Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidative stress and the role of redox signalling in chronic kidney disease

Abstract

Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.

Key points

  • Oxidative stress occurs when the generation of oxidants exceeds the metabolizing or degradative capacity of antioxidants.

  • Reactive oxygen species (ROS) are radical or molecular species that contain oxygen and are produced by cellular organelles; they can cause damage to cells and tissues when present in excessive amounts.

  • Although potentially harmful in excess, ROS also contribute to cell survival and can act as signalling molecules at appropriate intracellular concentrations.

  • Within the kidney, ROS are produced by a variety of organelles and enzyme systems, and contribute to a range of physiological and pathological processes.

  • The involvement of ROS in pathological processes suggests that therapeutic targeting of ROS may be beneficial; a number of therapeutic approaches are under investigation, including targeting of Nrf2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of ROS and its regulation.
Fig. 2: Sources of ROS production and their consequences.
Fig. 3: Uncoupling of eNOS.
Fig. 4: Role of ROS in cell signalling.
Fig. 5: Oxidative stress in the pathogenesis and progression of CKD.

Similar content being viewed by others

References

  1. Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harman, D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10, 773–781 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  PubMed  Google Scholar 

  5. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martínez-Reyes, I. et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61, 199–209 (2016).

    Article  PubMed  Google Scholar 

  7. Oliveira-Marques, V., Marinho, H. S., Cyrne, L. & Antunes, F. Role of hydrogen peroxide in NF-κB activation: from inducer to modulator. Antioxid. Redox Signal. 11, 2223–2243 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz, S., Pergola, P. E., Zager, R. A. & Vaziri, N. D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 83, 1029–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Satoh, M. et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 288, F1144–F1152 (2005).

    Article  CAS  Google Scholar 

  11. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kunsch, C. & Medford, R. M. Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. 85, 753–766 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rhee, S. G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17, 575–590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martínez, M. C. & Andriantsitohaina, R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal. 11, 669–702 (2009).

    Article  PubMed  Google Scholar 

  18. Drummond, G. R., Selemidis, S., Griendling, K. K. & Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug. Discov. 10, 453–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koppenol, W. H. The Haber–Weiss cycle – 70 years later. Redox Rep. 6, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura, H., Nakamura, K. & Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118–126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finkel, T. Signal transduction by mitochondrial oxidants. J. Biol. Chem. 287, 4434–4440 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davies, K. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).

    Article  Google Scholar 

  27. Peris, E. et al. Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes. J. Biol. Chem. 294, 2340–2352 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Xiao, W. & Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 32, 1330–1347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uchida, T. et al. The effect of long-term inorganic iodine on intrathyroidal iodothyronine content and gene expression in mice with Graves’ hyperthyroidism. Thyroid 33, 330–337 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. López-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saunders, L. R. & Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489–5504 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Tracz, M. J., Alam, J. & Nath, K. A. Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18, 414–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Nath, M. & Agarwal, A. New insights into the role of heme oxygenase-1 in acute kidney injury. Kidney Res. Clin. Pract. 39, 387–401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Blydt-Hansen, T. D. et al. Gene transfer-induced local heme oxygenase-1 overexpression protects rat kidney transplants from ischemia/reperfusion injury. J. Am. Soc. Nephrol. 14, 745–754 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu, H. et al. Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit. Care Med. 28, 809–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Nakahira, K. et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J. Exp. Med. 203, 2377–2389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. & Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Valtin, H. Renal function: mechanisms preserving fluid and solute balance in health. Arch. Surg. 109, 462–463 (1973).

    Google Scholar 

  45. Forbes, J. M. & Thorburn, D. R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14, 291–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Li, X. et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 6, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pizzino, G. et al. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell Longev. 2017, 8416763 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zeeshan, H. M., Lee, G. H., Kim, H. R. & Chae, H. J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, Y. M., He, W. & Liou, Y. C. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis. 12, 58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Antonenkov, V. D., Grunau, S., Ohlmeier, S. & Hiltunen, J. K. Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 13, 525–537 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Litwin, J. A., Völkl, A., Müller-Höcker, J. & Fahimi, H. D. Immunocytochemical demonstration of peroxisomal enzymes in human kidney biopsies. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 54, 207–213 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Litwin, J. A., Völkl, A., Stachura, J. & Fahimi, H. D. Detection of peroxisomes in human liver and kidney fixed with formalin and embedded in paraffin: the use of catalase and lipid β-oxidation enzymes as immunocytochemical markers. Histochem. J. 20, 165–173 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Sedeek, M., Nasrallah, R., Touyz, R. M. & Hébert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol. 24, 1512–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Groemping, Y., Lapouge, K., Smerdon, S. J. & Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Muñoz, M. et al. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. Redox Biol. 19, 92–104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fukuda, M. et al. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J. Hypertens. 28, 340–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Oudit, G. Y. et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59, 529–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Irazabal, M. V. & Torres, V. E. Reactive oxygen species and redox signaling in chronic kidney disease. Cells 9, 1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nlandu Khodo, S. et al. NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. J. Am. Soc. Nephrol. 23, 1967–1976 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hille, R. & Nishino, T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9, 995–1003 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Nishino, T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J. Biochem. 116, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Li, H., Horke, S. & Förstermann, U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol. Sci. 34, 313–319 (2013).

    Article  PubMed  Google Scholar 

  63. George, J., Carr, E., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114, 2508–2516 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Itano, S. et al. Non-purine selective xanthine oxidase inhibitor ameliorates glomerular endothelial injury in Ins(Akita) diabetic mice. Am. J. Physiol. Ren. Physiol. 319, F765–F772 (2020).

    Article  CAS  Google Scholar 

  65. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6, e24437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stendahl, O., Coble, B. I., Dahlgren, C., Hed, J. & Molin, L. Myeloperoxidase modulates the phagocytic activity of polymorphonuclear neutrophil leukocytes. Studies with cells from a myeloperoxidase-deficient patient. J. Clin. Invest. 73, 366–373 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brennan, M. L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Kallenberg, C. G. Antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Curr. Opin. Rheumatol. 19, 17–24 (2007).

    Article  PubMed  Google Scholar 

  73. Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malle, E., Buch, T. & Grone, H. J. Myeloperoxidase in kidney disease. Kidney Int. 64, 1956–1967 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Zweier, J. L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med. 1, 804–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Oliveira, F. R. M. G., Assreuy, J. & Sordi, R. The role of nitric oxide in sepsis-associated kidney injury. Biosci. Rep. 42, BSR20220093 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kosaka, H. et al. Induction of LOX-1 and iNOS expressions by ischemia-reperfusion of rat kidney and the opposing effect of l-arginine. FASEB J. 17, 636–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sordi, R., Menezes-de-Lima, O., Della-Justina, A. M., Rezende, E. & Assreuy, J. Pneumonia-induced sepsis in mice: temporal study of inflammatory and cardiovascular parameters. Int. J. Exp. Pathol. 94, 144–155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sordi, R., Chiazza, F., Collino, M., Assreuy, J. & Thiemermann, C. Neuronal nitric oxide synthase is involved in vascular hyporeactivity and multiple organ dysfunction associated with hemorrhagic shock. Shock 45, 525–533 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Baylis, C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat. Clin. Pract. Nephrol. 2, 209–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishimura, K. et al. Dual disruption of eNOS and ApoE gene accelerates kidney fibrosis and senescence after injury. Biochem. Biophys. Res. Commun. 556, 142–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Knowles, J. W. et al. Enhanced atherosclerosis and kidney dysfunction in eNOS−/−Apoe−/− mice are ameliorated by enalapril treatment. J. Clin. Invest. 105, 451–458 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carlström, M. et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc. Natl Acad. Sci. USA 107, 17716–17720 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gil, C. L., Hooker, E. & Larrivée, B. Diabetic kidney disease, endothelial damage, and podocyte–endothelial crosstalk. Kidney Med. 3, 105–115 (2021).

    Article  PubMed  Google Scholar 

  86. Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. & Jandeleit-Dahm, K. Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Satoh, M. et al. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol. Dial. Transpl. 23, 3806–3813 (2008).

    Article  CAS  Google Scholar 

  88. Kidokoro, K. et al. Maintenance of endothelial guanosine triphosphate cyclohydrolase I ameliorates diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1139–1150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, R. et al. The role of macula densa nitric oxide synthase 1 beta splice variant in modulating tubuloglomerular feedback. Compr. Physiol. 13, 4215–4229 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Song, J. et al. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol. 213, 249–258 (2015).

    Article  CAS  Google Scholar 

  91. Araujo, M. & Welch, W. J. Tubuloglomerular feedback is decreased in COX-1 knockout mice after chronic angiotensin II infusion. Am. J. Physiol. Ren. Physiol. 298, F1059–F1063 (2010).

    Article  CAS  Google Scholar 

  92. Lu, D. et al. Salt-sensitive splice variant of nNOS expressed in the macula densa cells. Am. J. Physiol. Ren. Physiol. 298, F1465–F1471 (2010).

    Article  CAS  Google Scholar 

  93. Lu, Y. et al. Macula densa nitric oxide synthase 1β protects against salt-sensitive hypertension. J. Am. Soc. Nephrol. 27, 2346–2356 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Campese, V. M., Parise, M., Karubian, F. & Bigazzi, R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension 18, 805–812 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Wei, J. et al. Macula densa NOS1β modulates renal hemodynamics and blood pressure during pregnancy: role in gestational hypertension. J. Am. Soc. Nephrol. 32, 2485–2500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gielis, J. F. et al. Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free. Radic. Biol. Med. 50, 765–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Münzel, T., Daiber, A., Ullrich, V. & Mülsch, A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler. Thromb. Vasc. Biol. 25, 1551–1557 (2005).

    Article  PubMed  Google Scholar 

  98. Janaszak-Jasiecka, A., Płoska, A., Wierońska, J. M., Dobrucki, L. W. & Kalinowski, L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol. Biol. Lett. 28, 21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bendall, J. K., Douglas, G., McNeill, E., Channon, K. M. & Crabtree, M. J. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid. Redox Signal. 20, 3040–3077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moens, A. L. & Kass, D. A. Tetrahydrobiopterin and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 26, 2439–2444 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Antoniades, C. et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation 116, 2851–2859 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ismaeel, A. et al. The nitric oxide system in peripheral artery disease: connection with oxidative stress and biopterins. Antioxidants 9, 590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heitzer, T., Krohn, K., Albers, S. & Meinertz, T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia 43, 1435–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Higashi, Y. et al. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am. J. Hypertens. 15, 326–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Stroes, E. et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J. Clin. Invest. 99, 41–46 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yamamoto, E. et al. The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction. Int. J. Cardiol. 190, 335–337 (2015).

    Article  PubMed  Google Scholar 

  107. Shinozaki, K. et al. Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ. Res. 87, 566–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Hong, H. J., Hsiao, G., Cheng, T. H. & Yen, M. H. Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 38, 1044–1048 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Landmesser, U. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maier, W. et al. Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J. Cardiovasc. Pharmacol. 35, 173–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Setoguchi, S., Hirooka, Y., Eshima, K., Shimokawa, H. & Takeshita, A. Tetrahydrobiopterin improves impaired endothelium-dependent forearm vasodilation in patients with heart failure. J. Cardiovasc. Pharmacol. 39, 363–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Cosentino, F. et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 94, 487–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Porkert, M. et al. Tetrahydrobiopterin: a novel antihypertensive therapy. J. Hum. Hypertens. 22, 401–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Mäki-Petäjä, K. M. et al. Tetrahydrobiopterin supplementation improves endothelial function but does not alter aortic stiffness in patients with rheumatoid arthritis. J. Am. Heart Assoc. 5, e002762 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cunnington, C. et al. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 125, 1356–1366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heller, R. et al. l-Ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J. Biol. Chem. 276, 40–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Gao, S. Q. et al. Endothelial NOX4 aggravates eNOS uncoupling by decreasing dihydrofolate reductase after subarachnoid hemorrhage. Free. Radic. Biol. Med. 193, 499–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Wu, G. & Meininger, C. J. Arginine nutrition and cardiovascular function. J. Nutr. 130, 2626–2629 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Cylwik, D., Mogielnicki, A. & Buczko, W. L-arginine and cardiovascular system. Pharmacol. Rep. 57, 14–22 (2005).

    CAS  PubMed  Google Scholar 

  120. Chen, C. A. et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468, 1115–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Holmgren, A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2, 811–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, C. A., De Pascali, F., Basye, A., Hemann, C. & Zweier, J. L. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. Biochemistry 52, 6712–6723 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Subramani, J., Kundumani-Sridharan, V., Hilgers, R. H., Owens, C. & Das, K. C. Thioredoxin uses a GSH-independent route to deglutathionylate endothelial nitric-oxide synthase and protect against myocardial infarction. J. Biol. Chem. 291, 23374–23389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Baird, L. & Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell Biol. 40, e00090-20 (2020).

    Article  Google Scholar 

  126. Yamamoto, T. et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell Biol. 28, 2758–2770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nezu, M., Suzuki, N. & Yamamoto, M. Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am. J. Nephrol. 45, 473–483 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, M. et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 76, 277–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Jiang, T. et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59, 850–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am. J. Physiol. Ren. Physiol. 298, F662–F671 (2010).

    Article  CAS  Google Scholar 

  131. Kim, H. J., Sato, T., Rodríguez-Iturbe, B. & Vaziri, N. D. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J. Pharmacol. Exp. Ther. 337, 583–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. & He, W. Improving the dysregulation of FoxO1 activity is a potential therapy for alleviating diabetic kidney disease. Front. Pharmacol. 12, 630617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, N. & Karin, M. Is NF-κB the sensor of oxidative stress? FASEB J. 13, 1137–1143 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Sanz, A. B. et al. NF-κB in renal inflammation. J. Am. Soc. Nephrol. 21, 1254–1262 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, H. & Sun, S. C. NF-κB in inflammation and renal diseases. Cell Biosci. 5, 63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Li, W. et al. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 76, 1485–1489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tanaka, T. & Nangaku, M. Angiogenesis and hypoxia in the kidney. Nat. Rev. Nephrol. 9, 211–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Akhtar, M. Z., Sutherland, A. I., Huang, H., Ploeg, R. J. & Pugh, C. W. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am. J. Transpl. 14, 1481–1487 (2014).

    Article  CAS  Google Scholar 

  142. Bernhardt, W. M. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    Article  PubMed  Google Scholar 

  144. Sugahara, M., Tanaka, T. & Nangaku, M. Hypoxia-inducible factor and oxygen biology in the kidney. Kidney360 1, 1021–1031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Iguchi, M. et al. Acute inactivation of the VHL gene contributes to protective effects of ischemic preconditioning in the mouse kidney. Nephron Exp. Nephrol. 110, e82–e90 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kojima, I. et al. Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J. Am. Soc. Nephrol. 18, 1218–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Ito, M. et al. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int. 97, 687–701 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Kapitsinou, P. P. et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am. J. Physiol. Ren. Physiol. 302, F1172–F1179 (2012).

    Article  CAS  Google Scholar 

  150. Wang, Z. et al. The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol. Dial. Transpl. 27, 929–936 (2012).

    Article  CAS  Google Scholar 

  151. Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Yamanaka, S. et al. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One 9, e102311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword. Antioxid. Redox Signal. 9, 2277–2293 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Cao, S. S. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21, 396–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cybulsky, A. V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13, 681–696 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Yamashita, K. et al. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J. Cell Biol. 219, e202001003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Okumoto, K. et al. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. Elife 9, e55896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gulati, S. et al. Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Arch. Biochem. Biophys. 295, 90–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  160. Vasko, R. Peroxisomes and kidney injury. Antioxid. Redox Signal. 25, 217–231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Al-Mehdi, A. B. et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci. Signal. 5, ra47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Murphy, M. P. Modulating mitochondrial intracellular location as a redox signal. Sci. Signal. 5, pe39 (2012).

    Article  PubMed  Google Scholar 

  163. Van Houten, B., Woshner, V. & Santos, J. H. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5, 145–152 (2006).

    Article  PubMed  Google Scholar 

  164. Nadalutti, C. A., Ayala-Peña, S. & Santos, J. H. Mitochondrial DNA damage as driver of cellular outcomes. Am. J. Physiol. Cell Physiol. 322, C136–C150 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Nissanka, N. & Moraes, C. T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 592, 728–742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rottenberg, H. & Hoek, J. B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16, 943–955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Duann, P. & Lin, P. H. Mitochondria damage and kidney disease. Adv. Exp. Med. Biol. 982, 529–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kishi, S. et al. Meclizine preconditioning protects the kidney against ischemia-reperfusion injury. EBioMedicine 2, 1090–1101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Tang, C. et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14, 880–897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hashizume, O. et al. Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc. Natl Acad. Sci. USA 109, 10528–10533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dieter, B. P. et al. Novel therapies for diabetic kidney disease: storied past and forward paths. Diabetes Spectr. 28, 167–174 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Susztak, K., Raff, A. C., Schiffer, M. & Böttinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Maremonti, F., Meyer, C. & Linkermann, A. Mechanisms and models of kidney tubular necrosis and nephron loss. J. Am. Soc. Nephrol. 33, 472–486 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Zeitler, L. et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife 10, e64806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mishima, E. et al. Drugs repurposed as antiferroptosis agents suppress organ damage, including AKI, by functioning as lipid peroxyl radical scavengers. J. Am. Soc. Nephrol. 31, 280–296 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Deragon, M. A. et al. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov. 6, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, H. et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 9, 878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M. & Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 75, 995–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chung, K. W. et al. Mitochondrial damage and activation of the sting pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Maekawa, H. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29, 1261–1273.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Janikiewicz, J. et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis. 9, 332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Yang, M. et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine 43, 607–619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Xue, M. et al. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation. Cell Death Dis. 12, 1107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Canaud, G. & Bonventre, J. V. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol. Dial. Transpl. 30, 575–583 (2015).

    Article  CAS  Google Scholar 

  196. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Liu, B. C., Tang, T. T., Lv, L. L. & Lan, H. Y. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 93, 568–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Steinhubl, S. R. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14d–19d (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Ardanaz, N. et al. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension 55, 116–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Daenen, K. et al. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 34, 975–991 (2019).

    Article  PubMed  Google Scholar 

  201. Griendling, K. K. et al. Oxidative stress and hypertension. Circ. Res. 128, 993–1020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Te Riet, L., van Esch, J. H., Roks, A. J., van den Meiracker, A. H. & Danser, A. H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 116, 960–975 (2015).

    Article  Google Scholar 

  203. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004).

    Article  CAS  PubMed  Google Scholar 

  204. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Nistala, R., Wei, Y., Sowers, J. R. & Whaley-Connell, A. Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease. Transl. Res. 153, 102–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Terami, N. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 9, e100777 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Novikov, A. et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Ren. Physiol. 316, F173–F185 (2019).

    Article  CAS  Google Scholar 

  209. Wilcox, C. S. Antihypertensive and renal mechanisms of SGLT2 (sodium-glucose linked transporter 2) inhibitors. Hypertension 75, 894–901 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Gager, G. M. et al. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed. Pharmacother. 143, 112169 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Carlström, M., Wilcox, C. S. & Arendshorst, W. J. Renal autoregulation in health and disease. Physiol. Rev. 95, 405–511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Yaribeygi, H., Butler, A. E., Atkin, S. L., Katsiki, N. & Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways. J. Cell Physiol. 234, 223–230 (2018).

    Article  PubMed  Google Scholar 

  213. Aroor, A. R. et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc. Diabetol. 17, 108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lei, C. et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am. J. Respir. Crit. Care Med. 198, 1279–1287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Marrazzo, F. et al. Protocol of a randomised controlled trial in cardiac surgical patients with endothelial dysfunction aimed to prevent postoperative acute kidney injury by administering nitric oxide gas. BMJ Open. 9, e026848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02836899 (2022).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04022161 (2022).

  218. Stasch, J. P., Schlossmann, J. & Hocher, B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol. 21, 95–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Hanrahan, J. P. et al. Effects of the soluble guanylate cyclase stimulator praliciguat in diabetic kidney disease: a randomized placebo-controlled clinical trial. Clin. J. Am. Soc. Nephrol. 16, 59–69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Breyer, M. D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug. Discov. 15, 568–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02156843 (2016).

  222. Jha, J. C. et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237–1254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Reutens, A. T. et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp. Clin. Trials 90, 105892 (2020).

    Article  PubMed  Google Scholar 

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04534439 (2021).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05758896 (2023).

  226. Tesch, G. H., Ma, F. Y. & Nikolic-Paterson, D. J. ASK1: a new therapeutic target for kidney disease. Am. J. Physiol. Ren. Physiol. 311, F373–F381 (2016).

    Article  CAS  Google Scholar 

  227. Ma, F. Y., Tesch, G. H. & Nikolic-Paterson, D. J. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am. J. Physiol. Ren. Physiol. 307, F1263–F1273 (2014).

    Article  CAS  Google Scholar 

  228. Terada, Y. et al. Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochem. Biophys. Res. Commun. 364, 1043–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Liles, J. T. et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J. Clin. Invest. 128, 4485–4500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Chertow, G. M. et al. Effects of selonsertib in patients with diabetic kidney disease. J. Am. Soc. Nephrol. 30, 1980–1990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. He, R. et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov. 8, 43 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hong, D. S. et al. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin. Cancer Res. 18, 3396–3406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Nangaku, M. et al. Randomized clinical trial on the effect of bardoxolone methyl on GFR in diabetic kidney disease patients (TSUBAKI study). Kidney Int. Rep. 5, 879–890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Nangaku, M. et al. Randomized, double-blind, placebo-controlled phase 3 study of bardoxolone methyl in patients with diabetic kidney disease: design and baseline characteristics of AYAME study. Nephrol. Dial. Transpl. 38, 1204–1216 (2022).

    Article  Google Scholar 

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03019185 (2022).

  240. Warady, B. A. et al. Effects of bardoxolone methyl in Alport syndrome. Clin. J. Am. Soc. Nephrol. 17, 1763–1774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03918447 (2023).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03749447 (2023).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04702997 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.K. developed the article outline, and S.K. drafted the first version. All authors contributed to researching data for the article, participated in discussions about the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Naoki Kashihara.

Ethics declarations

Competing interests

N.K. has received lecture fees from Astellas, AstraZeneca, Kyowa-Kirin, Novartis and Otsuka; research funding from AstraZeneca, Daiichi Sankyo, Kyowa-Kirin, Novartis and Otsuka; and has served as an adviser for Kyowa-Kirin and Novartis. The other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Nephrology thanks Lin Sun, Mattias Carlstrom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishi, S., Nagasu, H., Kidokoro, K. et al. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 20, 101–119 (2024). https://doi.org/10.1038/s41581-023-00775-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00775-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing