Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis of cardiovascular disease in patients with chronic kidney disease

Abstract

Patients with chronic kidney disease (CKD) are at high risk of cardiovascular disease (CVD) and cardiovascular death. Identifying and monitoring cardiovascular complications and hypertension is important for managing patients with CKD or kidney failure and transplant recipients. Biomarkers of myocardial ischaemia, such as troponins and electrocardiography (ECG), have limited utility for diagnosing cardiac ischaemia in patients with advanced CKD. Dobutamine stress echocardiography, myocardial perfusion scintigraphy and dipyridamole stress testing can be used to detect coronary disease in these patients. Left ventricular hypertrophy and left ventricular dysfunction can be detected and monitored using various techniques with differing complexity and cost, including ECG, echocardiography, nuclear magnetic resonance, CT and myocardial scintigraphy. Atrial fibrillation and other major arrhythmias are common in all stages of CKD, and ambulatory heart rhythm monitoring enables precise time profiling of these disorders. Screening for cerebrovascular disease is only indicated in asymptomatic patients with autosomal dominant polycystic kidney disease. Standardized blood pressure is recommended for hypertension diagnosis and treatment monitoring and can be complemented by ambulatory blood pressure monitoring. Judicious use of these diagnostic techniques may assist clinicians in detecting the whole range of cardiovascular alterations in patients with CKD and enable timely treatment of CVD in this high-risk population.

Key points

  • Cardiovascular disease is the main comorbidity of chronic kidney disease (CKD), and most patients with CKD die from cardiovascular causes before they progress to kidney failure; detection of anatomical and functional cardiovascular abnormalities and hypertension is important to enable management of these complications.

  • Dobutamine stress echocardiography, myocardial perfusion scintigraphy, dipyridamole stress testing and CT angiography are valid methods for detecting coronary disease in patients with CKD or kidney failure.

  • Left ventricular hypertrophy and left ventricular dysfunction can be detected and monitored using various techniques with differing cost and complexity, including electrocardiography, echocardiography and nuclear magnetic resonance.

  • Major arrhythmias are common in patients with CKD and kidney failure; ambulatory heart rhythm monitoring enables precise time profiling of these disorders.

  • Screening for cerebrovascular disease is only indicated in asymptomatic patients with autosomal dominant polycystic kidney disease.

  • Standardized blood pressure measurements and ambulatory blood pressure monitoring are recommended for diagnosis and monitoring of hypertension in patients with CKD or kidney failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Techniques for cardiovascular diagnosis and clinical monitoring in patients with chronic kidney disease.
Fig. 2: Cardiovascular 3 T NMR of left ventricular hypertrophy in a person undergoing regular haemodialysis.
Fig. 3: Signs typical of intracerebral haemorrhage on CT imaging.

Similar content being viewed by others

References

  1. Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Wahsh, H. et al. Accounting for the competing risk of death to predict kidney failure in adults with stage 4 chronic kidney disease. JAMA Netw. Open 4, e219225 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  4. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  5. Zoccali, C. & Mallamaci, F. Mapping progress in reducing cardiovascular risk with kidney disease: managing volume overload. Clin. J. Am. Soc. Nephrol. 13, 1432–1431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zoccali, C., Mallamaci, F. & Picano, E. Detecting and treating lung congestion with kidney failure. Clin. J. Am. Soc. Nephrol. 17, 757–765 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Lemos, J. A. & Hillis, L. D. Diagnosis and management of coronary artery disease in patients with end-stage renal disease on hemodialysis. J. Am. Soc. Nephrol. 7, 2044–2054 (1996).

    Article  PubMed  Google Scholar 

  8. Sharma, R. et al. Dobutamine stress echocardiography and the resting but not exercise electrocardiograph predict severe coronary artery disease in renal transplant candidates. Nephrol. Dial. Transplant. 20, 2207–2214 (2005).

    Article  PubMed  Google Scholar 

  9. Poulikakos, D. & Malik, M. Challenges of ECG monitoring and ECG interpretation in dialysis units. J. Electrocardiol. 49, 855–859 (2016).

    Article  PubMed  Google Scholar 

  10. Birnbaum, Y., Rankinen, J., Jneid, H., Atar, D. & Nikus, K. The role of ECG in the diagnosis and risk stratification of acute coronary syndromes: an old but indispensable tool. Curr. Cardiol. Rep. 24, 109–118 (2022).

    Article  PubMed  Google Scholar 

  11. Fletcher, G. F. et al. Exercise standards for testing and training. Circulation 128, 873–934 (2013).

    Article  PubMed  Google Scholar 

  12. Gianrossi, R. et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80, 87–98 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Zoccali, C., Bolignano D & Mallamaci, F. in Oxford Textbook of Clinical Nephrology Vol. 1 Ch. 107 (eds Turner, N. N. et al.) 837–852 (Oxford Univ. Press, 2019).

  14. Dubin, R. F. et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 14, 229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gunsolus, I. et al. Renal dysfunction influences the diagnostic and prognostic performance of high-sensitivity cardiac troponin I. J. Am. Soc. Nephrol. 29, 636–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Herzog, C. A. et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 572–586 (2011).

    Article  PubMed  Google Scholar 

  17. Carlino, C., Kuppuswamy, S., McCray, L., Aggarwal, K. & Alpert, M. A. Comparative feasibility of dobutamine stress echocardiography performed with and without intravenous contrast in patients with class III obesity. Echocardiography 39, 20–27 (2022).

    Article  PubMed  Google Scholar 

  18. Kurt, M. et al. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. J. Am. Coll. Cardiol. 53, 802–810 (2009).

    Article  PubMed  Google Scholar 

  19. Hlatky, M. A., Shilane, D., Hachamovitch, R. & Dicarli, M. F., SPARC Investigators. Economic outcomes in the study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease registry: the SPARC study. J. Am. Coll. Cardiol. 63, 1002–1008 (2014).

    Article  PubMed  Google Scholar 

  20. Wang, L. W. et al. Cardiac testing for coronary artery disease in potential kidney transplant recipients: a systematic review of test accuracy studies. Am. J. Kidney Dis. 57, 476–487 (2011).

    Article  PubMed  Google Scholar 

  21. Cai, Q., Mukku, V. & Ahmad, M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr. Cardiol. Rev. 9, 331–339 (2014).

    Article  Google Scholar 

  22. El-Mahalawy, N., Abdel-Salam, Z., Samir, A., Mohasseb, W. & Nammas, W. Left ventricular transient ischemic dilation during dobutamine stress echocardiography predicts multi-vessel coronary artery disease. J. Cardiol. 54, 255–261 (2009).

    Article  PubMed  Google Scholar 

  23. Sørensen, I. M. H. et al. Regional distribution and severity of arterial calcification in patients with chronic kidney disease stages 1–5: a cross-sectional study of the Copenhagen chronic kidney disease cohort. BMC Nephrol. 21, 534 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jansz, T. T. et al. Coronary artery calcification as a marker for coronary artery stenosis: comparing kidney failure to the general population. Kidney Med. 3, 386–394.e1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng, X. S. et al. Coronary computed tomography angiography in diagnosing obstructive coronary artery disease in patients with advanced chronic kidney disease: a systematic review and meta-analysis. Cardiorenal Med. 11, 44–51 (2021).

    Article  PubMed  Google Scholar 

  26. Liu, A. et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc. Imaging 9, 27–36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Emrich, T., Halfmann, M., Schoepf, U. J. & Kreitner, K.-F. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments. Eur. Radiol. Exp. 5, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poli, F. E. et al. The reliability and feasibility of non-contrast adenosine stress cardiovascular magnetic resonance T1 mapping in patients on haemodialysis. J. Cardiovasc. Magn. Reson. 22, 43 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miller, T. et al. Ferumoxytol-enhanced coronary magnetic resonance angiography compared to invasive coronary angiography for detection of epicardial coronary artery disease. Kidney Med. 3, 139–141 (2021).

    Article  PubMed  Google Scholar 

  30. De Lima, J. J. G. et al. Coronary angiography is the best predictor of events in renal transplant candidates compared with noninvasive testing. Hypertension 42, 263–268 (2003).

    Article  PubMed  Google Scholar 

  31. O’Lone, E. et al. Defining myocardial infarction in trials of people receiving hemodialysis: consensus report from the SONG-HD MI Expert Working Group. Kidney Int. 103, 1028–1037 (2023).

    Article  PubMed  Google Scholar 

  32. Esquitin, R. et al. Left ventricular hypertrophy by electrocardiography and echocardiography in the African American Study of Kidney Disease Cohort Study. J. Am. Soc. Hypertens. 6, 193–200 (2012).

    Article  PubMed  Google Scholar 

  33. Cordeiro, A. C. et al. Reliability of electrocardiographic surrogates of left ventricular mass in patients with chronic kidney disease. J. Hypertens. 32, 439–445 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Cuspidi, C. et al. Do combined electrocardiographic and echocardiographic markers of left ventricular hypertrophy improve cardiovascular risk estimation? J. Clin. Hypertens. 18, 846–854 (2016).

    Article  Google Scholar 

  35. Ho, C. Y. & Solomon, S. D. A clinician’s guide to tissue doppler imaging. Circulation 113, e396–e398 (2006).

    Article  PubMed  Google Scholar 

  36. Ureña-Torres, P. et al. Valvular heart disease and calcification in CKD: more common than appreciated. Nephrol. Dial. Transplant. 35, 2046–2053 (2020).

    Article  PubMed  Google Scholar 

  37. Mitchell, C. et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 32, 1–64 (2019).

    Article  PubMed  Google Scholar 

  38. Tsao, C. W. et al. Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study cardiac magnetic resonance study. J. Am. Heart Assoc. 4, e002188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tripepi, G. et al. Prognostic values of left ventricular mass index in chronic kidney disease patients. Nephrol. Dial. Transplant. 36, 665–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Tripepi, G. et al. Reappraisal in two European cohorts of the prognostic power of left ventricular mass index in chronic kidney failure. Kidney Int. 91, 704–710 (2017).

    Article  PubMed  Google Scholar 

  41. Lang, R. M., Mor-Avi, V., Sugeng, L., Nieman, P. S. & Sahn, D. J. Three-dimensional echocardiography. J. Am. Coll. Cardiol. 48, 2053–2069 (2006).

    Article  PubMed  Google Scholar 

  42. Christensen, J. et al. Left ventricular structure and function in patients with chronic kidney disease assessed by 3D echocardiography: the CPH-CKD ECHO study. Int. J. Cardiovasc. Imaging 38, 1233–1244 (2022).

    Article  Google Scholar 

  43. Kakiouzi, V. et al. The prognostic value of speckle tracking echocardiography in patients with end stage renal disease on dialysis. Int. J. Cardiovasc. Imaging 38, 2605–2614 (2022).

    Article  PubMed  Google Scholar 

  44. Jahn, L. et al. Speckle tracking echocardiography and all-cause and cardiovascular mortality risk in chronic kidney disease patients. Kidney Blood Press. Res. 44, 690–703 (2019).

    Article  PubMed  Google Scholar 

  45. Guglielmo, M. & Pontone, G. Clinical implications of cardiac magnetic resonance imaging fibrosis. Eur. Heart J. Suppl. 24, I123–I126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Price, A. M. et al. Myocardial characterization in pre-dialysis chronic kidney disease: a study of prevalence, patterns and outcomes. BMC Cardiovasc. Disord. 19, 295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, H. et al. Texture analysis of native T1 images as a novel method for noninvasive assessment of uremic cardiomyopathy. J. Magn. Reson. Imaging 54, 290–300 (2021).

    Article  PubMed  Google Scholar 

  48. Aoki, J. et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int. 67, 333–340 (2005).

    Article  PubMed  Google Scholar 

  49. Rankin, A. J. et al. Global longitudinal strain by feature-tracking cardiovascular magnetic resonance imaging predicts mortality in patients with end-stage kidney disease. Clin. Kidney J. 14, 2187–2196 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gimpel, C. et al. Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease. Pediatr. Radiol. 47, 169–177 (2017).

    Article  PubMed  Google Scholar 

  51. Weinreb, J. C. et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298, 28–35 (2021).

    Article  PubMed  Google Scholar 

  52. Saravanan, P. & Davidson, N. C. Risk assessment for sudden cardiac death in dialysis patients. Circ. Arrhythm. Electrophysiol. 3, 553–559 (2010).

    Article  PubMed  Google Scholar 

  53. Steinberg, J. S. et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm. 14, e55–e96 (2017).

    Article  PubMed  Google Scholar 

  54. Kim, E. D., Soliman, E. Z., Coresh, J., Matsushita, K. & Chen, L. Y. Two-week burden of arrhythmias across CKD severity in a large community-based cohort: the ARIC study. J. Am. Soc. Nephrol. 32, 629–638 (2021).

    Article  PubMed  Google Scholar 

  55. Rantanen, J. M. et al. Arrhythmias in patients on maintenance dialysis: a cross-sectional study. Am. J. Kidney Dis. 75, 214–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Koplan, B. A. et al. Implantable loop recorder monitoring and the incidence of previously unrecognized atrial fibrillation in patients on hemodialysis. Kidney Int. Rep. 7, 189–199 (2022).

    Article  PubMed  Google Scholar 

  57. Kelly, D. M. et al. Chronic kidney disease and cerebrovascular disease. Stroke 52, e328–e346 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Lyerly, M. J. & Chow, D. Neuroimaging considerations in patients with chronic kidney disease. J. Stroke Cerebrovasc. Dis. 30, 105930 (2021).

    Article  PubMed  Google Scholar 

  59. Fugate, J. E. & Rabinstein, A. A. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol. 14, 914–925 (2015).

    Article  PubMed  Google Scholar 

  60. Ganesh, K. et al. Posterior reversible encephalopathy syndrome in kidney disease. Kidney Int. Rep. 3, 502–507 (2018).

    Article  PubMed  Google Scholar 

  61. Kute, V. B. et al. Posterior reversible encephalopathy syndrome – an under recognized manifestation of chronic kidney disease. Indian. J. Crit. Care Med. 17, 318–320 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gerhard-Herman, M. D. et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135, e686–e725 (2017).

    PubMed  Google Scholar 

  63. Aboyans, V. et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 39, 763–816 (2018).

    Article  PubMed  Google Scholar 

  64. Johansen, K. L. et al. Central and peripheral arterial diseases in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 100, 35–48 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Høyer, C., Sandermann, J. & Petersen, L. J. The toe-brachial index in the diagnosis of peripheral arterial disease. J. Vasc. Surg. 58, 231–238 (2013).

    Article  PubMed  Google Scholar 

  66. [No authors listed] The AIUM practice parameter for the performance of an ultrasound examination of the extracranial cerebrovascular system. J. Ultrasound Med. 41, e21–e27 (2022).

    Google Scholar 

  67. Conte, M. S. et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 69, 3S–125S.e40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ali, F., Mangi, M. A., Rehman, H. & Kaluski, E. Use of carbon dioxide as an intravascular contrast agent: a review of current literature. World J. Cardiol. 9, 715–722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vlachopoulos, C. et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology working group on peripheral circulation. Atherosclerosis 241, 507–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Tzoulaki, I., Siontis, K. C., Evangelou, E. & Ioannidis, J. P. A. Bias in associations of emerging biomarkers with cardiovascular disease. JAMA Intern. Med. 173, 664–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 74, e177–e232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  73. Tripepi, G. et al. Pulse wave velocity and prognosis in end-stage kidney disease. Hypertension 71, 1126–1132 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Hametner, B. et al. Oscillometric estimation of aortic pulse wave velocity. Blood Press. Monit. 18, 173–176 (2013).

    Article  PubMed  Google Scholar 

  75. Baulmann, J. et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J. Hypertens. 26, 523–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Schwartz, J. E., Feig, P. U. & Izzo, J. L. Pulse wave velocities derived from cuff ambulatory pulse wave analysis. Hypertension 74, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Ku, E., Lee, B. J., Wei, J. & Weir, M. R. Hypertension in CKD: core curriculum 2019. Am. J. Kidney Dis. 74, 120–131 (2019).

    Article  PubMed  Google Scholar 

  78. Stergiou, G. S. et al. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 39, 1293–1302 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Working Group. 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 99, S1–S87 (2021).

    Article  Google Scholar 

  80. Cheung, A. K. et al. International consensus on standardized clinic blood pressure measurement – a call to action. Am. J. Med. 136, 438–445 (2023).

    Article  PubMed  Google Scholar 

  81. McManus, R. J., Caulfield, M. & Williams, B. NICE hypertension guideline 2011: evidence based evolution. BMJ 344, e181 (2012).

    Article  PubMed  Google Scholar 

  82. Piper, M. A. et al. Diagnostic and predictive accuracy of blood pressure screening methods with consideration of rescreening intervals: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 162, 192–204 (2015).

    Article  PubMed  Google Scholar 

  83. Parati, G. et al. Hypertension in chronic kidney disease Part 1. Out-of-office blood pressure monitoring: methods, thresholds, and patterns. Hypertension 67, 1093–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Andersen, M. J., Khawandi, W. & Agarwal, R. Home blood pressure monitoring in CKD. Am. J. Kidney Dis. 45, 994–1001 (2005).

    Article  PubMed  Google Scholar 

  85. Agarwal, R., Peixoto, A. J., Santos, S. F. & Zoccali, C. Pre- and postdialysis blood pressures are imprecise estimates of interdialytic ambulatory blood pressure. Clin. J. Am. Soc. Nephrol. 1, 389–398 (2006).

    Article  PubMed  Google Scholar 

  86. Bansal, N. et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis. Hypertension 65, 93–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Minutolo, R. et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch. Intern. Med. 171, 1090–1098 (2011).

    Article  PubMed  Google Scholar 

  88. Tripepi, G. et al. Prognostic value of 24-hour ambulatory blood pressure monitoring and of night/day ratio in nondiabetic, cardiovascular events-free hemodialysis patients. Kidney Int. 68, 1294–1302 (2005).

    Article  PubMed  Google Scholar 

  89. Mallamaci, F. et al. Nocturnal hypertension and altered night–day BP profile and atherosclerosis in renal transplant patients. Transplantation 100, 2211–2218 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Agarwal, R. et al. Assessment and management of hypertension in patients on dialysis. J. Am. Soc. Nephrol. 25, 1630–1646 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sarafidis, P. A. et al. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association–European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). Nephrol. Dial. Transplant. 32, 620–640 (2017).

    Article  PubMed  Google Scholar 

  92. Yadlowsky, S. et al. Clinical implications of revised pooled cohort equations for estimating atherosclerotic cardiovascular disease risk. Ann. Intern. Med. 169, 20–29 (2018).

    Article  PubMed  Google Scholar 

  93. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 42, 2439–2454 (2021).

    Article  Google Scholar 

  94. Lees, J. S. et al. Assessment of cystatin C level for risk stratification in adults with chronic kidney disease. JAMA Netw. Open. 5, e2238300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Matsushita, K. et al. Incorporating kidney disease measures into cardiovascular risk prediction: development and validation in 9 million adults from 72 datasets. EClinicalMedicine 27, 100552 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. CKD Prognosis Consortium. Predicted 10 year risk of atherosclerotic CVD. CKD Prognosis Consortium https://ckdpcrisk.org/ckdpatchpce/ (2019).

  97. CKD Prognosis Consortium. Predicted 10 year risk of cardiovascular mortality. CKD Prognosis Consortium https://ckdpcrisk.org/ckdpatchscore/ (2019).

  98. Foster, M. C. et al. Cardiovascular risk factor burden, treatment, and control among adults with chronic kidney disease in the United States. Am. Heart J. 166, 150–156.e1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zoccali, C. et al. Cardiovascular complications in chronic kidney disease – a review from the European Renal and Cardiovascular Medicine Working Group (EURECA-m) of the European Renal Association (ERA). Cardiovasc. Res., https://doi.org/10.1093/cvr/cvad083 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Colbert, G., Jain, N., de Lemos, J. A. & Hedayati, S. S. Utility of traditional circulating and imaging-based cardiac biomarkers in patients with predialysis CKD. Clin. J. Am. Soc. Nephrol. 10, 515–529 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Michos, E. D. et al. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann. Intern. Med. 161, 491–501 (2014).

    Article  PubMed  Google Scholar 

  102. Stewart, G. A. et al. Electrocardiographic abnormalities and uremic cardiomyopathy. Kidney Int. 67, 217–226 (2005).

    Article  PubMed  Google Scholar 

  103. Deo, R. et al. Electrocardiographic measures and prediction of cardiovascular and noncardiovascular death in CKD. J. Am. Soc. Nephrol. 27, 559–569 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Y., Ping, J., Qiu, L., Sun, C. & Chen, M. Comparative analysis of ischemic changes in electrocardiogram and coronary angiography results. Medicine 100, e26007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bangalore, S. et al. Management of coronary disease in patients with advanced kidney disease. N. Engl. J. Med. 382, 1608–1618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dahan, M. et al. Diagnostic accuracy and prognostic value of combined dipyridamole-exercise thallium imaging in hemodialysis patients. Kidney Int. 54, 255–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Schmidt, A., Stefenelli, T., Schuster, E. & Mayer, G. Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am. J. Kidney Dis. 37, 56–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Collet, J.-P. et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2021).

    Article  PubMed  Google Scholar 

  109. Ng, S. M. et al. Feasibility, diagnostic performance and clinical value of an abbreviated echocardiography protocol in an out-patient cardiovascular setting: a pilot study. Echo Res. Pract. 9, 8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pecoits-Filho, R. & Barberato, S. H. Echocardiography in chronic kidney disease: diagnostic and prognostic implications. Nephron Clin. Pract. 114, c242–c247 (2010).

    Article  PubMed  Google Scholar 

  112. Chamsi-Pasha, M. A., Sengupta, P. P. & Zoghbi, W. A. Handheld echocardiography: current state and future perspectives. Circulation 136, 2178–2188 (2017).

    Article  PubMed  Google Scholar 

  113. Koratala, A. & Reisinger, N. POCUS for nephrologists: basic principles and a general approach. Kidney360 2, 1660–1668 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zoccali, C. et al. A randomized multicenter trial on a lung ultrasound-guided treatment strategy in patients on chronic hemodialysis with high cardiovascular risk. Kidney Int. 100, 1325–1333 (2021).

    Article  PubMed  Google Scholar 

  115. Ledwidge, M. et al. Natriuretic peptide-based screening and collaborative care for heart failure. JAMA 310, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. House, A. A. et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 95, 1304–1317 (2019).

    Article  PubMed  Google Scholar 

  117. Moyer, V. A. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle–brachial index in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 159, 342–348 (2013).

    Article  PubMed  Google Scholar 

  118. Sanchis, I. M. et al. Presymptomatic screening for intracranial aneurysms in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 14, 1151–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kobayashi, M. et al. Relationship between silent brain infarction and chronic kidney disease. Nephrol. Dial. Transplant. 24, 201–207 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nakatani, T. et al. Silent cerebral infarction in hemodialysis patients. Am. J. Nephrol. 23, 86–90 (2003).

    Article  PubMed  Google Scholar 

  121. Eldehni, M. T., Odudu, A. & McIntyre, C. W. Randomized clinical trial of dialysate cooling and effects on brain white matter. J. Am. Soc. Nephrol. 26, 957–965 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Hillal, A., Ullberg, T. & Ramgren, B. Computed tomography in acute intracerebral hemorrhage: neuroimaging predictors of hematoma expansion and outcome. Insights Imaging 13, 180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and contributed substantially to discussion of the content. C.Z., P.B.M. and F.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Carmine Zoccali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Debasish Banerjee, Georg Schlieper and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoccali, C., Mark, P.B., Sarafidis, P. et al. Diagnosis of cardiovascular disease in patients with chronic kidney disease. Nat Rev Nephrol 19, 733–746 (2023). https://doi.org/10.1038/s41581-023-00747-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00747-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing