Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells in autoimmune kidney diseases and transplantation

An Author Correction to this article was published on 04 September 2023

This article has been updated

Abstract

Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.

Key points

  • Naturally occurring regulatory T (Treg) cells have roles in the maintenance of immunological self-tolerance and homeostasis.

  • Treg cells utilize a variety of cell contact-dependent and humoral factor-mediated mechanisms to exert their immunosuppressive functions, particularly by controlling the function of antigen-presenting cells.

  • Treg cell anomalies, for example, owing to mutations in genes that are associated with Treg cell functions, can cause autoimmune and inflammatory diseases, including autoimmune kidney diseases.

  • Treg cells can establish transplantation tolerance by suppressing the functions of immune cells that contribute to cell-mediated and/or antibody-mediated graft rejection.

  • In vivo expansion of natural Treg cells via administration of IL-2 or small molecules could be beneficial for the treatment of autoimmune diseases.

  • Adoptive Treg cell therapies using in vitro expanded natural or induced Treg cells or chimeric antigen receptor Treg cells are promising approaches to the treatment of autoimmune disease and induction of graft tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOXP3+ Treg cells.
Fig. 2: Treg cell-mediated immune suppression and induction of long-term tolerance.
Fig. 3: Subpopulations of human FOXP3+ T cells.
Fig. 4: Potential approaches to establishing Treg cell-mediated dominant tolerance in autoimmune disease or transplantation.

Similar content being viewed by others

Change history

References

  1. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Shevach, E. M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Read, S., Malmström, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bacchetta, R., Barzaghi, F. & Roncarolo, M. G. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. NY Acad. Sci. 1417, 5–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Gambineri, E. et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front. Immunol. 9, 2411 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheikine, Y. et al. Renal involvement in the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) disorder. Pediatr. Nephrol. 30, 1197–1202 (2015).

    Article  PubMed  Google Scholar 

  17. Sharabi, A. et al. Regulatory T cells in the treatment of disease. Nat. Rev. Drug Discov. 17, 823–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, M. et al. Regulatory T cells in kidney disease and transplantation. Kidney Int. 90, 502–514 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Abbas, A. K. et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 14, 307–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, S. G., Gray, J. D., Ohtsuka, K., Yamagiwa, S. & Horwitz, D. A. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25 precursors. J. Immunol. 169, 4183–4189 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, L., Robey, E. A. & Hsieh, C. S. Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 19, 7–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Kitagawa, Y. et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Placek, K. et al. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat. Immunol. 18, 1035–1045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, A. et al. Construction of a T-cell receptor signaling range for spontaneous development of autoimmune disease. J. Exp. Med. 220, e20220386 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schubert, L. A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S. F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Alessio, F. R. et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Invest. 119, 2898–2913 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012). Together with Feuerer et al (2009), this study shows that tissue-resident Treg cells adapted to a particular tissue environment and engaged in sustaining tissue homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faustino, L. et al. Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. J. Immunol. 190, 2614–2621 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D. J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119, 4430–4440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deng, B., Wehling-Henricks, M., Villalta, S. A., Wang, Y. & Tidball, J. G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189, 3669–3680 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20, 1744–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreau, J. M., Velegraki, M., Bolyard, C., Rosenblum, M. D. & Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7, eabi4613 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Xiong, S. et al. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance. Immunobiology 220, 1284–1291 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Song, L. et al. Tregs promote the differentiation of Th17 cells in silica-induced lung fibrosis in mice. PLoS ONE 7, e37286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalekar, L. A. et al. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci. Immunol. 4, eaaw2910 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moyé, S. et al. Regulatory T cells limit pneumococcus-induced exacerbation of lung fibrosis in mice. J. Immunol. 204, 2429–2438 (2020).

    Article  PubMed  Google Scholar 

  54. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 3, 51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 21, 1105–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Toomer, K. H. & Malek, T. R. Cytokine signaling in the development and homeostasis of regulatory T cells. Cold Spring Harb. Perspect. Biol. 10, a028597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Tran, D. Q. et al. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc. Natl Acad. Sci. USA 106, 13445–13450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stockis, J., Colau, D., Coulie, P. G. & Lucas, S. Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg. Eur. J. Immunol. 39, 3315–3322 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303–1310 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi, T. et al. Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc. Natl Acad. Sci. USA 110, E2116–E2125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohkura, N. et al. Regulatory T cell-specific epigenomic region variants are a key determinant of susceptibility to common autoimmune diseases. Immunity 52, 1119–1132.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tekguc, M., Wing, J. B., Osaki, M., Long, J. & Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl Acad. Sci. USA 118, e2023739118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maeda, Y. et al. Detection of self-reactive CD8+ T cells with an anergic phenotype in healthy individuals. Science 346, 1536–1540 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Seddiki, N. et al. Expression of interleukin (IL)−2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. & Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009). Together with Seddiki et al. (20067) and Liu et al. (2006), this study shows that Treg cells and Treg cell subsets in PBMCs can be delineated by cell surface markers, such as CD127 and CD45RA.

    Article  CAS  PubMed  Google Scholar 

  74. Seddiki, N. et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107, 2830–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Wing, J. B., Tanaka, A. & Sakaguchi, S. Human FOXP3+ Regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50, 302–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Miyara, M. et al. Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proc. Natl Acad. Sci. USA 112, 7225–7230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cepika, A. M. et al. Tregopathies: monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 142, 1679–1695 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Powell, B. R., Buist, N. R. & Stenzel, P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731–737 (1982).

    Article  CAS  PubMed  Google Scholar 

  80. Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P. & Verbsky, J. W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119, 482–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lo, B. et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Lopez-Herrera, G. et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 90, 986–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Notarangelo, L. D. Combined immunodeficiencies with nonfunctional T lymphocytes. Adv. Immunol. 121, 121–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Laakso, S. M. et al. Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3+ precursors and impaired activated population. J. Autoimmun. 35, 351–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Cooper, G. S., Bynum, M. L. & Somers, E. C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33, 197–207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Long, S. A. & Buckner, J. H. CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J. Immunol. 187, 2061–2066 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alikhan, M. A., Huynh, M., Kitching, A. R. & Ooi, J. D. Regulatory T cells in renal disease. Clin. Transl Immunol. 7, e1004 (2018).

    Article  Google Scholar 

  95. Hanly, J. G. et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology 55, 252–262 (2016).

    Article  PubMed  Google Scholar 

  96. Ooi, J. D. et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545, 243–247 (2017). This paper shows that genetic polymorphisms at particular HLA loci with autoimmune-protective or autoimmune-susceptible alleles alter Treg cell generation and activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamaguchi, T. et al. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27, 145–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Scalapino, K. J. & Daikh, D. I. Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of ex vivo expanded regulatory T cells. PLoS ONE 4, e6031 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kluger, M. A. et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 89, 158–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Wolf, D. et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J. Am. Soc. Nephrol. 16, 1360–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Ooi, J. D. et al. Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney Int. 79, 977–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Paust, H. J. et al. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int. 80, 154–164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan, D. S. et al. Thymic deletion and regulatory T cells prevent antimyeloperoxidase GN. J. Am. Soc. Nephrol. 24, 573–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen, B. L. et al. Study on the effects of regulatory T cells on renal function of IgAN rat model. Eur. Rev. Med. Pharmacol. Sci. 19, 284–288 (2015).

    PubMed  Google Scholar 

  105. Lee, H. et al. CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice. Kidney Int. 78, 1100–1109 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Cho, E. et al. Soluble CD25 is increased in patients with sepsis-induced acute kidney injury. Nephrology 19, 318–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Y. M. et al. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J. Am. Soc. Nephrol. 17, 697–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Eller, K. et al. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60, 2954–2962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jang, E. et al. Foxp3+ regulatory T cells control humoral autoimmunity by suppressing the development of long-lived plasma cells. J. Immunol. 186, 1546–1553 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Wing, J. B., Ise, W., Kurosaki, T. & Sakaguchi, S. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41, 1013–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Sage, P. T., Paterson, A. M., Lovitch, S. B. & Sharpe, A. H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, B. et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin. Immunol. 183, 46–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Juneja, T., Kazmi, M., Mellace, M. & Saidi, R. F. Utilization of Treg cells in solid organ transplantation. Front. Immunol. 13, 746889 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka, K. & Sakaguchi, S. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1189–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoffmann, P., Ermann, J., Edinger, M., Fathman, C. G. & Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hall, B. M., Pearce, N. W., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171, 141–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Cobbold, S. P. et al. Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J. Immunol. 172, 6003–6010 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morris, H. et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci. Transl Med. 7, 272ra10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sprangers, B. et al. Origin of enriched regulatory T cells in patients receiving combined kidney-bone marrow transplantation to induce transplantation tolerance. Am. J. Transplant. 17, 2020–2032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Savage, T. M. et al. Early expansion of donor-specific Tregs in tolerant kidney transplant recipients. JCI Insight 3, e124086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kwon, Y. et al. Expansion of CD45RAFOXP3++ regulatory T cells is associated with immune tolerance in patients with combined kidney and bone marrow transplantation. Clin. Transl Immunol. 10, e1325 (2021).

    Article  CAS  Google Scholar 

  130. Braza, F. et al. Central role of CD45RA Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance. J. Am. Soc. Nephrol. 26, 1795–1805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. O’Gorman, W. E. et al. The initial phase of an immune response functions to activate regulatory T cells. J. Immunol. 183, 332–339 (2009).

    Article  PubMed  Google Scholar 

  133. Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jeffery, H. C. et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin. Exp. Immunol. 188, 394–411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011). Together with Saadoun et al. (2011), this study shows that low-dose IL-2 therapy is effective for the treatment of autoimmune disease and GVHD after haematopoietic stem cell transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Graßhoff, H. et al. Low-dose IL-2 therapy in autoimmune and rheumatic diseases. Front. Immunol. 12, 648408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lim, T. Y. et al. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J. Hepatol. 78, 153–164 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Khoryati, L. et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci. Immunol. 5, eaba5264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Goodson, R. J. & Katre, N. V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8, 343–346 (1990).

    CAS  PubMed  Google Scholar 

  145. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Polhill, T. et al. IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD. J. Am. Soc. Nephrol. 23, 1303–1308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, C. J. et al. Costimulation blockade in combination with IL-2 permits regulatory T cell sparing immunomodulation that inhibits autoimmunity. Nat. Commun. 13, 6757 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Penaranda, C., Tang, Q. & Bluestone, J. A. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J. Immunol. 187, 2015–2022 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Besançon, A. et al. The induction and maintenance of transplant tolerance engages both regulatory and anergic CD4+ T cells. Front. Immunol. 8, 218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Minamimura, K., Gao, W. & Maki, T. CD4+ regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody. J. Immunol. 176, 4125–4132 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Lopez, M., Clarkson, M. R., Albin, M., Sayegh, M. H. & Najafian, N. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells. J. Am. Soc. Nephrol. 17, 2844–2853 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Tang, Q. et al. Altered balance between effector T cells and FOXP3+ HELIOS+ regulatory T cells after thymoglobulin induction in kidney transplant recipients. Transpl. Int. 25, 1257–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Sewgobind, V. D. et al. Characterization of rabbit antithymocyte globulins-induced CD25+ regulatory T cells from cells of patients with end-stage renal disease. Transplantation 89, 655–666 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Podestà, M. A. et al. Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of alloreactive regulatory T cells in vitro. Am. J. Transplant. 20, 88–100 (2020).

    Article  PubMed  Google Scholar 

  156. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Passerini, L. et al. Treatment with rapamycin can restore regulatory T-cell function in IPEX patients. J. Allergy Clin. Immunol. 145, 1262–1271.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Segundo, D. S. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 179, 154–161 (2006).

    Google Scholar 

  161. Chen, X., Bäumel, M., Männel, D. N., Howard, O. M. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Salomon, B. L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat. Rev. Rheumatol. 17, 487–504 (2021).

    Article  PubMed  Google Scholar 

  163. Akamatsu, M. et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 4, eaaw2707 (2019). This study shows that pharmacological inhibition of the mediator kinase CDK8/19 induces Foxp3 in Tconv cells. The inhibition elicits in vivo and in vitro Foxp3 expression in antigen-responding naive as well as effector/memory T cells while inhibiting Tconv cell differentiation into TH cells.

    Article  CAS  PubMed  Google Scholar 

  164. Hippen, K. L. et al. Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Sci. Transl Med. 3, 83ra41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brunstein, C. G. et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127, 1044–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127 regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015). This study shows the safety and sustainability of nTreg cells for a year after adoptive nTreg cell therapy in patients with T1DM.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mathew, J. M. et al. A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants. Sci. Rep. 8, 7428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2 A trials. Lancet 395, 1627–1639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Roemhild, A. et al. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial. Br. Med. J. 371, m3734 (2020).

    Article  Google Scholar 

  171. Harden, P. N. et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. Am. J. Transplant. 21, 1603–1611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02091232 (2021).

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02244801 (2018).

  174. Geissler, E. K., James, B., Bayer, C. & Renzulli, M. Final Report Summary — THE ONE STUDY (A Unified Approach to Evaluating Cellular Immunotherapy in Solid Organ Transplantation). CORDIS https://cordis.europa.eu/project/id/260687/reporting (2018).

  175. Ezzelarab, M. B. et al. Ex vivo expanded donor alloreactive regulatory T cells lose immunoregulatory, proliferation, and antiapoptotic markers after infusion into ATG-lymphodepleted, nonhuman primate heart allograft recipients. Transplantation 105, 1965–1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Safinia, N., Afzali, B., Atalar, K., Lombardi, G. & Lechler, R. I. T-cell alloimmunity and chronic allograft dysfunction. Kidney Int. Suppl. 78, S2–S12 (2010).

    Article  Google Scholar 

  177. Wise, M. P., Bemelman, F., Cobbold, S. P. & Waldmann, H. Linked suppression of skin graft rejection can operate through indirect recognition. J. Immunol. 161, 5813–5816 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Game, D. S., Hernandez-Fuentes, M. P., Chaudhry, A. N. & Lechler, R. I. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J. Am. Soc. Nephrol. 14, 1652–1661 (2003).

    Article  PubMed  Google Scholar 

  180. Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Fritzsching, B. et al. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand — but not to TCR-mediated cell death. J. Immunol. 175, 32–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Ratnasothy, K. et al. IL-2 therapy preferentially expands adoptively transferred donor-specific Tregs improving skin allograft survival. Am. J. Transplant. 19, 2092–2100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Duarte, J. H., Zelenay, S., Bergman, M. L., Martins, A. C. & Demengeot, J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Veerapathran, A., Pidala, J., Beato, F., Yu, X. Z. & Anasetti, C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood 118, 5671–5680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lin, Y. J. et al. Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Transplantation 86, 1452–1462 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sasidharan Nair, V., Song, M. H. & Oh, K. I. Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J. Immunol. 196, 2119–2131 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Kasahara, H. et al. Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. Int. Immunol. 29, 457–469 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Mahmud, S. A. et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15, 473–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wakamatsu, E., Omori, H., Kawano, A., Ogawa, S. & Abe, R. Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2. Biochem. Biophys. Res. Commun. 503, 2597–2602 (2018).

    Article  PubMed  Google Scholar 

  191. Garg, G. et al. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget 8, 35542–35557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl Acad. Sci. USA 117, 12258–12268 (2020). This study shows that CD28-mediated co-stimulatory signal inhibits the generation of Treg-specific DNA hypomethylation in Tconv cells via activating the CD28–PKC–NF-κB pathway and that CD28 signal deprivation by various means is sufficient to induce specific demethylation in iTreg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Jhunjhunwala, S. et al. All-trans retinoic acid and rapamycin synergize with transforming growth factor-β1 to induce regulatory T cells but confer different migratory capacities. J. Leukoc. Biol. 94, 981–989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Chen, X. et al. Functional interrogation of primary human T cells via CRISPR genetic editing. J. Immunol. 201, 1586–1598 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Noyan, F. et al. Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur. J. Immunol. 44, 2592–2602 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Mederacke, Y. S. et al. Transient increase of activated regulatory T cells early after kidney transplantation. Sci. Rep. 9, 1021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. MacMillan, M. L. et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 5, 1425–1436 (2021). The first-in-human clinical trial of iTreg cell therapy for GVHD shows the safety of in vitro converted iTreg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lamarthée, B. et al. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat. Commun. 12, 6446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Tsang, J. Y. et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J. Clin. Invest. 118, 3619–3628 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  205. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Dawson, N. A. et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 4, e123672 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Schreeb, K. et al. Study design: human leukocyte antigen class I molecule A02-chimeric antigen receptor regulatory T cells in renal transplantation. Kidney Int. Rep. 7, 1258–1267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01446484 (2011).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02088931 (2022).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02711826 (2023).

Download references

Acknowledgements

The authors thank the Ministry of Education, Culture, Sports, Science, Technology of Japan, and Japan Agency for Medical Research and Development for support of their research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Shimon Sakaguchi.

Ethics declarations

Competing interests

S.S. is a founder and scientific advisor of RegCell, which aims to develop a novel Treg cell-based therapy for autoimmune disease. S.S. and N.M. are holders of a patent for use of a CDK8/19 inhibitor in Treg cell production.

Peer review

Peer review information

Nature Reviews Nephrology thanks Joanna Hester; Benoît Salomon; Megan Sykes, who co-reviewed with Kevin Breen; and Piotr Trzonkowski for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Expression quantitative trait loci

Genetic variants that affect the expression of specific genes. An expression quantitative trait locus is a genomic locus that is associated with variation in gene expression levels across individuals or populations.

Genome organizer

A protein or protein complex that specifies the 3D architecture of the genome and is functionally important for gene regulation and control of gene expression programmes.

Latent TGFβ1

An inactive precursor form of the TGFβ protein that is produced by various cell types, including fibroblasts, macrophages, platelets and T cells. Latent TGFβ consists of the TGFβ protein bound to a latency-associated peptide (LAP) and a latent TGFβ-binding protein (LTBP).

Mediator complex

A multi-protein complex that acts as a bridge between gene-specific transcription factors and RNA polymerase. The mediator complex helps to coordinate and regulate the transcription process by facilitating the formation of a functional transcriptional pre-initiation complex at the promoter region of genes.

Operational tolerance

A state in which a transplant recipient with normal allograft function no longer requires immunosuppressive drugs to prevent rejection of the transplanted organ.

Pioneer factors

Transcription factors that can interact with nucleosomal DNA in silent or heterochromatin regions and make these regions accessible for other transcription factors to initiate gene activation.

Trogocytosis

A process by which immune cells exchange membrane fragments and/or proteins with other cells through direct cell-to-cell contact. This process can alter the function and/or identity of both cells.

Type 1 inflammation

A type of immune response that is characterized by the activation of TH1 cells, which secrete IFNγ and other pro-inflammatory cytokines, as well as macrophages and natural killer cells.

Type 2 inflammation

A type of immune response that is characterized by the activation of TH2 cells, eosinophils and mast cells, and by their secretion of cytokines such as IL-4, IL-5 and IL-13.

Type 3 inflammation

A type of immune response that is characterized by the activation of TH17 cells and their secretion of pro-inflammatory cytokines such as IL-17, IL-22 and IL-23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikami, N., Sakaguchi, S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 19, 544–557 (2023). https://doi.org/10.1038/s41581-023-00733-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00733-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing