Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens

Abstract

Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.

Key points

  • Clear-cell renal cell carcinoma (ccRCC) tumours have a distinct pattern of genetic alterations, with fewer non-synonymous single nucleotide variants than most solid immunogenic tumours.

  • Insertion or deletion mutations are common in ccRCC, and have the potential to create a large antigen pool and therefore increase tumour immunogenicity.

  • ccRCC tumours have robust expression of endogenous retroviruses (ERVs) and transposable elements; whether ERV expression is causative, or a consequence of cancer development in humans remains controversial.

  • Expression of ERV subsets was associated with response to immune checkpoint blockade therapies in some, but not all, ccRCC datasets; several factors, including differences in methodological approaches and study cohort composition, might underlie this discrepancy.

  • Additional work to standardize the detection of insertions or deletions and ERV expression, as well as the characterization of the immune landscape of ccRCC, is required to elucidate the contribution of these mutations and transposable elements to ccRCC immunogenicity and antitumour immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nucleotide insertion or deletion produces altered proteins associated with immunogenicity.
Fig. 2: TE activation can promote immune activation through viral mimicry or by generating a TE-associated antigen.

Similar content being viewed by others

References

  1. Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Yarchoan, M., Johnson, B. A. III, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yang, H., Zhong, Y., Peng, C., Chen, J. Q. & Tian, D. Important role of indels in somatic mutations of human cancer genes. BMC Med. Genet. 11, 128 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  8. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  Google Scholar 

  9. Ricketts, C. J. et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326 e315 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Clark, P. E. & Cookson, M. S. The von Hippel-Lindau gene: turning discovery into therapy. Cancer 113, 1768–1778 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Choueiri, T. K. & Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

    Article  PubMed  Google Scholar 

  17. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009 (2017).

    Article  PubMed  Google Scholar 

  18. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight https://doi.org/10.1172/jci.insight.93411 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Barata, P. C. & Rini, B. I. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J. Clin. 67, 507–524 (2017).

    Article  PubMed  Google Scholar 

  24. Beckermann, K. E. et al. CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight https://doi.org/10.1172/jci.insight.138729 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e718 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021). 

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cole, W. H. & Everson, T. C. Spontaneous regression of cancer: preliminary report. Ann. Surg. 144, 366–383 (1956).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Motzer, R. J. et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530–2540 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hartmann, J. T. & Bokemeyer, C. Chemotherapy for renal cell carcinoma. Anticancer. Res. 19, 1541–1543 (1999).

    CAS  PubMed  Google Scholar 

  30. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Hansen, U. K. et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front. Immunol. 11, 373 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Litchfield, K. et al. Escape from nonsense-mediated decay associates with anti-tumor immunogenicity. Nat. Commun. 11, 3800 (2020). 

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20, 1370–1385 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Marcus, L. et al. FDA Approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin. Cancer Res. 27, 4685–4689 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. de Velasco, G. et al. Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups. Cancer Immunol. Res. 4, 820–822 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wood, M. A., Weeder, B. R., David, J. K., Nellore, A. & Thompson, R. F. Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival. Genome Med. 12, 33 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mullaney, J. M., Mills, R. E., Pittard, W. S. & Devine, S. E. Small insertions and deletions (INDELs) in human genomes. Hum. Mol. Genet. 19, R131–R136 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lin, M. et al. Effects of short indels on protein structure and function in human genomes. Sci. Rep. 7, 9313 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  42. Montgomery, S. B. et al. The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes. Genome Res. 23, 749–761 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mansfield, A. S., Peikert, T. & Vasmatzis, G. Chromosomal rearrangements and their neoantigenic potential in mesothelioma. Transl. Lung Cancer Res. 9, S92–S99 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480, 2–25 (2015).

    Article  PubMed  Google Scholar 

  46. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kramerov, D. A. & Vassetzky, N. S. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, X. O., Pratt, H. & Weng, Z. Investigating the potential roles of SINEs in the human genome. Annu. Rev. Genomics Hum. Genet. 22, 199–218 (2021).

    Article  PubMed  Google Scholar 

  51. Grundy, E. E., Diab, N. & Chiappinelli, K. B. Transposable element regulation and expression in cancer. FEBS J. 289, 1160–1179 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Goff, S. P. Host factors exploited by retroviruses. Nat. Rev. Microbiol. 5, 253–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Roulois, D. et al. DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kim, Y. et al. PKR Senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol. Cell 71, 1051–1063 e1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Cherkasova, E. et al. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res. 76, 2177–2185 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Geis, F. K. & Goff, S. P. Silencing and transcriptional regulation of endogenous retroviruses: an overview. Viruses 12, 884 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Groh, S. & Schotta, G. Silencing of endogenous retroviruses by heterochromatin. Cell Mol. Life Sci. 74, 2055–2065 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Schulz, W. A., Steinhoff, C. & Florl, A. R. Methylation of endogenous human retroelements in health and disease. Curr. Top. Microbiol. Immunol. 310, 211–250 (2006).

    CAS  PubMed  Google Scholar 

  63. Ohtani, H. et al. Activation of a subset of evolutionarily young transposable elements and innate immunity are linked to clinical responses to 5-azacytidine. Cancer Res. 80, 2441–2450 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wylie, A. et al. p53 genes function to restrain mobile elements. Genes Dev. 30, 64–77 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Canadas, I. et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24, 1143–1150 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. de Cubas, A. A. et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight 5, e137569 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  67. Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jiang, Q. et al. G9a Plays distinct roles in maintaining DNA methylation, retrotransposon silencing, and chromatin looping. Cell Rep. 33, 108315 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Cherkasova, E. et al. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 30, 4697–4706 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. He, Q. et al. The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. Cell Stem Cell 17, 273–286 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Ishak, C. A. et al. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64, 1074–1087 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zhu, Q. et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477, 179–184 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  74. Zhou, M. et al. PBRM1 Inactivation promotes upregulation of human endogenous retroviruses in a HIF-dependent manner. Cancer Immunol. Res. 10, 285–290 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Vargiu, L. et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13, 7 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661 e645 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Liu, X. D. et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 11, 2135 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Harada, K. et al. LINE-1 methylation level and patient prognosis in a database of 208 hepatocellular carcinomas. Ann. Surg. Oncol. 22, 1280–1287 (2015).

    Article  PubMed  Google Scholar 

  80. Cybulski, C. et al. Germline mutations in the von Hippel-Lindau (VHL) gene in patients from Poland: disease presentation in patients with deletions of the entire VHL gene. J. Med. Genet. 39, E38 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Stolle, C. et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Franke, G. et al. Alu-Alu recombination underlies the vast majority of large VHL germline deletions: molecular characterization and genotype-phenotype correlations in VHL patients. Hum. Mutat. 30, 776–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Casarin, A. et al. Molecular characterization of large deletions in the von Hippel-Lindau (VHL) gene by quantitative real-time PCR: the hypothesis of an alu-mediated mechanism underlying VHL gene rearrangements. Mol. Diagn. Ther. 10, 243–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, X. et al. Dicer is down-regulated in clear cell renal cell carcinoma and in vitro Dicer knockdown enhances malignant phenotype transformation. Urol. Oncol. 32, 46.e9–17 (2014).

    Article  PubMed  Google Scholar 

  85. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Jintaridth, P. & Mutirangura, A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol. Genomics 41, 194–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Panda, A. et al. Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3, e121522 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03354390 (2023).

  89. Wenger, R. H., Kvietikova, I., Rolfs, A., Camenisch, G. & Gassmann, M. Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. Eur. J. Biochem. 253, 771–777 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Weyerer, V. et al. Endogenous retroviral-K envelope is a novel tumor antigen and prognostic indicator of renal cell carcinoma. Front. Oncol. 11, 657187 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01358721 (2021).

  94. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01354431 (2022).

  95. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01668784 (2022).

  96. Ficial, M. et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin. Cancer Res. 27, 1371–1380 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Zhou, J.-G. et al. Identification of an endogenous retroviral signature to predict anti-PD1 response in advanced clear cell renal cell carcinoma: an integrated analysis of three clinical trials. Ther. Adv. Med. Oncol. 14, 17588359221126154 (2022).

    Article  CAS  Google Scholar 

  98. Au, L. et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 39, 1497–1518.e11 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02446860 (2018).

  100. Sexton, C. E. & Han, M. V. Paired-end mappability of transposable elements in the human genome. Mob. DNA 10, 29 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Teissandier, A., Servant, N., Barillot, E. & Bourc’his, D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA 10, 52 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Solovyov, A. et al. Global cancer transcriptome quantifies repeat element polarization between immunotherapy responsive and T cell suppressive classes. Cell Rep. 23, 512–521 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  103. Gao, G. F. et al. Before and after: comparison of legacy and harmonized TCGA genomic data commons’ data. Cell Syst. 9, 24–34.e10 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Mayer, J., Blomberg, J. & Seal, R. L. A revised nomenclature for transcribed human endogenous retroviral loci. Mob. DNA 2, 7 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Shao, W. & Wang, T. Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Res. 31, 88–100 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Shahid, S. & Slotkin, R. K. The current revolution in transposable element biology enabled by long reads. Curr. Opin. Plant Biol. 54, 49–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Chu, C. et al. Comprehensive identification of transposable element insertions using multiple sequencing technologies. Nat. Commun. 12, 3836 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for W.K.R. from R01 CA217987, DOD W81XWH-22-1-0418 (KC210152), for A.A.D.C. from K01 CA245231 and the Forbeck foundation, and for M.M.W. from F31 CA261049.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to W. Kimryn Rathmell or Aguirre A. de Cubas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks L. Au, M. Staege and S. Turajlic for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M.M., Rathmell, W.K. & de Cubas, A.A. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 19, 440–450 (2023). https://doi.org/10.1038/s41581-023-00700-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00700-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer