiovascular disease than women. However, the protective effect of female sex is reduced with CKD progression. Women are less likely than men to be aware of, screened for and diagnosed with CKD, started on antiproteinuric medication and referred to nephrologist care. They also consistently report a poorer health-related quality of life and a higher symptom burden than men. Women experience greater barriers than men to access the waiting list for kidney transplantation, particularly with respect to older age and obesity. However, women also have longer survival than men after transplantation, which may partly explain the comparable prevalence of transplantation between the sexes.

Key points

  • The evidence for sex differences in risk and outcomes of acute kidney injury in the inpatient setting is mixed and related to aetiology.

  • The prevalence of chronic kidney disease (CKD) stages 3–5 is higher in women, whereas the prevalence of CKD stages 1–5 may be higher in men owing to their greater prevalence of albuminuria.

  • The cut-offs given by the current Kidney Disease: Improving Global Outcomes to define the stages of CKD are not sex specific and overestimate the prevalence of albuminuria in women; consequently, the sex difference in albuminuria may be larger than is apparent from current data.

  • Men tend to experience a faster decline in kidney function than women, resulting in a higher risk of kidney failure; this faster decline is partly caused by a greater prevalence of unhealthy lifestyle behaviours and is reflected by the higher levels of albuminuria found in men.

  • Women with CKD are less likely than men to be aware of their condition, screened for and diagnosed with CKD and referred to nephrologist care and are more likely to experience adverse drug reactions.

  • Women may experience more barriers than men to access the transplant waiting list but have better survival than men after transplantation, which may contribute to the similar prevalence of transplantation between the sexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The prevalence of CKD stages 3–5 in men and women.
Fig. 2: The prevalence of CKD stages 1 and 2 in men and women.
Fig. 3: The incidence of kidney replacement therapy in men and women.
Fig. 4: The distribution of KRT treatment modality in men and women.

Similar content being viewed by others

References

  1. Ahmed, S. B., Saad, N. & Dumanski, S. M. Gender and CKD: beyond the binary. Clin. J. Am. Soc. Nephrol. 16, 141–143 (2021).

    Article  Google Scholar 

  2. Collister, D., Krakowsky, Y., Potter, E. & Millar, A. C. Chronic kidney disease in the transgender, nonbinary, or gender diverse person. Semin. Nephrol. 42, 129–141 (2022).

    Article  PubMed  Google Scholar 

  3. KDIGO. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1 (2012).

    Google Scholar 

  4. Lopes, J. A. & Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin. Kidney J. 6, 8–14 (2013).

    Article  PubMed  Google Scholar 

  5. Bellomo, R. et al. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Neugarten, J. & Golestaneh, L. Sex differences in acute kidney injury. Semin. Nephrol. 42, 208–218 (2022).

    Article  PubMed  Google Scholar 

  7. Neugarten, J., Sandilya, S., Singh, B. & Golestaneh, L. Sex and the risk of AKI following cardio-thoracic surgery: a meta-analysis. Clin. J. Am. Soc. Nephrol. 11, 2113–2122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Srisawat, N. et al. Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am. J. Nephrol. 41, 81–88 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hogue, C. W. et al. Sex differences in neurological outcomes and mortality after cardiac surgery: a Society of Thoracic Surgery national database report. Circulation 103, 2133–2137 (2001).

    Article  PubMed  Google Scholar 

  10. Edwards, F. H., Carey, J. S., Grover, F. L., Bero, J. W. & Hartz, R. S. Impact of gender on coronary bypass operative mortality. Ann. Thorac. Surg. 66, 125–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Thakar, C. V. et al. ARF after open-heart surgery: influence of gender and race. Am. J. Kidney Dis. 41, 742–751 (2003).

    Article  PubMed  Google Scholar 

  12. Neugarten, J. & Golestaneh, L. The effect of gender on aminoglycoside-associated nephrotoxicity. Clin. Nephrol. 86, 183–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Neugarten, J. & Golestaneh, L. Female sex reduces the risk of hospital-associated acute kidney injury: a meta-analysis. BMC Nephrol. 19, 314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neugarten, J., Golestaneh, L. & Kolhe, N. V. Sex differences in acute kidney injury requiring dialysis. BMC Nephrol. 19, 131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu, C.-N. et al. Incidence, outcomes, and risk factors of community-acquired and hospital-acquired acute kidney injury: a retrospective cohort study. Medicine 95, e3674 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Waikar, S. S., Curhan, G. C., Ayanian, J. Z. & Chertow, G. M. Race and mortality after acute renal failure. J. Am. Soc. Nephrol. 18, 2740–2748 (2007).

    Article  PubMed  Google Scholar 

  17. Loutradis, C. et al. Acute kidney injury is more common in men than women after accounting for socioeconomic status, ethnicity, alcohol intake and smoking history. Biol. Sex. Differ. 12, 30 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garnier, F., Couchoud, C., Landais, P. & Moranne, O. Increased incidence of acute kidney injury requiring dialysis in metropolitan France. PLoS One 14, e0211541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kolhe, N. V., Stevens, P. E., Crowe, A. V., Lipkin, G. W. & Harrison, D. A. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: application of predictive models from a secondary analysis of the ICNARC Case Mix Programme Database. Crit. Care 12, S2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. James, M. T. et al. Derivation and external validation of prediction models for advanced chronic kidney disease following acute kidney injury. JAMA 318, 1787–1797 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liotta, M., Olsson, D., Sartipy, U. & Holzmann, M. J. Minimal changes in postoperative creatinine values and early and late mortality and cardiovascular events after coronary artery bypass grafting. Am. J. Cardiol. 113, 70–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Vallabhajosyula, S. et al. Sex disparities in acute kidney injury complicating acute myocardial infarction with cardiogenic shock. Esc. Heart Fail. 6, 874–877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shah, S. et al. Mortality and recovery associated with kidney failure due to acute kidney injury. Clin. J. Am. Soc. Nephrol. 15, 995–1006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foley, R. N. et al. End-stage renal disease attributed to acute tubular necrosis in the United States. Am. J. Nephrol. 41, 1–6 (2015).

    Article  PubMed  Google Scholar 

  26. Pannu, N., James, M., Hemmelgarn, B. & Klarenbach, S. & Alberta Kidney Disease Network. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin. J. Am. Soc. Nephrol. 8, 194–202 (2013).

    Article  PubMed  Google Scholar 

  27. Hoy, W. E. et al. Nephron number, glomerular volume, renal disease and hypertension. Curr. Opin. Nephrol. Hypertens. 17, 258–265 (2008).

    Article  PubMed  Google Scholar 

  28. Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).

    Article  PubMed  Google Scholar 

  29. United States Renal Data System. 2022 USRDS Annual Data Report: epidemiology of kidney disease in the United States. https://adr.usrds.org/2021 (2022).

  30. Mazhar, F. et al. Estimating the prevalence of chronic kidney disease while accounting for non-random testing with inverse probability weighting. Kidney Int. S0085-2538, 00971–00971 (2022).

    Google Scholar 

  31. Inker, L. A. et al. Effects of race and sex on measured GFR: the multi-ethnic study of atherosclerosis. Am. J. Kidney Dis. 68, 743–751 (2016).

    Article  PubMed  Google Scholar 

  32. Neugarten, J., Kasiske, B., Silbiger, S. R. & Nyengaard, J. R. Effects of sex on renal structure. Nephron 90, 139–144 (2002).

    Article  PubMed  Google Scholar 

  33. Wetzels, J. F. M., Kiemeney, L. A. L. M., Swinkels, D. W., Willems, H. L. & den Heijer, M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 72, 632–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Elseviers, M. M., Verpooten, G. A., De Broe, M. E. & De Backer, G. G. Interpretation of creatinine clearance. Lancet 1, 457 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Park, J. I., Baek, H. & Jung, H. H. Prevalence of chronic kidney disease in Korea: the Korean National Health and Nutritional Examination Survey 2011–2013. J. Korean Med. Sci. 31, 915–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Nicola, L. et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008–12 National Health Examination Survey. Nephrol. Dial. Transplant. 30, 806–814 (2015).

    Article  PubMed  Google Scholar 

  37. Stengel, B. et al. Epidemiology and prognostic significance of chronic kidney disease in the elderly — the Three-City prospective cohort study. Nephrol. Dial. Transpl. 26, 3286–3295 (2011).

    Article  Google Scholar 

  38. Rothenbacher, D. et al. Prevalence and determinants of chronic kidney disease in community-dwelling elderly by various estimating equations. BMC Public. Health 12, 343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gambaro, G. et al. Prevalence of CKD in Northeastern Italy: results of the INCIPE study and comparison with NHANES. Clin. J. Am. Soc. Nephrol. 5, 1946–1953 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fernandez-Fernandez, B. et al. Gender, albuminuria and chronic kidney disease progression in treated diabetic kidney disease. J. Clin. Med. 9, 1611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nitsch, D. et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 346, f324 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Risk, N. C. D. Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  43. Connelly, P. J., Currie, G. & Delles, C. Sex differences in the prevalence, outcomes and management of hypertension. Curr. Hypertens. Rep. 24, 185–192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Briganti, E. M. et al. Smoking is associated with renal impairment and proteinuria in the normal population: the AusDiab kidney study. Australian diabetes, obesity and lifestyle study. Am. J. Kidney Dis. 40, 704–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bello, A. K. et al. Quality of chronic kidney disease management in Canadian primary care. JAMA Netw. Open. 2, e1910704 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Swartling, O. et al. Sex differences in the recognition, monitoring, and management of CKD in health care: an observational cohort study. J. Am. Soc. Nephrol. 2022030373 (2022).

  47. Rule, A. D. et al. For estimating creatinine clearance measuring muscle mass gives better results than those based on demographics. Kidney Int. 75, 1071–1078 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kramer, H. M., Hsu, C. & Curhan, G. Need for sex-specific ACR. Am. J. Kidney Dis. 40, 435–436 (2002).

    Article  PubMed  Google Scholar 

  49. Shen, Y. et al. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis. Endocrine 55, 66–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Hecking, M., Hödlmoser, S., Ahmed, S. B. & Carrero, J. J. The other way around: living with chronic kidney disease from the perspective of men. Semin. Nephrol. 42, 122–128 (2022).

    Article  PubMed  Google Scholar 

  51. Fakhouri, F. et al. Management of thrombotic microangiopathy in pregnancy and postpartum: report from an international working group. Blood 136, 2103–2117 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Balofsky, A. & Fedarau, M. Renal failure in pregnancy. Crit. Care Clin. 32, 73–83 (2016).

    Article  PubMed  Google Scholar 

  53. Ferreira, R. C. et al. Pre-eclampsia is associated with later kidney chronic disease and end-stage renal disease: systematic review and meta-analysis of observational studies. Pregnancy Hypertens. 22, 71–85 (2020).

    Article  PubMed  Google Scholar 

  54. O’Shaughnessy, M. M. et al. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey. Nephrol. Dial. Transpl. 33, 661–669 (2018).

    Article  Google Scholar 

  55. Cattran, D. C. et al. The impact of sex in primary glomerulonephritis. Nephrol. Dial. Transplant. 23, 2247–2253 (2008).

    Article  PubMed  Google Scholar 

  56. Mohammad, A. J. An update on the epidemiology of ANCA-associated vasculitis. Rheumatology 59, iii42–iii50 (2020).

    Article  PubMed  Google Scholar 

  57. Beckwith, H., Lightstone, L. & McAdoo, S. Sex and gender in glomerular disease. Semin. Nephrol. 42, 185–196 (2022).

    Article  PubMed  Google Scholar 

  58. Hoganson, D. D., From, A. M. & Michet, C. J. ANCA vasculitis in the elderly. J. Clin. Rheumatol. 14, 78–81 (2008).

    Article  PubMed  Google Scholar 

  59. Ono, N. et al. Characteristics of MPO-ANCA-positive granulomatosis with polyangiitis: a retrospective multi-center study in Japan. Rheumatol. Int. 35, 555–559 (2015).

    Article  PubMed  Google Scholar 

  60. Ferraro, P. M., Cunha, T., da, S. & Curhan, G. C. Sex differences and the risk of kidney stones. Semin. Nephrol. 42, 230–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Daudon, M., Bouzidi, H. & Bazin, D. Composition and morphology of phosphate stones and their relation with etiology. Urol. Res. 38, 459–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Albracht, C. D., Hreha, T. N. & Hunstad, D. A. Sex effects in pyelonephritis. Pediatr. Nephrol. 36, 507–515 (2021).

    Article  PubMed  Google Scholar 

  63. Eriksen, B. O. et al. GFR in healthy aging: an individual participant data meta-analysis of iohexol clearance in European population-based cohorts. J. Am. Soc. Nephrol. 31, 1602–1615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Toyama, T. et al. Age differences in the relationships between risk factors and loss of kidney function: a general population cohort study. BMC Nephrol. 21, 477 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Melsom, T. et al. Sex differences in age-related loss of kidney function. J. Am. Soc. Nephrol. 33, 1891–1902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Burgh, A. C., Rizopoulos, D., Ikram, M. A., Hoorn, E. J. & Chaker, L. Determinants of the evolution of kidney function with age. Kidney Int. Rep. 6, 3054–3063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hödlmoser, S. et al. Kidney function, kidney replacement therapy, and mortality in men and women. Kidney Int. Rep. 7, 444–454 (2022).

    Article  PubMed  Google Scholar 

  68. Swartling, O. et al. CKD progression and mortality among men and women: a nationwide study in Sweden. Am. J. Kidney Dis. 78, 190–199.e1 (2021).

    Article  PubMed  Google Scholar 

  69. Neugarten, J. & Golestaneh, L. Influence of sex on the progression of chronic kidney disease. Mayo Clin. Proc. 94, 1339–1356 (2019).

    Article  PubMed  Google Scholar 

  70. Chesnaye, N. C. et al. Renal function decline in older men and women with advanced chronic kidney disease — results from the EQUAL study. Nephrol. Dial. Transplant. 36, 1656–1663 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol. 30, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).

    Article  PubMed  Google Scholar 

  73. Jafar, T. H. et al. The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol. Dial. Transpl. 18, 2047–2053 (2003).

    Article  Google Scholar 

  74. Morton, R. L., Turner, R. M., Howard, K., Snelling, P. & Webster, A. C. Patients who plan for conservative care rather than dialysis: a national observational study in Australia. Am. J. Kidney Dis. 59, 419–427 (2012).

    Article  PubMed  Google Scholar 

  75. Chandna, S. M. et al. Rate of decline of kidney function, modality choice, and survival in elderly patients with advanced kidney disease. Nephron 134, 64–72 (2016).

    Article  PubMed  Google Scholar 

  76. Valdivielso, J. M., Jacobs-Cachá, C. & Soler, M. J. Sex hormones and their influence on chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 28, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Hutchens, M. P., Fujiyoshi, T., Komers, R., Herson, P. S. & Anderson, S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am. J. Physiol. Renal Physiol. 303, F377–F385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stringer, K. D. et al. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int. 68, 1729–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17β-estradiol in the aging Dahl salt sensitive rat. J. Am. Soc. Nephrol. 15, 1546–1556 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Filler, G. et al. Is testosterone detrimental to renal function? Kidney Int. Rep. 1, 306–310 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Metcalfe, P. D. et al. Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. Am. J. Physiol. Endocrinol. Metab. 294, E435–E443 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Baylis, C. & Corman, B. The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9, 699–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Amiri, M. et al. Low serum testosterone levels and the incidence of chronic kidney disease among male adults: a prospective population-based study. Andrology 8, 575–582 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Lapi, F. et al. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. JAMA 310, 289–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Shoskes, D. A., Kerr, H., Askar, M., Goldfarb, D. A. & Schold, J. Low testosterone at time of transplantation is independently associated with poor patient and graft survival in male renal transplant recipients. J. Urol. 192, 1168–1171 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Li, L. et al. Low testosterone level and risk of adverse clinical events among male patients with chronic kidney disease: a systematic review and meta-analysis of cohort studies. J. Healthc. Eng. 2022, 3630429 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Monster, T. B., Janssen, W. M., de Jong, P. E. & de Jong-van den Berg, L. T. & Prevention of Renal and Vascular End Stage Disease Study Group. Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch. Intern. Med. 161, 2000–2005 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Ahmed, S. B. et al. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 74, 370–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Ramesh, S. et al. Estradiol and mortality in women with end-stage kidney disease. Nephrol. Dial. Transpl. 35, 1965–1972 (2020).

    Article  CAS  Google Scholar 

  90. Melamed, M. L. et al. Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int. 79, 241–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) et al. Dietary reference values for sodium. EFSA J. 17, e05778 (2019).

    Google Scholar 

  92. Coggins, C. H. et al. Differences between women and men with chronic renal disease. Nephrol. Dial. Transplant. 13, 1430–1437 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Ellam, T., Fotheringham, J. & Kawar, B. Differential scaling of glomerular filtration rate and ingested metabolic burden: implications for gender differences in chronic kidney disease outcomes. Nephrol. Dial. Transpl. 29, 1186–1194 (2014).

    Article  CAS  Google Scholar 

  94. Nitsch, D. Is there a difference in metabolic burden between men and women? Nephrol. Dial. Transplant. 29, 1110–1112 (2014).

    Article  PubMed  Google Scholar 

  95. Verhave, J. C. et al. Cardiovascular risk factors are differently associated with urinary albumin excretion in men and women. J. Am. Soc. Nephrol. 14, 1330–1335 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Scheven, L. et al. Predictors of progression in albuminuria in the general population: results from the PREVEND cohort. PLoS One 8, e61119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kronborg, J. et al. Predictors of change in estimated GFR: a population-based 7-year follow-up from the Tromso study. Nephrol. Dial. Transplant. 23, 2818–2826 (2008).

    Article  PubMed  Google Scholar 

  98. Minutolo, R. et al. Sex differences in the progression of CKD among older patients: pooled analysis of 4 cohort studies. Am. J. Kidney Dis. 75, 30–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Baigent, C. et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  100. Coresh, J. et al. Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J. Am. Soc. Nephrol. 16, 180–188 (2005).

    Article  PubMed  Google Scholar 

  101. Hödlmoser, S. et al. Sex differences in chronic kidney disease awareness among US adults, 1999 to 2018. PLoS One 15, e0243431 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. John, R., Webb, M., Young, A. & Stevens, P. E. Unreferred chronic kidney disease: a longitudinal study. Am. J. Kidney Dis. 43, 825–835 (2004).

    Article  PubMed  Google Scholar 

  103. Kim, L. G. et al. How do primary care doctors in England and Wales code and manage people with chronic kidney disease? Results from the National Chronic Kidney Disease Audit. Nephrol. Dial. Transplant. 33, 1373–1379 (2018).

    Article  PubMed  Google Scholar 

  104. Qiao, Y. et al. Association of albuminuria levels with the prescription of renin-angiotensin system blockade. Hypertension 76, 1762–1768 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Stengel, B. et al. Risk profile, quality of life and care of patients with moderate and advanced CKD: the French CKD-REIN Cohort Study. Nephrol. Dial. Transpl. 34, 277–286 (2019).

    Article  Google Scholar 

  106. Lewandowski, M. J. et al. Chronic kidney disease is more prevalent among women but more men than women are under nephrological care: analysis from six outpatient clinics in Austria 2019. Wien. Klin. Wochenschr. 135, 89–96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hecking, M. et al. Sex-specific differences in mortality and incident dialysis in the chronic kidney disease outcomes and practice patterns study. Kidney Int. Rep. 7, 410–423 (2022).

    Article  PubMed  Google Scholar 

  108. Tong, A. et al. Nephrologists’ perspectives on gender disparities in CKD and dialysis. Kidney Int. Rep. 7, 424–435 (2022).

    Article  PubMed  Google Scholar 

  109. Watson, S., Caster, O., Rochon, P. A. & den Ruijter, H. Reported adverse drug reactions in women and men: aggregated evidence from globally collected individual case reports during half a century. eClinicalMedicine 17, 100188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bosi, A. et al. Use of nephrotoxic medications in adults with chronic kidney disease in Swedish and US routine care. Clin. Kidney J. 15, 442–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73, 730–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Soldin, O. & Mattison, D. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48, 143–157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anderson, G. D. Gender differences in pharmacological response. Int. Rev. Neurobiol. 83, 1s–10s (2008).

    Article  Google Scholar 

  114. Sullivan, J. C. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1220–R1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Reckelhoff, J. F. Gender differences in hypertension. Curr. Opin. Nephrol. Hypertension 27, 176–181 (2018).

    Article  CAS  Google Scholar 

  116. Rivera, F. B. et al. Sex differences in cardiovascular outcomes of SGLT-2 inhibitors in heart failure randomized controlled trials: a systematic review and meta-analysis. Am. Heart J. 26, 100261 (2023).

    Google Scholar 

  117. Singh, A. K. & Singh, R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: a systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab. Syndr. 14, 181–187 (2020).

    Article  PubMed  Google Scholar 

  118. Astley, M. E. et al. The ERA Registry annual report 2020: a summary. Clin. Kidney J. 16, 1330–1354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Australia and New Zealand Dialysis and Transplant Registry. ANZDATA Registry. 44th Report, Chapter 1: Incidence of Kidney Failure with Replacement Therapy. http://www.anzdata.org.au (2021).

  120. Antlanger, M. et al. Sex differences in kidney replacement therapy initiation and maintenance. Clin. J. Am. Soc. Nephrol. 14, 1616–1625 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Astley, M. E. et al. The ERA registry annual report 2020: a summary. Clin. Kidney J. 168, 1330–1354 (2023).

    Article  Google Scholar 

  122. Kramer, A. et al. The European Renal Association — European Dialysis and Transplant Association (ERA-EDTA) registry annual report 2016: a summary. Clin. Kidney J. 12, 702–720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. United States Renal Data System. 2021 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. https://adr.usrds.org/2021 (2021).

  124. Hecking, M. et al. Sex-specific differences in hemodialysis prevalence and practices and the male-to-female mortality rate: the Dialysis Outcomes and Practice Patterns Study (DOPPS). PLoS Med. 11, e1001750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sparke, C. et al. Estimating the total incidence of kidney failure in Australia including individuals who are not treated by dialysis or transplantation. Am. J. Kidney Dis. 61, 413–419 (2013).

    Article  PubMed  Google Scholar 

  126. Wang, Z.-F. et al. Effect of marital status on depression and mortality among patients with chronic kidney disease from national health and nutrition examination survey 2005–2014. Kidney Dis. 7, 391–400 (2021).

    Article  Google Scholar 

  127. Daugirdas, J. T. et al. Surface-area-normalized Kt/V: a method of rescaling dialysis dose to body surface area-implications for different-size patients by gender. Semin. Dial. 21, 415–421 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Spalding, E. M., Chandna, S. M., Davenport, A. & Farrington, K. Kt/V underestimates the hemodialysis dose in women and small men. Kidney Int. 74, 348–355 (2008).

    Article  PubMed  Google Scholar 

  129. Miller, C. D., Robbin, M. L. & Allon, M. Gender differences in outcomes of arteriovenous fistulas in hemodialysis patients. Kidney Int. 63, 346–352 (2003).

    Article  PubMed  Google Scholar 

  130. Wasse, H., Hopson, S. D. & McClellan, W. Racial and gender differences in arteriovenous fistula use among incident hemodialysis patients. Am. J. Nephrol. 32, 234–241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Caplin, N., Sedlacek, M., Teodorescu, V., Falk, A. & Uribarri, J. Venous access: women are equal. Am. J. Kidney Dis. 41, 429–432 (2003).

    Article  PubMed  Google Scholar 

  132. Ferrucci, L. et al. Low testosterone levels and the risk of anemia in older men and women. Arch. Intern. Med. 166, 1380–1388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Locatelli, F. et al. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 74, 1237–1240 (2008).

    Article  PubMed  Google Scholar 

  134. Ifudu, O. Patient characteristics determining rHuEPO dose requirements. Nephrol. Dial. Transpl. 17, 38–41 (2002).

    Article  CAS  Google Scholar 

  135. Hsu, C. Y., Bates, D. W., Kuperman, G. J. & Curhan, G. C. Relationship between hematocrit and renal function in men and women. Kidney Int. 59, 725–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Hsu, C.-Y., McCulloch, C. E. & Curhan, G. C. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. 13, 504–510 (2002).

    Article  PubMed  Google Scholar 

  137. Frankenfield, D. L. et al. Racial/ethnic analysis of selected intermediate outcomes for hemodialysis patients: results from the 1997 ESRD Core Indicators Project. Am. J. Kidney Dis. 34, 721–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Madore, F. et al. Anemia in hemodialysis patients: variables affecting this outcome predictor. J. Am. Soc. Nephrol. 8, 1921–1929 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Ifudu, O. et al. Gender modulates responsiveness to recombinant erythropoietin. Am. J. Kidney Dis. 38, 518–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Park, C. et al. A scoping review of inequities in access to organ transplant in the United States. Int. J. Equity Health 21, 22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hödlmoser, S. et al. Sex differences in kidney transplantation: Austria and the United States, 1978–2018. Front. Med. 8, 800933 (2022).

    Article  Google Scholar 

  142. Melk, A., Schmidt, B. M. W., Geyer, S. & Epping, J. Sex disparities in dialysis initiation, access to waitlist, transplantation and transplant outcome in German patients with renal disease — a population based analysis. PLoS One 15, e0241556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sypek, M. P. et al. Access to waitlisting for deceased donor kidney transplantation in Australia. Nephrology 24, 758–766 (2019).

    Article  PubMed  Google Scholar 

  144. Ladhani, M., Craig, J. C. & Wong, G. Obesity and gender-biased access to deceased donor kidney transplantation. Nephrol. Dial. Transpl. 35, 184–189 (2020).

    Google Scholar 

  145. Schold, J. D. et al. Barriers to evaluation and wait listing for kidney transplantation. Clin. J. Am. Soc. Nephrol. 6, 1760–1767 (2011).

    Article  PubMed  Google Scholar 

  146. Cozzi, E. et al. An analysis by the European Committee on Organ Transplantation of the Council of Europe outlining the international landscape of donors and recipients sex in solid organ transplantation. Transpl. Int. 35, 10322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Procaccio, F. et al. Deaths with acute cerebral lesions in ICU: does the number of potential organ donors depend on predictable factors? Minerva Anestesiol. 81, 636–644 (2015).

    CAS  PubMed  Google Scholar 

  148. Austria’s digital government agency. Organ transplantation. https://www.oesterreich.gv.at/en/themen/gesundheit_und_notfaelle/organtransplantation.html (2023).

  149. Kurnikowski, A. et al. Country-specific sex disparities in living kidney donation. Nephrol. Dial. Transpl. 37, 595–598 (2022).

    Article  Google Scholar 

  150. AlHejaili, W. et al. Scores of awareness and altruism in organ transplantation among Saudi health colleges students-impact of gender, year of study, and field of specialization. Saudi J. Kidney Dis. Transpl. 29, 1028–1034 (2018).

    Article  PubMed  Google Scholar 

  151. Zeiler, K. Just love in live organ donation. Med. Health Care Philos. 12, 323–331 (2009).

    Article  PubMed  Google Scholar 

  152. Gill, J. et al. The change in living kidney donation in women and men in the United States (2005-2015): a population-based analysis. J. Am. Soc. Nephrol. 29, 1301–1308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rudge, C., Matesanz, R., Delmonico, F. L. & Chapman, J. International practices of organ donation. Br. J. Anaesth. 108, i48–i55 (2012).

    Article  PubMed  Google Scholar 

  154. Boenink, R. et al. The ERA Registry annual report 2019: summary and age comparisons. Clin. Kidney J. 15, 452–472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Katz-Greenberg, G. & Shah, S. Sex and gender differences in kidney transplantation. Semin. Nephrol. 42, 219–229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lepeytre, F. et al. Association of sex with risk of kidney graft failure differs by age. J. Am. Soc. Nephrol. 28, 3014–3023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vinson, A. J. et al. Age-dependent sex differences in graft loss after kidney transplantation. Transplantation 106, 1473–1484 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Denhaerynck, K. et al. Prevalence and risk factors of non-adherence with immunosuppressive medication in kidney transplant patients. Am. J. Transpl. 7, 108–116 (2007).

    Article  CAS  Google Scholar 

  159. Kiley, D. J., Lam, C. S. & Pollak, R. A study of treatment compliance following kidney transplantation. Transplantation 55, 51–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Bellini, M. I., Nozdrin, M., Pengel, L., Knight, S. & Papalois, V. The impact of recipient demographics on outcomes from living donor kidneys: systematic review and meta-analysis. J. Clin. Med. 10, 5556 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Vinson, A. J. et al. A multinational cohort study uncovered sex differences in excess mortality after kidney transplant. Kidney Int. 103, 1131–1143 (2023).

    Article  PubMed  Google Scholar 

  162. Barsky, A. J., Peekna, H. M. & Borus, J. F. Somatic symptom reporting in women and men. J. Gen. Intern. Med. 16, 266–275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fryback, D. G. et al. US norms for six generic health-related quality-of-life indexes from the National Health Measurement study. Med. Care 45, 1162–1170 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Vigneshwaran, E., Padmanabhareddy, Y., Devanna, N. & Alvarez-Uria, G. Gender differences in health related quality of life of people living with HIV/AIDS in the era of highly active antiretroviral therapy. N. Am. J. Med. Sci. 5, 102–107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Overbeck, I. et al. Changes in quality of life after renal transplantation. Transplant. Proc. 37, 1618–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Fiebiger, W., Mitterbauer, C. & Oberbauer, R. Health-related quality of life outcomes after kidney transplantation. Health Qual. Life Outcomes 2, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  167. von der Lippe, N., Waldum, B., Østhus, T.-B. H., Reisæter, A. V. & Os, I. Health related quality of life in patients in dialysis after renal graft loss and effect of gender. BMC Women’s Health 14, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chesnaye, N. C. et al. Health-related quality-of-life trajectories over time in older men and women with advanced chronic kidney disease. Clin. J. Am. Soc. Nephrol. 17, 205–214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. de Rooij, E. N. M. et al. Quality of life before and after the start of dialysis in older patients. Clin. J. Am. Soc. Nephrol. 17, 1159–1167 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gemmell, L. A. et al. Gender and racial differences in stress, coping, and health-related quality of life in chronic kidney disease. J. Pain. Symptom Manag. 52, 806–812 (2016).

    Article  Google Scholar 

  171. Yeh, S.-C. J. & Chou, H.-C. Coping strategies and stressors in patients with hemodialysis. Psychosom. Med. 69, 182–190 (2007).

    Article  PubMed  Google Scholar 

  172. Yeh, S.-C. J., Huang, C.-H., Chou, H.-C. & Wan, T. T. H. Gender differences in stress and coping among elderly patients on hemodialysis. Sex. Roles 60, 44 (2008).

    Article  Google Scholar 

  173. Courtenay, W. H. Constructions of masculinity and their influence on men’s well-being: a theory of gender and health. Soc. Sci. Med. 50, 1385–1401 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Rooij et al. Symptom burden before and after dialysis initiation in older patients. Clin. J. Am. Soc. Nephrol. 17, 1719–1729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. van de Luijtgaarden, M. W. M. et al. Uraemic symptom burden and clinical condition in women and men of ≥65 years of age with advanced chronic kidney disease: results from the EQUAL study. Nephrol. Dial. Transplant. 34, 1189–1196 (2019).

    Article  PubMed  Google Scholar 

  176. McLean, C. P., Asnaani, A., Litz, B. T. & Hofmann, S. G. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 45, 1027–1035 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lopes, G. B. et al. Depression as a potential explanation for gender differences in health-related quality of life among patients on maintenance hemodialysis. Nephron Clin. Pract. 115, 35–40 (2010).

    Article  Google Scholar 

  178. Kim, M. H., Johnston, S. S., Chu, B.-C., Dalal, M. R. & Schulman, K. L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes 4, 313–320 (2011).

    Article  PubMed  Google Scholar 

  179. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  180. Shajahan, S., Amin, J., Phillips, J. K. & Hildreth, C. M. Relationship between sex and cardiovascular mortality in chronic kidney disease: a systematic review and meta-analysis. PLoS One 16, e0254554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jung, C.-Y. et al. Sex disparities and adverse cardiovascular and kidney outcomes in patients with chronic kidney disease: results from the KNOW-CKD. Clin. Res. Cardiol. 110, 1116–1127 (2021).

    Article  PubMed  Google Scholar 

  182. Foster, B. J., Mitsnefes, M. M., Dahhou, M., Zhang, X. & Laskin, B. L. Changes in excess mortality from end stage renal disease in the United States from 1995 to 2013. Clin. J. Am. Soc. Nephrol. 13, 91–99 (2018).

    Article  PubMed  Google Scholar 

  183. Vogelzang, J. L. et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: data from the ERA-EDTA registry. Nephrol. Dial. Transpl. 30, 1028–1037 (2015).

    Article  Google Scholar 

  184. Carrero, J. J. et al. Cardiovascular and noncardiovascular mortality among men and women starting dialysis. Clin. J. Am. Soc. Nephrol. 6, 1722–1730 (2011).

    Article  PubMed  Google Scholar 

  185. Lim, W. H. et al. Sex disparity in cause-specific and all-cause mortality among incident dialysis patients. Am. J. Kidney Dis. 81, 156–167.e1 (2023).

    Article  PubMed  Google Scholar 

  186. Ros, S. et al. Increased risk of fatal infections in women starting peritoneal dialysis. Perit. Dial. Int. 33, 487–494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Jassal, S. V. et al. International variation in dialysis discontinuation in patients with advanced kidney disease. CMAJ 192, E995–E1002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. van Oevelen, M. et al. Dialysis withdrawal in The Netherlands between 2000 and 2019: time trends, risk factors and centre variation. Nephrol. Dial. Transpl. 36, 2112–2119 (2021).

    Article  Google Scholar 

  189. Ocak, G. et al. Mortality due to bleeding, myocardial infarction and stroke in dialysis patients. J. Thromb. Haemost. 16, 1953–1963 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Kainz, A. et al. Sex-specific analysis of haemodialysis prevalence, practices and mortality over time: the Austrian Dialysis Registry from 1965 to 2014. Nephrol. Dial. Transplant. 34, 1026–1035 (2019).

    Article  PubMed  Google Scholar 

  191. De La Mata, N. L. et al. Sex differences in mortality among binational cohort of people with chronic kidney disease: population based data linkage study. BMJ 375, e068247 (2021).

    Article  PubMed  Google Scholar 

  192. Ceretta, M. L. et al. Changes in co-morbidity pattern in patients starting renal replacement therapy in Europe — data from the ERA-EDTA Registry. Nephrol. Dial. Transpl. 33, 1794–1804 (2018).

    Article  CAS  Google Scholar 

  193. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zhang, J., Jin, Y., Jia, P., Li, N. & Zheng, Z.-J. Global gender disparities in premature death from cardiovascular disease, and their associations with country capacity for noncommunicable disease prevention and control. Int. J. Env. Res. Public. Health 18, 10389 (2021).

    Article  Google Scholar 

  195. Woodward, M. Cardiovascular disease and the female disadvantage. Int. J. Env. Res. Public. Health 16, 1165 (2019).

    Article  Google Scholar 

  196. Vogel, B. et al. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet 397, 2385–2438 (2021).

    Article  PubMed  Google Scholar 

  197. Soliman, E. Z. et al. Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am. Heart J. 159, 1102–1107 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Baber, U. et al. Association of chronic kidney disease with atrial fibrillation among adults in the United States: Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Circ. Arrhythm. Electrophysiol. 4, 26–32 (2011).

    Article  PubMed  Google Scholar 

  199. Thompson, S. et al. Cause of death in patients with reduced kidney function. J. Am. Soc. Nephrol. 26, 2504–2511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Toth-Manikowski, S. M. et al. Sex differences in cardiovascular outcomes in CKD: findings from the CRIC study. Am. J. Kidney Dis. 78, 200–209.e1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Currie, C. J. et al. Major adverse cardiovascular events in people with chronic kidney disease in relation to disease severity and diabetes status. PLoS One 14, e0221044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Nagai, K., Asahi, K., Iseki, K. & Yamagata, K. Estimating the prevalence of definitive chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 25, 885–892 (2021).

    Article  PubMed  Google Scholar 

  203. Moţa, E. et al. Prevalence of chronic kidney disease and its association with cardio-metabolic risk factors in the adult Romanian population: the PREDATORR study. Int. Urol. Nephrol. 47, 1831–1838 (2015).

    Article  PubMed  Google Scholar 

  204. Bongard, V. et al. Estimation et caractérisation de l’insuffisance rénale chronique en France. Annales de. Cardiologie et. d’Angéiologie 61, 239–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. NHS. Health Survey for England. NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2016 (2016).

  206. Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Otero, A., de Francisco, A., Gayoso, P. & García, F., EPIRCE Study Group. Prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia 30, 78–86 (2010).

    PubMed  Google Scholar 

  208. Cirillo, M. et al. Low glomerular filtration in the population: prevalence, associated disorders, and awareness. Kidney Int. 70, 800–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Zdrojewski et al. Prevalence of chronic kidney disease in a representative sample of the Polish population: results of the NATPOL 2011 survey. Nephrol. Dial. Transpl. 31, 433–439 (2016).

    Article  Google Scholar 

  210. Gasparini, A. et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transpl. 31, 2086–2094 (2016).

    Article  CAS  Google Scholar 

  211. Vinhas, J. et al. Prevalence of chronic kidney disease and associated risk factors, and risk of end-stage renal disease: data from the PREVADIAB study. Nephron Clin. Pract. 119, c35–c40 (2011).

    Article  PubMed  Google Scholar 

  212. Chronic kidney disease: Australian facts, How many people are living with chronic kidney disease in Australia? Australian Institute of Health and Welfare https://www.aihw.gov.au/reports/chronic-kidney-disease/chronic-kidney-disease/contents/how-many-people-are-living-with-chronic-kidney-dis (2023).

  213. Epidemiology and disease control division, Ministry of Health, Singapore. National Health Survey https://www.moh.gov.sg/resources-statistics/reports/national-health-survey-2010 (2010).

  214. Arora, P. et al. Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 185, E417–E423 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Juutilainen, A. et al. Trends in estimated kidney function: the FINRISK surveys. Eur. J. Epidemiol. 27, 305–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379, 815–822 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.J.C. acknowledges grant support from the Swedish Research Council, the Swedish Heart and Lung Foundation and the Westman and Rind foundations. K.J.J. acknowledges grant support from the European Renal Association (ERA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, discussions of its content, and writing and editing the manuscript before submission.

Corresponding author

Correspondence to Kitty J. Jager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Adeera Levin, Joel Neugarten and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnaye, N.C., Carrero, J.J., Hecking, M. et al. Differences in the epidemiology, management and outcomes of kidney disease in men and women. Nat Rev Nephrol 20, 7–20 (2024). https://doi.org/10.1038/s41581-023-00784-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00784-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing