Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell and gene therapy for kidney disease

Abstract

Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.

Key points

  • Despite the use of cell and gene therapies in the clinic for other tissues, no such interventions are available that target the kidney.

  • Approximately 30% of chronic kidney diseases are inherited, and the genetic basis is well understood, meaning that they are suitable for targeting by cell or gene therapy before development of irreparable renal failure.

  • Genetic studies in mouse models have revealed the potential of gene therapy for kidney disease.

  • Delivery of therapeutic material to the kidney is the main hurdle to cell and gene therapy development.

  • Innovations in vector technology, delivery and an enhanced understanding of kidney disease pathogenesis provide hope for future kidney cell and gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approved cell and gene therapies worldwide.
Fig. 2: Genetic kidney disease target location within the nephron, the basic functional unit of the kidney.
Fig. 3: Vector considerations for cell and gene therapy of kidney disease.

Similar content being viewed by others

References

  1. Evans, M. et al. A narrative review of chronic kidney disease in clinical practice: current challenges and future perspectives. Adv. Ther. 39, 33–43 (2022).

    Article  PubMed  Google Scholar 

  2. Hill, N. R. et al. Global prevalence of chronic kidney disease–a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012).

    Article  PubMed  Google Scholar 

  4. United States Renal Data System. USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2021).

  5. Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    Article  PubMed  Google Scholar 

  6. Wheeler, D. C. & Steiger, J. Evolution and etiology of cardiovascular diseases in renal transplant recipients. Transplantation 70, Ss41–Ss45 (2000).

    CAS  PubMed  Google Scholar 

  7. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schrezenmeier, E. et al. The underestimated burden of monogenic kidney disease in adults waitlisted for kidney transplantation. Genet. Med. 23, 1219–1224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imai, E., Takabatake, Y., Mizui, M. & Isaka, Y. Gene therapy in renal diseases. Kidney Int. 65, 1551–1555 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong, M. E. & Thomas, C. P. Diagnosis of monogenic chronic kidney diseases. Curr. Opin. Nephrol. Hypertens. 28, 183–194 (2019).

    Article  PubMed  Google Scholar 

  11. Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 95, 914–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. KDIGO Conference Participants. Genetics in chronic kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 101, 1126–1141 (2022).

    Article  PubMed Central  Google Scholar 

  13. Jayasinghe, K. et al. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet. Med. 23, 183–191 (2021).

    Article  PubMed  Google Scholar 

  14. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. New Engl. J. Med. 380, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Moore, D. F., Ries, M., Forget, E. L. & Schiffmann, R. Enzyme replacement therapy in orphan and ultra-orphan diseases: the limitations of standard economic metrics as exemplified by Fabry–Anderson disease. Pharmacoeconomics 25, 201–208 (2007).

    Article  PubMed  Google Scholar 

  16. Oder, D., Nordbeck, P. & Wanner, C. Long term treatment with enzyme replacement therapy in patients with fabry disease. Nephron 134, 30–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Rohrbach, M. & Clarke, J. T. Treatment of lysosomal storage disorders: progress with enzyme replacement therapy. Drugs 67, 2697–2716 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Grange, C. & Bussolati, B. Extracellular vesicles in kidney disease. Nat. Rev. Nephrol. 18, 499–513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Biancone, L. & Camussi, G. Potential use of stem or progenitor cells for kidney regeneration. Nat. Rev. Nephrol. 10, 67–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Bussolati, B. & Camussi, G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat. Rev. Nephrol. 11, 695–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Couzin, J. & Kaiser, J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307, 1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Brunetti-Pierri, N. & Ng, P. Helper-dependent adenoviral vectors for liver-directed gene therapy. Hum. Mol. Genet. 20, R7–R13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piccolo, P. & Brunetti-Pierri, N. Challenges and prospects for helper-dependent adenoviral vector-mediated gene therapy. Biomedicines 2, 132–148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

    Article  CAS  PubMed  Google Scholar 

  25. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  28. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Philippidis, A. Brother of cure rare disease CEO dies in trial of Duchenne muscular dystrophy therapy. Hum. Gene Ther. 33, 1224–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Barrett, D. et al. Gene, Cell, and RNA Therapy Landscape: Q3 2022 Quarterly Data Report, https://asgct.org/global/documents/asgct-citeline-q3-2022-report.aspx (2022).

  31. Moran, N. First gene therapy approved. Nat. Biotechnol. 30, 1153 (2012).

    Article  CAS  Google Scholar 

  32. Braendstrup, P., Levine, B. L. & Ruella, M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy 22, 57–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bishop, D. C. et al. Development of CAR T-cell lymphoma in two of ten patients effectively treated with piggyBac modified CD19 CAR T-cells. Blood 138, 1504–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Micklethwaite, K. P. et al. Investigation of product derived lymphoma following infusion of piggyBac modified CD19 chimeric antigen receptor T-cells. Blood 138, 1391–1405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saleem, M. A. Molecular stratification of idiopathic nephrotic syndrome. Nat. Rev. Nephrol. 15, 750–765 (2019).

    Article  PubMed  Google Scholar 

  36. Juhila, J. et al. Inducible nephrin transgene expression in podocytes rescues nephrin-deficient mice from perinatal death. Am. J. Pathol. 176, 51–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naylor, R. W., Morais, M. & Lennon, R. Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, X., Suh, J. H., Go, G. & Miner, J. H. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J. Am. Soc. Nephrol. 25, 687–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Dong, K. et al. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat. Genet. 53, 1649–1663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chebib, F. T. & Torres, V. E. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am. J. Kidney Dis. 67, 792–810 (2016).

    Article  PubMed  Google Scholar 

  41. Tögel, F. E. & Westenfelder, C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat. Rev. Nephrol. 6, 179–183 (2010).

    Article  PubMed  Google Scholar 

  42. Harrison, F. et al. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol. Ther. 21, 433–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Prodromidi, E. I. et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cell 24, 2448–2455 (2006).

    Article  CAS  Google Scholar 

  44. Sugimoto, H. et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc. Natl Acad. Sci. USA 103, 7321–7326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katayama, K. et al. Irradiation prolongs survival of Alport mice. J. Am. Soc. Nephrol. 19, 1692–1700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. LeBleu, V. et al. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol. 20, 2359–2370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan, A. et al. Lentivirus-mediated gene therapy for Fabry disease. Nat. Commun. 12, 1178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Neil, R. T. et al. Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo. Nat. Commun. 9, 1325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nagree, M. S. et al. Autologous, lentivirus-modified, T-rapa cell “micropharmacies” for lysosomal storage disorders. EMBO Mol. Med. 14, e14297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, S., Fissell, W. H., Humes, D. H. & Roy, S. Current strategies and challenges in engineering a bioartificial kidney. Front. Biosci. 7, 215–228 (2015).

    Article  Google Scholar 

  51. Khundmiri, S. J., Chen, L., Lederer, E. D., Yang, C. R. & Knepper, M. A. Transcriptomes of major proximal tubule cell culture models. J. Am. Soc. Nephrol. 32, 86–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Wilson, M. H. et al. Genome engineering renal epithelial cells for enhanced volume transport function. Cell Mol. Bioeng. 13, 17–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Nieskens, T. T. et al. A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. AAPS J. 18, 465–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Al-Awqati, Q. & Oliver, J. A. Stem cells in the kidney. Kidney Int. 61, 387–395 (2002).

    Article  PubMed  Google Scholar 

  55. Luft, F. C. et al. Effects of moxalactam and cefotaxime on rabbit renal tissue. Antimicrob. Agents Chemother. 21, 830–835 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanwar, Y. S. & Farquhar, M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl Acad. Sci. USA 76, 1303–1307 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogawa, S. et al. High-resolution ultrastructural comparison of renal glomerular and tubular basement membranes. Am. J. Nephrol. 19, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Lahdenkari, A. T. et al. Podocytes are firmly attached to glomerular basement membrane in kidneys with heavy proteinuria. J. Am. Soc. Nephrol. 15, 2611–2618 (2004).

    Article  PubMed  Google Scholar 

  59. Rubin, J. D. & Barry, M. A. Improving molecular therapy in the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Davis, L. & Park, F. Gene therapy research for kidney diseases. Physiol. Genomics 51, 449–461 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Yadav, M. K., Yoo, K. W., Atala, A. & Lu, B. Lentiviral vector mediated gene therapy for type I Dent disease ameliorates Dent disease-like phenotypes for three months in ClC-5 null mice. Mol. Ther. Methods Clin. Dev. 27, 149–166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buchholz, C. J., Mühlebach, M. D. & Cichutek, K. Lentiviral vectors with measles virus glycoproteins - dream team for gene transfer? Trends Biotechnol. 27, 259–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Girard-Gagnepain, A. et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 124, 1221–1231 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Höfig, I. et al. Systematic improvement of lentivirus transduction protocols by antibody fragments fused to VSV-G as envelope glycoprotein. Biomaterials 35, 4204–4212 (2014).

    Article  PubMed  Google Scholar 

  67. Buchholz, C. J., Friedel, T. & Büning, H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 33, 777–790 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, S. et al. Gene delivery in renal tubular epithelial cells using recombinant adeno-associated viral vectors. J. Am. Soc. Nephrol. 14, 947–958 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Chung, D. C. et al. Adeno-associated virus-mediated gene transfer to renal tubule cells via a retrograde ureteral approach. Nephron Extra 1, 217–223 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirsch, M. L., Green, L., Porteus, M. H. & Samulski, R. J. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther. 17, 1175–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kapturczak, M. H., Chen, S. & Agarwal, A. Adeno-associated virus vector-mediated gene delivery to the vasculature and kidney. Acta Biochim. Pol. 52, 293–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Konkalmatt, P. R. et al. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI insight 1, e85888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rocca, C. J., Ur, S. N., Harrison, F. & Cherqui, S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther. 21, 618–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Hillestad, M. L., Guenzel, A. J., Nath, K. A. & Barry, M. A. A vector-host system to fingerprint virus tropism. Hum. Gene Ther. 23, 1116–1126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubin, J. D., Nguyen, T. V., Allen, K. L., Ayasoufi, K. & Barry, M. A. Comparison of gene delivery to the kidney by adenovirus, adeno-associated virus, and lentiviral vectors after intravenous and direct kidney injections. Hum. Gene Ther. 30, 1559–1571 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ozgur-Gunes, Y. et al. Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector. Gene Ther. 29, 441–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Ikeda, Y., Sun, Z., Ru, X., Vandenberghe, L. H. & Humphreys, B. D. Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector. J. Am. Soc. Nephrol. 29, 2287–2297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ballon, D. J. et al. Quantitative whole-body imaging of I-124-labeled adeno-associated viral vector biodistribution in nonhuman primates. Hum. Gene Ther. 31, 1237–1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCarty, D. M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 16, 1648–1656 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Barbon, E. et al. Development of a dual hybrid AAV vector for endothelial-targeted expression of von Willebrand factor. Gene Ther. https://doi.org/10.1038/s41434-020-00218-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ghosh, A., Yue, Y. & Duan, D. Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum. Gene Ther. 22, 77–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Carvalho, L. S. et al. Evaluating efficiencies of dual AAV approaches for retinal targeting. Front. Neurosci. 11, 503 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reisinger, E. Dual-AAV delivery of large gene sequences to the inner ear. Hear. Res. 394, 107857 (2020).

    Article  PubMed  Google Scholar 

  86. McClements, M. E. & MacLaren, R. E. Adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J. Biol. Med. 90, 611–623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Chandler, R. J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Investig. 125, 870–880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nault, J. C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Russell, D. W. & Grompe, M. Adeno-associated virus finds its disease. Nat. Genet. 47, 1104–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Berns, K. I. et al. Adeno-associated virus type 2 and hepatocellular carcinoma. Hum. Gene Ther. 26, 779–781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lang, J. F., Toulmin, S. A., Brida, K. L., Eisenlohr, L. C. & Davidson, B. L. Standard screening methods underreport AAV-mediated transduction and gene editing. Nat. Commun. 10, 3415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. No authors listed. High-dose AAV gene therapy deaths. Nat. Biotechnol. 38, 910 (2020).

    Article  Google Scholar 

  95. Dalkara, D. et al. vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5, 189ra176 (2013).

    Article  Google Scholar 

  96. Kay, C. N. et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS ONE 8, e62097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Korbelin, J. et al. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol. Ther. 24, 1050–1061 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tomita, N. et al. Targeted gene therapy for rat glomerulonephritis using HVJ-immunoliposomes. J. Gene Med. 4, 527–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Tomita, N. et al. Direct in vivo gene introduction into rat kidney. Biochem. Biophys. Res. Commun. 186, 129–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Ka, S. M. et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J. Am. Soc. Nephrol. 18, 1777–1788 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Hou, C. C. et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am. J. Pathol. 166, 761–771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Koike, H. et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J. Gene Med. 7, 108–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Maruyama, H. et al. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum. Gene Ther. 13, 455–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Corridon, P. R. et al. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am. J. Physiol. Ren. Physiol. 304, F1217–F1229 (2013).

    Article  CAS  Google Scholar 

  107. Suda, T., Suda, K. & Liu, D. Computer-assisted hydrodynamic gene delivery. Mol. Ther. 16, 1098–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Woodard, L. E. et al. Kidney-specific transposon-mediated gene transfer in vivo. Sci. Rep. 7, 44904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ordikhani, F. et al. Selective trafficking of light chain-conjugated nanoparticles to the kidney and renal cell carcinoma. Nano Today 35, 100990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Han, S. J. et al. Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight 5, e139246 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lakhia, R. et al. PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression. Nat. Commun. 13, 4765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, X., Zhang, J., Tang, A., Xu, L. & Huang, Y. A novel peptide ligand-coated nano-siRNA-lipoplex technology for kidney targeted gene therapy. Am. J. Transl. Res. 14, 7362–7377 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R. R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 16, 269–288 (2020).

    Article  PubMed  Google Scholar 

  115. Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Henderson, H. CRISPR Clinical Trials: A 2022 Update, https://innovativegenomics.org/news/crispr-clinical-trials-2022/ (2022).

  119. Yamamura, T. et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 11, 2777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gutierrez-Guerrero, A., Cosset, F. L. & Verhoeyen, E. Lentiviral vector pseudotypes: precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses 12, 1016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Joglekar, A. V. & Sandoval, S. Pseudotyped lentiviral vectors: one vector, many guises. Hum. Gene Ther. Methods 28, 291–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, J. et al. Efficient gene transfer to kidney using a lentiviral vector pseudotyped with zika virus envelope glycoprotein. Hum. Gene Ther. 33, 1269–1278 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. VandenDriessche, T. AAV capsid engineering: zooming in on the target. Hum. Gene Ther. 28, 373–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Zolotukhin, S. & Vandenberghe, L. H. AAV capsid design: a Goldilocks challenge. Trends Mol. Med. 28, 183–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Gene therapies should be for all. Nat. Med. 27, 1311 (2021).

Download references

Acknowledgements

J.L.P. is supported by DK134046 and T32GM007347 from the NIH. M.H.W. is supported by BK004258 from the Department of Veterans Affairs and DK093660 and EB033676 from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Matthew H. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Rachel Lennon and Naoya Uchida for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peek, J.L., Wilson, M.H. Cell and gene therapy for kidney disease. Nat Rev Nephrol 19, 451–462 (2023). https://doi.org/10.1038/s41581-023-00702-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00702-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research