Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and gut dysbiosis as drivers of CKD–MBD

Abstract

Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease–mineral and bone disorder (CKD–MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD–MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD–MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD–MBD, but also create novel therapeutic opportunities.

Key points

  • Chronic kidney disease (CKD) is associated with inflammation and oxidative stress; important contributing factors include cellular senescence, depletion of short chain fatty acids and gut barrier disruption.

  • Novel insights from osteoimmunology and osteomicrobiology call for a paradigm shift in the pathogenesis of CKD–mineral and bone disorder (MBD), as gut dysbiosis and immune cell dysfunction have emerged as important and targetable drivers of bone loss and vascular calcification.

  • Sex-steroid deprivation and hyperparathyroidism, both common in CKD, foster the trafficking of intestinal T helper 17 cells to the bone marrow, where they release IL-17 and trigger a cascade of events that culminates in bone loss.

  • Local and systemic oxidative stress and inflammation induce a vicious cycle of DNA damage, cell death, premature senescence and further inflammation, which are all major drivers of osteochondrogenic differentiation in vascular smooth muscle cells, ultimately resulting in vascular calcification.

  • Few studies have assessed the effects of therapies targeting either the immune system or gut microbial ecosystem on hard CKD–MBD outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paradigm shift in the pathogenesis of CKD–MBD.
Fig. 2: Gut dysbiosis, leaky gut and inflammation in CKD.
Fig. 3: Inflammation and the calcification paradox.

References

  1. Sarnak, M. J. et al. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1823–1838 (2019).

    CAS  PubMed  Google Scholar 

  2. Yun, H. R. et al. Coronary artery calcification score and the progression of chronic kidney disease. J. Am. Soc. Nephrol. 33, 1590–1601 (2022).

    PubMed Central  PubMed  Google Scholar 

  3. Erlandsson, H. et al. Scoring of medial arterial calcification predicts cardiovascular events and mortality after kidney transplantation. J. Intern. Med. 291, 813–823 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Budoff, M. J. et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) study. Am. J. Kidney Dis. 58, 519–526 (2011).

    PubMed Central  PubMed  Google Scholar 

  5. Moe, S. M. & Nickolas, T. L. Fractures in patients with CKD: time for action. Clin. J. Am. Soc. Nephrol. 11, 1929–1931 (2016).

    PubMed Central  PubMed  Google Scholar 

  6. Shroff, R. et al. Naturally occurring stable calcium isotope ratios are a novel biomarker of bone calcium balance in chronic kidney disease. Kidney Int. 102, 613–623 (2022).

    CAS  PubMed  Google Scholar 

  7. Evenepoel, P. et al. European consensus statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4-G5D. Nephrol. Dial. Transpl. 36, 42–59 (2020).

    Google Scholar 

  8. Evenepoel, P. et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 95, 1461–1470 (2019).

    PubMed  Google Scholar 

  9. Malluche, H. H., Porter, D. S., Monier-Faugere, M. C., Mawad, H. & Pienkowski, D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J. Am. Soc. Nephrol. 23, 525–532 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney int. 69, 1945–1953 (2006).

    CAS  PubMed  Google Scholar 

  11. Herrlich, A., Kefaloyianni, E. & Rose-John, S. Mechanisms of interorgan crosstalk in health and disease. FEBS Lett. 596, 529–533 (2022).

    CAS  PubMed  Google Scholar 

  12. Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    CAS  PubMed  Google Scholar 

  13. Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    CAS  PubMed  Google Scholar 

  14. Meijers, B., Evenepoel, P. & Anders, H. J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 15, 531–545 (2019).

    PubMed  Google Scholar 

  15. Dai, L. et al. Sevelamer use in end-stage kidney disease (ESKD) patients associates with poor vitamin K status and high levels of gut-derived uremic toxins: a drug-bug interaction? Toxins 12, 351 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sonnenburg, J. L. & Backhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Evenepoel, P., Meijers, B. K. I., Bammens, B. R. M. & Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. Suppl. 76, S12–S19 (2009).

    Google Scholar 

  19. Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39, 230–237 (2014).

    CAS  PubMed  Google Scholar 

  20. Mishima, E. et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney int. 92, 634–645 (2017).

    CAS  PubMed  Google Scholar 

  21. Gao, B. et al. Butyrate producing microbiota are reduced in chronic kidney diseases. Sci. Rep. 11, 23530 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  23. Weaver, C. M. Diet, gut microbiome, and bone health. Curr. Osteoporos. Rep. 13, 125–130 (2015).

    PubMed Central  PubMed  Google Scholar 

  24. Guss, J. D. et al. The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone 127, 146–154 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hosseinkhani, F. et al. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 13, 1–22 (2021).

    CAS  PubMed  Google Scholar 

  27. Gasaly, N., de Vos, P. & Hermoso, M. A. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 12, 658354 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hernandez, C. J., Guss, J. D., Luna, M. & Goldring, S. R. Links between the microbiome and bone. J. Bone Miner. Res. 31, 1638–1646 (2016).

    PubMed  Google Scholar 

  29. Evenepoel, P., Dejongh, S., Verbeke, K. & Meijers, B. The role of gut dysbiosis in the bone-vascular axis in chronic kidney disease. Toxins 12, 285 (2020).

    PubMed Central  PubMed  Google Scholar 

  30. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  31. Fougere, B., Boulanger, E., Nourhashemi, F., Guyonnet, S. & Cesari, M. Chronic inflammation: accelerator of biological aging. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1218–1225 (2017).

    CAS  PubMed  Google Scholar 

  32. Kooman, J. P. et al. Inflammation and premature aging in advanced chronic kidney disease. Am. J. Physiol. Renal Physiol. 313, F938–F950 (2017).

    PubMed  Google Scholar 

  33. Holle, J. et al. Inflammation in children with chronic kidney disease linked to gut dysbiosis and metabolite imbalance. J. Am. Soc. Nephrol. 33, 2259–2275 (2022).

    CAS  PubMed  Google Scholar 

  34. Viaene, L. et al. Inflammation and the bone-vascular axis in end-stage renal disease. Osteoporos. Int. 27, 489–497 (2016).

    CAS  PubMed  Google Scholar 

  35. Ebert, T. et al. Inflammation and premature ageing in chronic kidney disease. Toxins 12, 227 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Stenvinkel, P., Meyer, C. J., Block, G. A., Chertow, G. M. & Shiels, P. G. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol. Dial. Transpl. 35, 2036–2045 (2020).

    CAS  Google Scholar 

  37. Speer, T., Dimmeler, S., Schunk, S. J., Fliser, D. & Ridker, P. M. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat. Rev. Nephrol. 18, 762–778 (2022).

    PubMed  Google Scholar 

  38. Anders, H. J., Andersen, K. & Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 83, 1010–1016 (2013).

    CAS  PubMed  Google Scholar 

  39. Schepers, E. et al. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transpl. 22, 592–596 (2007).

    CAS  Google Scholar 

  40. Nakano, T. et al. Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation via the interplay of OATP2B1 and Dll4-notch signaling. Circulation 139, 78–96 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Saaoud, F. et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress-mitochondrial ROS/glycolysis pathways. JCI Insight 8, e158183 (2022).

    Google Scholar 

  42. Chen, M. L. et al. Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J. Am. Heart Assoc. 6, e006347 (2017).

    PubMed Central  PubMed  Google Scholar 

  43. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    CAS  PubMed  Google Scholar 

  44. Kamprom, W. et al. P-cresol and indoxyl sulfate impair osteogenic differentiation by triggering mesenchymal stem cell senescence. Int. J. Med. Sci. 18, 744–755 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897–1907 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Sun, C. Y., Chang, S. C. & Wu, M. S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney int. 81, 640–650 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Chiu, Y. L. et al. Emergence of T cell immunosenescence in diabetic chronic kidney disease. Immun. Ageing 17, 31 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Betjes, M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).

    CAS  PubMed  Google Scholar 

  49. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Sharma, R. & Diwan, B. A cellular senescence-centric integrated approach to understanding organismal aging. Curr. Aging Sci. 16, 12–24 (2022).

    Google Scholar 

  51. Stumpff, F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch. 470, 571–598 (2018).

    CAS  PubMed  Google Scholar 

  52. Bach Knudsen, K. E. et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10, 1499 (2018).

    PubMed Central  PubMed  Google Scholar 

  53. Terpstra, M. L. et al. Butyrate production in patients with end-stage renal disease. Int. J. Nephrol. Renovasc. Dis. 12, 87–101 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wang, S. et al. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin. Sci. 133, 1857–1870 (2019).

    CAS  Google Scholar 

  55. Jadoon, A. et al. Gut microbial product predicts cardiovascular risk in chronic kidney disease patients. Am. J. Nephrol. 48, 269–277 (2018).

    PubMed  Google Scholar 

  56. Foresto-Neto, O., Ghirotto, B. & Camara, N. O. S. Renal sensing of bacterial metabolites in the gut-kidney axis. Kidney360 2, 1501–1509 (2021).

    PubMed Central  PubMed  Google Scholar 

  57. Sun, M. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9, 3555 (2018).

    PubMed Central  PubMed  Google Scholar 

  58. Wang, Z. et al. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int. Immunopharmacol. 78, 106062 (2020).

    CAS  PubMed  Google Scholar 

  59. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T Cells. Immunity 51, 285–297 e285 (2019).

    CAS  PubMed  Google Scholar 

  60. Vaziri, N. D., Yuan, J., Nazertehrani, S., Ni, Z. & Liu, S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am. J. Nephrol. 38, 99–103 (2013).

    CAS  PubMed  Google Scholar 

  61. Gonzalez, A. et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol. Dial. Transpl. 34, 783–794 (2019).

    CAS  Google Scholar 

  62. Iqbal, J., Yuen, T., Sun, L. & Zaidi, M. From the gut to the strut: where inflammation reigns, bone abstains. J. Clin. Invest. 126, 2045–2048 (2016).

    PubMed Central  PubMed  Google Scholar 

  63. Li, J. Y. et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest. 126, 2049–2063 (2016).

    PubMed Central  PubMed  Google Scholar 

  64. Shieh, A., Epeldegui, M., Karlamangla, A. S. & Greendale, G. A. Gut permeability, inflammation, and bone density across the menopause transition. JCI Insight 5, e134092 (2020).

    PubMed Central  PubMed  Google Scholar 

  65. Wang, R. X., Henen, M. A., Lee, J. S., Vogeli, B. & Colgan, S. P. Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes 13, 1938380 (2021).

    PubMed Central  PubMed  Google Scholar 

  66. Liu, L., Xu, W., Kong, P. & Dou, Y. The relationships among gut microbiota, hypoxia-inducible factor and anaemia with chronic kidney disease. Nephrology 27, 851–858 (2022).

    CAS  PubMed  Google Scholar 

  67. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Schilderink, R. et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1138–G1146 (2016).

    PubMed  Google Scholar 

  69. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Andersen, K. et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J. Am. Soc. Nephrol. 28, 76–83 (2017).

    CAS  PubMed  Google Scholar 

  71. Poesen, R. et al. Associations of soluble CD14 and endotoxin with mortality, cardiovascular disease, and progression of kidney disease among patients with CKD. Clin. J. Am. Soc. Nephrol. 10, 1525–1533 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Linh, H. T. et al. Intestinal bacterial translocation contributes to diabetic kidney disease. J. Am. Soc. Nephrol. 33, 1105–1119 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Shi, K. et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 59, 2109–2117 (2014).

    CAS  PubMed  Google Scholar 

  74. Rios-Arce, N. D. et al. Epithelial barrier function in gut-bone signaling. Adv. Exp. Med. Biol. 1033, 151–183 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Aurora, R. & Veis, D. Does aging activate T-cells to reduce bone mass and quality? Curr. Osteoporos. Rep. 20, 326–333 (2022).

    PubMed Central  PubMed  Google Scholar 

  76. Bultink, I. E., Vis, M., van der Horst-Bruinsma, I. E. & Lems, W. F. Inflammatory rheumatic disorders and bone. Curr. Rheumatol. Rep. 14, 224–230 (2012).

    PubMed Central  PubMed  Google Scholar 

  77. Andreev, D., Kachler, K., Schett, G. & Bozec, A. Rheumatoid arthritis and osteoimmunology: the adverse impact of a deregulated immune system on bone metabolism. Bone 162, 116468 (2022).

    CAS  PubMed  Google Scholar 

  78. Ciucci, T. et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64, 1072–1081 (2015).

    CAS  PubMed  Google Scholar 

  79. Tyagi, A. M. et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49, 1116–1131 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zaiss, M. M., Jones, R. M., Schett, G. & Pacifici, R. The gut-bone axis: how bacterial metabolites bridge the distance. J. Clin. Invest. 129, 3018–3028 (2019).

    PubMed Central  PubMed  Google Scholar 

  81. Okamoto, K. et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev. 97, 1295–1349 (2017).

    CAS  PubMed  Google Scholar 

  82. Sakthiswary, R., Uma Veshaaliini, R., Chin, K. Y., Das, S. & Sirasanagandla, S. R. Pathomechanisms of bone loss in rheumatoid arthritis. Front. Med. 9, 962969 (2022).

    Google Scholar 

  83. Bhadricha, H., Patel, V., Patil, A., Surve, S. & Desai, M. Characterization of peripheral T helper 17 (Th17) cells phenotype in postmenopausal women with estrogen insufficiency. Blood Cell Mol. Dis. 98, 102702 (2023).

    CAS  Google Scholar 

  84. Cafiero, C. et al. Inflammation induces osteoclast differentiation from peripheral mononuclear cells in chronic kidney disease patients: crosstalk between the immune and bone systems. Nephrol. Dial. Transpl. 33, 65–75 (2018).

    CAS  Google Scholar 

  85. Hughes, D. E. et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β. Nat. Med. 2, 1132–1136 (1996).

    CAS  PubMed  Google Scholar 

  86. Bellido, T. Osteocyte-driven bone remodeling. Calcif. Tissue Int. 94, 25–34 (2014).

    CAS  PubMed  Google Scholar 

  87. Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    CAS  PubMed  Google Scholar 

  89. Pacifici, R. Role of T cells in ovariectomy induced bone loss-revisited. J. Bone Min. Res. 27, 231–239 (2012).

    Google Scholar 

  90. Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α. J. Clin. Invest. 106, 1229–1237 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Li, J. Y. et al. IL-17A is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab. 22, 799–810 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Chen, D. Y. et al. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res. Ther. 13, R126 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Komatsu, N. & Takayanagi, H. Autoimmune arthritis: the interface between the immune system and joints. Adv. Immunol. 115, 45–71 (2012).

    CAS  PubMed  Google Scholar 

  94. Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).

    PubMed Central  PubMed  Google Scholar 

  95. Kim, Y. G. et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Arch. Oral. Biol. 59, 897–905 (2014).

    CAS  PubMed  Google Scholar 

  96. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  97. D’Amelio, P. et al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43, 92–100 (2008).

    PubMed  Google Scholar 

  98. Zhang, J. et al. Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis. Gynecol. Endocrinol. 31, 183–190 (2014).

    PubMed  Google Scholar 

  99. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Atarashi, K. et al. Th17 cell induction by adhesion microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Tan, T. G. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl Acad. Sci. USA 113, E8141–E8150 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Yu, M. et al. Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J. Clin. Invest. 131, e143137 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Evenepoel, P., Bover, J. & Urena, T. P. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int. 90, 1184–1190 (2016).

    CAS  PubMed  Google Scholar 

  104. Gao, Y. et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab. 8, 132–145 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Terauchi, M. et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 10, 229–240 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bedi, B. et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc. Natl Acad. Sci. USA 109, E725–E733 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Li, J. Y. et al. The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10b. J. Bone Miner. Res. 29, 43–54 (2014).

    PubMed  Google Scholar 

  108. Yu, M. et al. PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nat. Commun. 11, 468 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yu, M. et al. Regulatory T cells are expanded by teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep. 19, 156–171 (2018).

    CAS  PubMed  Google Scholar 

  110. Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 130, 1767–1781 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Li, J. Y. et al. IL-17 receptor signaling in osteoblasts/osteocytes mediates PTH-induced bone loss and enhances osteocytic RANKL production. J. Bone Min. Res. 34, 349–360 (2018).

    Google Scholar 

  112. Baeyens, A., Fang, V., Chen, C. & Schwab, S. R. Exit strategies: s1p signaling and T cell migration. Trends Immunol. 36, 778–787 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    CAS  PubMed  Google Scholar 

  114. Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor. Rev. 14, 409–426 (2003).

    CAS  PubMed  Google Scholar 

  115. Vanholder, R., Nigam, S. K., Burtey, S. & Glorieux, G. What if not all metabolites from the uremic toxin generating pathways are toxic? A hypothesis. Toxins 14, 221 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Khosla, S., Farr, J. N. & Monroe, D. G. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J. Clin. Invest. 132, e154888 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Tanaka, H. et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 56, 347–354 (2013).

    CAS  PubMed  Google Scholar 

  118. Lin, H. et al. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann. Transl. Med. 8, 1009 (2020).

    PubMed Central  PubMed  Google Scholar 

  119. Wang, N., Hao, Y. & Fu, L. Trimethylamine-N-Oxide promotes osteoclast differentiation and bone loss via activating ROS-dependent NF-κB signaling pathway. Nutrients 14, 3955 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Watanabe, K. et al. Indoxyl sulfate, a uremic toxin in chronic kidney disease, suppresses both bone formation and bone resorption. FEBS Open Bio. 7, 1178–1185 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Nii-Kono, T. et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 71, 738–743 (2007).

    CAS  PubMed  Google Scholar 

  122. Liu, W. C. et al. Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin. Chim. Acta 484, 197–206 (2018).

    CAS  PubMed  Google Scholar 

  123. Xu, J. et al. NF-κB modulators in osteolytic bone diseases. Cytokine Growth Factor. Rev. 20, 7–17 (2009).

    CAS  PubMed  Google Scholar 

  124. Liu, Y. et al. Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging 12, 10633–10641 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lucas, S. et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 9, 55 (2018).

    PubMed Central  PubMed  Google Scholar 

  126. Chen, T. H., Chen, W. M., Hsu, K. H., Kuo, C. D. & Hung, S. C. Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 355, 913–918 (2007).

    CAS  PubMed  Google Scholar 

  127. Katono, T. et al. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch. Oral. Biol. 53, 903–909 (2008).

    CAS  PubMed  Google Scholar 

  128. Schroeder, T. M. & Westendorf, J. J. Histone deacetylase inhibitors promote osteoblast maturation. J. Bone Miner. Res. 20, 2254–2263 (2005).

    CAS  PubMed  Google Scholar 

  129. Lin, W. et al. Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci. Rep. 7, 46195 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Shroff, R. C. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    CAS  PubMed  Google Scholar 

  131. Foley, R., Parfrey, P. & Sarnak, M. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    CAS  PubMed  Google Scholar 

  132. Shanahan, C. M. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat. Rev. Nephrol. 9, 661–670 (2013).

    CAS  PubMed  Google Scholar 

  133. Kuro, O. Phosphate and Klotho. Kidney Int. Suppl. 79, S20–S23 (2011).

    Google Scholar 

  134. Sanchis, P. et al. Arterial “inflammaging” drives vascular calcification in children on dialysis. Kidney Int. 95, 958–972 (2019).

    PubMed Central  PubMed  Google Scholar 

  135. Stenvinkel, P. et al. CDKN2A/p16INK4a expression is associated with vascular progeria in chronic kidney disease. Aging 9, 494–507 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Duer, M., Cobb, A. M. & Shanahan, C. M. DNA damage response: a molecular lynchpin in the pathobiology of arteriosclerotic calcification. Arterioscler. Thromb. Vasc. Biol. 40, e193–e202 (2020).

    CAS  PubMed  Google Scholar 

  138. Block, G., Hulbert-Shearon, T., Levin, N. W. & Port, F. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    CAS  PubMed  Google Scholar 

  139. Takemura, A. et al. Sirtuin 1 retards hyperphosphatemia-induced calcification of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 31, 2054–2062 (2011).

    CAS  PubMed  Google Scholar 

  140. Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).

    CAS  PubMed  Google Scholar 

  141. Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96, 1248–1256 (2005).

    CAS  PubMed  Google Scholar 

  142. Heiss, A. et al. Structural basis of calcification inhibition by α 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341 (2003).

    CAS  PubMed  Google Scholar 

  143. Herrmann, M. et al. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One 15, e0228503 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Gatate, Y. et al. Mid-term predictive value of calciprotein particles in maintenance hemodialysis patients based on a gel-filtration assay. Atherosclerosis 303, 46–52 (2020).

    CAS  PubMed  Google Scholar 

  145. Pasch, A. et al. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 23, 1744–1752 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Mukai, H. et al. The effects for inflammatory responses by CPP with different colloidal properties in hemodialysis patients. Sci. Rep. 12, 21856 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Smith, E. R., Pan, F. F. M., Hewitson, T. D., Toussaint, N. D. & Holt, S. G. Effect of sevelamer on calciprotein particles in hemodialysis patients: the sevelamer versus calcium to reduce fetuin-a-containing calciprotein particles in dialysis (SCaRF) randomized controlled trial. Kidney Int. Rep. 5, 1432–1447 (2020).

    PubMed Central  PubMed  Google Scholar 

  148. Thiem, U. et al. Effect of the phosphate binder sucroferric oxyhydroxide in dialysis patients on endogenous calciprotein particles, inflammation, and vascular cells. Nephrol. Dial. Transpl. 38, 1282–1296 (2022).

    Google Scholar 

  149. Ter Braake, A. D. et al. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol. Dial. Transpl. 35, 765–773 (2020).

    Google Scholar 

  150. Shishkova, D. et al. Calciprotein particles cause physiologically significant pro-inflammatory response in endothelial cells and systemic circulation. Int. J. Mol. Sci. 23, 14941 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Kuro, O. M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clin. Sci. 135, 1915–1927 (2021).

    Google Scholar 

  152. Aghagolzadeh, P. et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-alpha. Atherosclerosis 251, 404–414 (2016).

    CAS  PubMed  Google Scholar 

  153. Rapp, N., Evenepoel, P., Stenvinkel, P. & Schurgers, L. Uremic toxins and vascular calcification-missing the forest for all the trees. Toxins 12, 624 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Zhang, X. et al. Trimethylamine-N-Oxide promotes vascular calcification through activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) inflammasome and NF-κB (Nuclear Factor kappaB) signals. Arterioscler. Thromb. Vasc. Biol. 40, 751–765 (2020).

    CAS  PubMed  Google Scholar 

  155. Opdebeeck, B. et al. Indoxyl sulfate and p-Cresyl sulfate promote vascular calcification and associate with glucose intolerance. J. Am. Soc. Nephrol. 30, 751–766 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Turner, M. E., Bartoli-Leonard, F. & Aikawa, E. Small particles with large impact: insights into the unresolved roles of innate immunity in extracellular vesicle-mediated cardiovascular calcification. Immunol. Rev. 312, 20–37 (2022).

    CAS  PubMed  Google Scholar 

  157. Lan, Z. et al. Downregulation of HDAC9 by the ketone metabolite beta-hydroxybutyrate suppresses vascular calcification. J. Pathol. 258, 213–226 (2022).

    CAS  PubMed  Google Scholar 

  158. Amiri, P. et al. Role of butyrate, a gut microbiota derived metabolite, in cardiovascular diseases: a comprehensive narrative review. Front. Pharmacol. 12, 837509 (2021).

    CAS  PubMed  Google Scholar 

  159. Cobb, A. M. et al. Runx2 (Runt-Related Transcription Factor 2) links the DNA damage response to osteogenic reprogramming and apoptosis of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 41, 1339–1357 (2021).

    CAS  PubMed  Google Scholar 

  160. Liu, Y., Drozdov, I., Shroff, R., Beltran, L. E. & Shanahan, C. M. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ. Res. 112, e99–e109 (2013).

    CAS  PubMed  Google Scholar 

  161. Arefin, S. et al. Nrf2 in early vascular ageing: calcification, senescence and therapy. Clin. Chim. Acta 505, 108–118 (2020).

    CAS  PubMed  Google Scholar 

  162. Muller, K. H. et al. Poly(ADP-Ribose) links the DNA damage response and biomineralization. Cell Rep. 27, 3124–3138.e3113 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Marques, G. L. et al. Osteoprotegerin is a marker of cardiovascular mortality in patients with chronic kidney disease stages 3–5. Sci. Rep. 11, 2473 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Shao, J. S., Cheng, S. L., Sadhu, J. & Towler, D. A. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55, 579–592 (2010).

    CAS  PubMed  Google Scholar 

  165. Sanchez-Duffhues, G. et al. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J. Pathol. 247, 333–346 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Henze, L. A. et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging 11, 5445–5462 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Hiramatsu-Asano, S. et al. IL-17A promotes vascular calcification in an ex vivo murine aorta culture. Biochem. Biophys. Res. Commun. 604, 83–87 (2022).

    CAS  PubMed  Google Scholar 

  168. Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361, 827–833 (2003).

    CAS  PubMed  Google Scholar 

  169. Dai, L., Schurgers, L. J., Shiels, P. G. & Stenvinkel, P. Early vascular ageing in chronic kidney disease: impact of inflammation, vitamin K, senescence and genomic damage. Nephrol. Dial. Transpl. 35, ii31–ii37 (2020).

    CAS  Google Scholar 

  170. Yang, R. et al. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic. Biol. Med. 178, 246–261 (2022).

    CAS  PubMed  Google Scholar 

  171. Xu, C., Smith, E. R., Tiong, M. K., Ruderman, I. & Toussaint, N. D. Interventions to attenuate vascular calcification progression in chronic kidney disease: a systematic review of clinical trials. J. Am. Soc. Nephrol. 33, 1011–1032 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Soos, B. et al. Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 18, 249–257 (2022).

    CAS  PubMed  Google Scholar 

  173. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 117, e138–e140 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Iseri, K. et al. Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: a randomized, controlled trial. J. Bone Miner. Res. 34, 1014–1024 (2019).

    CAS  PubMed  Google Scholar 

  175. Suzuki, S., Suzuki, M., Hanafusa, N., Tsuchiya, K. & Nitta, K. Denosumab recovers aortic arch calcification during long-term hemodialysis. Kidney Int. Rep. 6, 605–612 (2021).

    PubMed  Google Scholar 

  176. Bellinge, J. W. et al. The effect of vitamin-K1 and colchicine on vascular calcification activity in subjects with diabetes mellitus (ViKCoVaC): a double-blind 2x2 factorial randomized controlled trial. J. Nucl. Cardiol. 29, 1855–1866 (2022).

    PubMed  Google Scholar 

  177. Makki, K., Deehan, E. C., Walter, J. & Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    CAS  PubMed  Google Scholar 

  178. Ploger, S. et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 1258, 52–59 (2012).

    PubMed  Google Scholar 

  179. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10, 89 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    CAS  PubMed  Google Scholar 

  182. Ikeda, Y. et al. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese population-based osteoporosis (JPOS) study. J. Nutr. 136, 1323–1328 (2006).

    CAS  PubMed  Google Scholar 

  183. Tu, M. Y. et al. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS One 10, e0144231 (2015).

    PubMed Central  PubMed  Google Scholar 

  184. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Lawenius, L. et al. Development of a synbiotic that protects against ovariectomy-induced trabecular bone loss. Am. J. Physiol. Endocrinol. Metab. 322, E344–E354 (2022).

    CAS  PubMed  Google Scholar 

  186. Wei, M. et al. Probiotic Bifidobacterium animalis subsp. lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology 19, 500–506 (2014).

    CAS  PubMed  Google Scholar 

  187. Li, L., Li, A., Gan, L. & Zuo, L. Roxadustat improves renal osteodystrophy by dual regulation of bone remodeling. Endocrine 79, 180–189 (2022).

    PubMed  Google Scholar 

  188. Negri, A. L. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin. Kidney J. 16, 205–209 (2023).

    CAS  PubMed  Google Scholar 

  189. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Kuhn, F. et al. Targeting the intestinal barrier to prevent gut-derived inflammation and disease: a role for intestinal alkaline phosphatase. Visc. Med. 37, 383–393 (2021).

    PubMed Central  PubMed  Google Scholar 

  191. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Soukas, A. A., Hao, H. & Wu, L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol. Metab. 30, 745–755 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Chen, B. et al. Metformin suppresses oxidative stress induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Life Sci. 312, 121092 (2023).

    CAS  PubMed  Google Scholar 

  194. Malakoti, F. et al. The role of melatonin in bone regeneration: a review of involved signaling pathways. Biochimie 202, 56–70 (2022).

    CAS  PubMed  Google Scholar 

  195. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Farr, J. N. et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: evidence in young adult mice and older humans. J. Bone Min. Res. 34, 1407–1418 (2019).

    CAS  Google Scholar 

  200. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Doolittle, M. L., Monroe, D. G., Farr, J. N. & Khosla, S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech. Ageing Dev. 199, 111565 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Chan, Y. H. et al. Cumulative rheumatic inflammation modulates the bone-vascular axis and risk of coronary calcification. J. Am. Heart Assoc. 8, e011540 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Kiani, A. N. et al. Coronary calcification in SLE: comparison with the multi-ethnic study of atherosclerosis. Rheumatology 54, 1976–1981 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Evenepoel, P., Opdebeeck, B., David, K. & D’Haese, P. C. Bone-vascular axis in chronic kidney disease. Adv. Chronic Kidney Dis. 26, 472–483 (2019).

    PubMed  Google Scholar 

  205. Khosla, S. The bone and beyond: a shift in calcium. Nat. Med. 17, 430–431 (2011).

    CAS  PubMed  Google Scholar 

  206. Yu, C., Zhang, C., Kuang, Z. & Zheng, Q. The role of NLRP3 inflammasome activities in bone diseases and vascular calcification. Inflammation 44, 434–449 (2021).

    CAS  PubMed  Google Scholar 

  207. Kotanko, P., Carter, M. & Levin, N. W. Intestinal bacterial microflora — a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol. Dial. Transpl. 21, 2057–2060 (2006).

    Google Scholar 

  208. Weitzmann, M. N. & Ofotokun, I. Physiological and pathophysiological bone turnover — role of the immune system. Nat. Rev. Endocrinol. 12, 518–532 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Jones, R. M., Mulle, J. G. & Pacifici, R. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone 115, 59–67 (2018).

    PubMed  Google Scholar 

  210. Mafra, D. et al. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat. Rev. Nephrol. 17, 153–171 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Heart and Lung Foundation (P.S.), CIMED (P.S.) and Swedish Research Council (P.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Pieter Evenepoel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Postbiotics

Soluble factors (metabolic products or byproducts) that are secreted by live microbiota or released after microbial lysis, and provide physiological benefits to the host.

Prebiotics

Nutrients that promote the growth of beneficial gut microbiota.

Probiotics

Live microbiota that provide health benefits to the host when ingested.

Synbiotics

Combinations of prebiotics and probiotics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evenepoel, P., Stenvinkel, P., Shanahan, C. et al. Inflammation and gut dysbiosis as drivers of CKD–MBD. Nat Rev Nephrol 19, 646–657 (2023). https://doi.org/10.1038/s41581-023-00736-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00736-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology