Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of immune cells and mediators in preeclampsia

Abstract

Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.

Key points

  • Endothelial dysfunction, angiogenesis, spiral uterine artery remodelling and inadequate trophoblast invasion are key contributors to the genesis of hypertensive disorders during pregnancy.

  • An altered immune response might have a pivotal role in the development of preeclampsia, eclampsia and haemolysis, elevated liver enzymes and low platelets syndrome.

  • Insufficient or inadequate regulation of the immune system, activation of innate immune cells and imbalanced differentiation of T helper cell subsets create a cytotoxic environment that results in oxidative stress, endothelial dysfunction and intrauterine growth restriction.

  • T helper cells facilitate the activation of B cells that secrete anti-angiotensin II type 1 receptor autoantibodies, which can cause hypertension, cerebral dysfunction, kidney dysfunction and intrauterine growth restriction in response to placental ischaemia.

  • New therapeutics that target the pro-inflammatory response during preeclampsia have potential to attenuate the effects of the systemic factors that promote the development of this hypertensive disorder of pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of hypertensive disorders during pregnancy.
Fig. 2: Mechanisms of endothelial dysfunction in preeclampsia.
Fig. 3: Mitochondrial dysfunction and the pathogenesis of preeclampsia.
Fig. 4: Immune alterations in preeclampsia.
Fig. 5: The roles of T and B cells in preeclampsia.

Similar content being viewed by others

References

  1. Braunthal, S. & Brateanu, A. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Med. 7, 2050312119843700 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, W. et al. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: a population‐based study. BMC Pregnancy Childbirth 21, 1–10 (2021).

    Article  Google Scholar 

  3. Aneman, I. et al. Mechanisms of key innate immune cells in early-and late-onset preeclampsia. Front. Immunol. 11, 1864 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen, M. et al. Comparison of risk factors and outcomes of gestational hypertension and pre-eclampsia. PLoS One 12, e0175914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Papageorghiou, A. T. et al. Preeclampsia and COVID-19: results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 225, 289.e1–289.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Jena, M. K., Sharma, N. R., Petitt, M., Maulik, D. & Nayak, N. R. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules 10, 953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deer, E. et al. Vascular endothelial mitochondrial oxidative stress in response to preeclampsia: a role for angiotensin II type 1 autoantibodies. Am. J. Obstet. Gynecol. MFM 3, 100275 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Magee, L. A. et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 27, 148–169 (2022).

    Article  PubMed  Google Scholar 

  9. Redman, C. Early and late onset preeclampsia: two sides of the same coin. Pregnancy Hypertens. 7, 58 (2017).

    Google Scholar 

  10. Martin Jr, J. N. & Morris, R. F. in Sex Differences in Cardiovascular Physiology and Pathophysiology 121–136 (Elsevier, 2019).

  11. Fishel Bartal, M. & Sibai, B. M. Eclampsia in the 21st century. Am. J. Obstet. Gynecol. 226, S1237–S1253 (2020).

    Article  PubMed  Google Scholar 

  12. Shahzad, N., Irshad, B., Sami, N. & Nadeem, D. Comparison of dexamethasone versus betamethasone for the management of females with HELLP syndrome. Pak. J. Med. Health Sci. 11, 593–597 (2017).

    Google Scholar 

  13. Stojanovska, V. & Zenclussen, A. C. Innate and adaptive immune responses in HELLP syndrome. Front. Immunol. 11, 667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wisner, K. Gestational hypertension and preeclampsia. MCN Am. J. Matern. Child Nurs. 44, 170 (2019).

    Article  PubMed  Google Scholar 

  15. Burke, S. D. & Karumanchi, S. A. Hypertension 62, 1013–1014 (2013).

  16. Pratt, A. et al. Placenta-derived angiogenic proteins and their contribution to the pathogenesis of preeclampsia. Angiogenesis 18, 115–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Possomato-Vieira, J. S. & Khalil, R. A. Mechanisms of endothelial dysfunction in hypertensive pregnancy and preeclampsia. Adv. Pharmacol. 77, 361–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geldenhuys, J., Rossouw, T. M., Lombaard, H. A., Ehlers, M. M. & Kock, M. M. Disruption in the regulation of immune responses in the placental subtype of preeclampsia. Front. Immunol. 9, 1659 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pijnenborg, R., Vercruysse, L. & Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Brosens, I., Robertson, W. B. & Dixon, H. G. The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 93, 569–579 (1967).

    Article  CAS  PubMed  Google Scholar 

  21. Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lyall, F., Robson, S. C. & Bulmer, J. N. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62, 1046–1054 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Enkhmaa, D. et al. Preeclampsia and vascular function: a window to future cardiovascular disease risk. J. Women’s Health 25, 284–291 (2016).

    Article  Google Scholar 

  24. Cerdeira, A. S., Agrawal, S., Staff, A. C., Redman, C. W. & Vatish, M. Angiogenic factors: potential to change clinical practice in pre-eclampsia? BJOG 125, 1389–1395 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Bizerea, T. O. et al. The link between selenium, oxidative stress and pregnancy induced hypertensive disorders. Clin. Lab. 64, 1593–1610 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Aranguren, L. C., Prada, C. E., Riaño-Medina, C. E. & Lopez, M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front. Physiol. 5, 372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. McElwain, C. J., Tuboly, E., McCarthy, F. P. & McCarthy, C. M. Mechanisms of endothelial dysfunction in pre-eclampsia and gestational diabetes mellitus: windows into future cardiometabolic health? Front. Endocrinol. 11, 655 (2020).

    Article  Google Scholar 

  28. Deer, E. et al. Vascular endothelial mitochondrial oxidative stress in response to preeclampsia: a role for AT1-AAs. Am. J. Obstet. Gynecol. MFM 3, 100275 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Mor, G., Aldo, P. & Alvero, A. B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 17, 469–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Gant, N. F., Daley, G. L., Chand, S., Whalley, P. J. & MacDonald, P. C. A study of angiotensin II pressor response throughout primigravid pregnancy. J. Clin. Invest. 52, 2682–2689 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madazli, R., Aydin, S., Uludag, S., Vildan, O. & Tolun, N. Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet. Gynecol. Scand. 82, 797–802 (2003).

    Article  PubMed  Google Scholar 

  32. Szarka, A., Rigó, J., Lázár, L., Bekő, G. & Molvarec, A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 11, 1–9 (2010).

    Article  Google Scholar 

  33. Jonsson, Y. et al. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J. Reprod. Immunol. 70, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal, R. et al. Association of pro- and anti-inflammatory cytokines in preeclampsia. J. Clin. Lab. Anal. 33, e22834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. LaMarca, B. B. D., Cockrell, K., Sullivan, E., Bennett, W. & Granger, J. P. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension 46, 82–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Formby, B. Immunologic response in pregnancy: its role in endocrine disorders of pregnancy and influence on the course of maternal autoimmune diseases. Endocrinol. Metab. Clin. North. Am. 24, 187–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Gadonski, G. et al. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension 48, 711–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Prins, J. et al. Altered expression of immune-associated genes in first-trimester human decidua of pregnancies later complicated with hypertension or foetal growth restriction. Placenta 33, 453–455 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Kharfi, A. et al. Trophoblastic remodeling in normal and preeclamptic pregnancies: implication of cytokines. Clin. Biochem. 36, 323–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yoshizumi, M., Perrella, M. A., Burnett, J. Jr & Lee, M. E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circulation Res. 73, 205–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Maruotti, N., Cantatore, F. P., Crivellato, E., Vacca, A. & Ribatti, D. Angiogenesis in rheumatoid arthritis. Histol. Histopathol. 21, 557–566 (2006).

    CAS  PubMed  Google Scholar 

  42. LaMarca, B. D., Ryan, M. J., Gilbert, J. S., Murphy, S. R. & Granger, J. P. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr. Hypertens. Rep. 9, 480–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. LaMarca, B. et al. Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor α in pregnant rats. Hypertension 52, 1168–1172 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. LaMarca, B. et al. Hypertension in response to chronic reductions in uterine perfusion in pregnant rats: effect of tumor necrosis factor-α blockade. Hypertension 52, 1161–1167 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Murphy, S. R., LaMarca, B. B. D., Parrish, M., Cockrell, K. & Granger, J. P. Control of soluble fms-like tyrosine-1 (sFlt-1) production response to placental ischemia/hypoxia: role of tumor necrosis factor-α. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R130–R135 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Cunningham, M. W. et al. Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertens. Pregnancy 39, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dhillion, P. et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Regulatory Integr. Comp. Physiol. 303, R353–R358 (2012).

    Article  CAS  Google Scholar 

  48. Boeldt, D. & Bird, I. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J. Endocrinol. 232, R27 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Krupp, J. et al. The loss of sustained Ca2+ signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy. Am. J. Physiol. Heart Circulatory Physiol. 305, H969–H979 (2013).

    Article  CAS  Google Scholar 

  50. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vishnyakova, P., Elchaninov, A., Fatkhudinov, T. & Sukhikh, G. Role of the monocyte-macrophage system in normal pregnancy and preeclampsia. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20153695 (2019).

  52. Faas, M. M. & de Vos, P. Uterine NK cells and macrophages in pregnancy. Placenta 56, 44–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, T. G., Ward, C. M. & Morris, J. M. To B or not to B cells-mediate a healthy start to life. Clin. Exp. Immunol. 171, 124–134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lash, G. E. et al. Decidual macrophages: key regulators of vascular remodeling in human pregnancy. J. Leukoc. Biol. 100, 315–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Yao, Y., Xu, X. H. & Jin, L. Macrophage polarization in physiological and pathological pregnancy. Front. Immunol. 10, 792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reyes, L. & Golos, T. G. Hofbauer cells: their role in healthy and complicated pregnancy. Front. Immunol. 9, 2628 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reister, F. et al. The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients. Placenta 20, 229–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, Y., Ye, Y., Zhang, J., Ruan, C. C. & Gao, P. J. Immune imbalance is associated with the development of preeclampsia. Medicine 98, e15080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsao, F. Y., Wu, M. Y., Chang, Y. L., Wu, C. T. & Ho, H. N. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. J. Formos. Med. Assoc. 117, 204–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Reister, F. et al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab. Invest. 81, 1143–1152 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Bert, S., Ward, E. J. & Nadkarni, S. Neutrophils in pregnancy: new insights into innate and adaptive immune regulation. Immunology 164, 665–676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dockree, S., Shine, B., Pavord, S., Impey, L. & Vatish, M. White blood cells in pregnancy: reference intervals for before and after delivery. EBioMedicine 74, 103715 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Canzoneri, B. J., Lewis, D. F., Groome, L. & Wang, Y. Increased neutrophil numbers account for leukocytosis in women with preeclampsia. Am. J. Perinatol. 26, 729–732 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Giaglis, S. et al. Neutrophil migration into the placenta: good, bad or deadly? Cell Adhes. Migr. 10, 208–225 (2016).

    Article  CAS  Google Scholar 

  65. Gupta, A. K., Hasler, P., Holzgreve, W., Gebhardt, S. & Hahn, S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 66, 1146–1154 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Gupta, A. K., Gebhardt, S., Hillermann, R., Holzgreve, W. & Hahn, S. Analysis of plasma elastase levels in early and late onset preeclampsia. Arch. Gynecol. Obstet. 273, 239–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Bajnok, A., Ivanova, M., Rigó, J. & Toldi, G. The distribution of activation markers and selectins on peripheral T lymphocytes in preeclampsia. Mediators Inflamm. 2017, 8045161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goksu Erol, A. Y., Nazli, M. & Elis Yildiz, S. Significance of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) expressions in preeclamptic placentae. Endocrine 42, 125–131 (2012).

    Article  PubMed  Google Scholar 

  69. Yang, W. et al. miR-125b enhances IL-8 production in early-onset severe preeclampsia by targeting sphingosine-1-phosphate lyase 1. PLoS One 11, e0166940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y. et al. Inhibition of pregnancy-associated granulocytic myeloid-derived suppressor cell expansion and arginase-1 production in preeclampsia. J. Reprod. Immunol. 127, 48–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Langers, I., Renoux, V. M., Thiry, M., Delvenne, P. & Jacobs, N. Natural killer cells: role in local tumor growth and metastasis. Biologics 6, 73–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cornish, E. F., Filipovic, I., Åsenius, F., Williams, D. J. & McDonnell, T. Innate immune responses to acute viral infection during pregnancy. Front. Immunol. 11, 572567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trundley, A. & Moffett, A. Human uterine leukocytes and pregnancy. Tissue Antigens 63, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Nishikawa, K. et al. Accumulation of CD16CD56+ natural killer cells with high affinity interleukin 2 receptors in human early pregnancy decidua. Int. Immunol. 3, 743–750 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Kalkunte, S. et al. Evolution of non-cytotoxic uterine natural killer cells. Am. J. Reprod. Immunol. 59, 425–432 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fukui, A. et al. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia. J. Reprod. Immunol. 90, 105–110, (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Wallace, A. E., Host, A. J., Whitley, G. S. & Cartwright, J. E. Decidual natural killer cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. Am. J. Pathol. 183, 1853–1861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Z., Chen, Y., Yang, Y. & Peng, J.-P. The effect on MHC class II expression and apoptosis in placenta by IFNγ administration. Contraception 65, 177–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Greenwood, J. et al. Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta 21, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Albrecht, E. D. & Pepe, G. J. Regulation of uterine spiral artery remodeling: a review. Reprod. Sci. 27, 1932–1942 (2020).

    Article  PubMed  Google Scholar 

  82. Sliz, A. et al. Gab3 is required for IL-2- and IL-15-induced NK cell expansion and limits trophoblast invasion during pregnancy. Sci. Immunol. 4, eaav3866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chakraborty, D., Rumi, M. K. & Soares, M. NK cells, hypoxia and trophoblast cell differentiation. Cell Cycle 11, 2427–2430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Raghupathy, R. Cytokines as key players in the pathophysiology of preeclampsia. Med. Princ. Pract. 22, 8–19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu, H. Y. et al. High-dose interferon-γ promotes abortion in mice by suppressing Treg and Th17 polarization. J. Interferon Cytokine Res. 34, 394–403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, Q.-H., Peng, J.-P., Xia, H.-F. & Yang, Y. IFN-γ promotes apoptosis of the uterus and placenta in pregnant rat and human cytotrophoblast cells. J. Interferon Cytokine Res. 27, 567–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. El Costa, H. et al. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J. Reprod. Immunol. 82, 142–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Koopman, L. A. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198, 1201–1212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hiby, S. E. et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest. 120, 4102–4110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peraçoli, J. C., Fortes, M. R., Rudge, M. V., Rezkallah-Iwasso, M. T. & Peraçoli, M. T. Studies of natural killer cells in pregnancy-induced hypertension. Braz. J. Med. Biol. Res. 28, 655–661 (1995).

    PubMed  Google Scholar 

  91. Borzychowski, A. M., Croy, B. A., Chan, W. L., Redman, C. W. & Sargent, I. L. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur. J. Immunol. 35, 3054–3063 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Z. et al. Studies on activity of NK cells in preeclampsia patients. J. Huazhong Univ. Sci. Technol. Med. Sci. 24, 473–475 (2004).

    Article  Google Scholar 

  93. Bachmayer, N., Rafik Hamad, R., Liszka, L., Bremme, K. & Sverremark-Ekström, E. Aberrant uterine natural killer (NK)-cell expression and altered placental and serum levels of the NK-cell promoting cytokine interleukin-12 in pre-eclampsia. Am. J. Reprod. Immunol. 56, 292–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Travis, O. K. et al. Interleukin-17 signaling mediates cytolytic natural killer cell activation in response to placental ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R1036–R1046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Travis, O. K. et al. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. Am. J. Reprod. Immunol. 85, e13386 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Richani, K. et al. Normal pregnancy is characterized by systemic activation of the complement system. J. Matern. Fetal Neonatal Med. 17, 239–245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Derzsy, Z., Prohászka, Z., Rigó, J., Füst, G. & Molvarec, A. Activation of the complement system in normal pregnancy and preeclampsia. Mol. Immunol. 47, 1500–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Reis, E. S., Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. New insights into the immune functions of complement. Nat. Rev. Immunol. 19, 503–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lynch, A. M. et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am. J. Obstet. Gynecol. 198, 385.e1–385.e9 (2008).

    Article  PubMed  Google Scholar 

  100. Lynch, A. M. et al. Prepregnancy obesity and complement system activation in early pregnancy and the subsequent development of preeclampsia. Am. J. Obstet. Gynecol. 206, 428.e1–428.e8 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lillegard, K. E. et al. Complement activation is critical for placental ischemia-induced hypertension in the rat. Mol. Immunol. 56, 91–97 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burwick, R. M. et al. Terminal complement activation in preeclampsia. Obstet. Gynecol. 132, 1477–1485 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Rampersad, R., Barton, A., Sadovsky, Y. & Nelson, D. M. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta 29, 855–861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 195, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Denny, K. J. et al. Elevated complement factor C5a in maternal and umbilical cord plasma in preeclampsia. J. Reprod. Immunol. 97, 211–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Guseh, S. H. et al. Urinary excretion of C5b-9 is associated with the anti-angiogenic state in severe preeclampsia. Am. J. Reprod. Immunol. 73, 437–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. He, Y. et al. Expression of the complement system’s activation factors in plasma of patients with early/late-onset severe pre-eclampsia. Am. J. Reprod. Immunol. 76, 205–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. He, Y. D. et al. Dysregulation of complement system during pregnancy in patients with preeclampsia: a prospective study. Mol. Immunol. 122, 69–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Larsen, J. B. et al. Lectin pathway proteins of the complement system in normotensive pregnancy and pre-eclampsia. Am. J. Reprod. Immunol. 81, e13092 (2019).

    Article  PubMed  Google Scholar 

  110. Wu, W. et al. Polymorphisms in complement genes and risk of preeclampsia in Taiyuan, China. Inflamm. Res. 65, 837–845 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Lokki, A. I. et al. Analysis of complement. Front. Immunol. 8, 589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Salmon, J. E. et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 8, e1001013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fang, C. J. et al. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood 111, 624–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Klonoff-Cohen, H. S., Savitz, D. A., Cefalo, R. C. & McCann, M. F. An epidemiologic study of contraception and preeclampsia. JAMA 262, 3143–3147 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Robertson, S. A., Care, A. S. & Moldenhauer, L. M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Invest. 128, 4224–4235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Masoudian, P. et al. Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. 214, 328–339 (2016).

    Article  PubMed  Google Scholar 

  117. Laresgoiti‐Servitje, E. A leading role for the immune system in the pathophysiology of preeclampsia. J. Leukoc. Biol. 94, 247–257 (2013).

    Article  PubMed  Google Scholar 

  118. Darmochwal-Kolarz, D. et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J. Reprod. Immunol. 93, 75–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Kondelkova, K. et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Med. 53, 73–77 (2010).

    CAS  Google Scholar 

  120. Hosseini, A., Dolati, S., Hashemi, V., Abdollahpour‐Alitappeh, M. & Yousefi, M. Regulatory T and T helper 17 cells: their roles in preeclampsia. J. Cell. Physiol. 233, 6561–6573 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Harmon, A. C. et al. The role of inflammation in the pathology of preeclampsia. Clin. Sci. 130, 409–419 (2016).

    Article  CAS  Google Scholar 

  122. Jørgensen, N., Persson, G. & Hviid, T. V. F. The tolerogenic function of regulatory T cells in pregnancy and cancer. Front. Immunol. 10, 911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lucca, L. E. & Dominguez-Villar, M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat. Rev. Immunol. 20, 680–693 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Tilburgs, T. et al. Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J. Reprod. Immunol. 82, 148–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Saito, S., Shiozaki, A., Nakashima, A., Sakai, M. & Sasaki, Y. The role of the immune system in preeclampsia. Mol. Asp. Med. 28, 192–209 (2007).

    Article  CAS  Google Scholar 

  126. Robertson, S. A. et al. Therapeutic potential of regulatory T cells in preeclampsia — opportunities and challenges. Front. Immunol. 10, 478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Santner-Nanan, B. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 183, 7023–7030 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Sasaki, Y. et al. Proportion of peripheral blood and decidual CD4+ CD25bright regulatory T cells in pre-eclampsia. Clin. Exp. Immunol. 149, 139–145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsuda, S., Nakashima, A., Shima, T. & Saito, S. New paradigm in the role of regulatory T cells during pregnancy. Front. Immunol. 10, 573 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Novotny, S. R. et al. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1197–R1201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harmon, A. C. et al. Placental CD4+ T cells isolated from preeclamptic women cause preeclampsia-like symptoms in pregnant nude-athymic rats. Pregnancy Hypertens. 15, 7–11 (2019).

    Article  PubMed  Google Scholar 

  132. Cornelius, D. C. et al. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R884–R891 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Care, A. S. et al. Reduction in regulatory T cells in early pregnancy causes uterine artery dysfunction in mice. Hypertension 72, 177–187 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Deer, E. et al. CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. Am. J. Physiol. Renal Physiol. 320, F47–F54 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Novotny, S. et al. CD4+ T cells play a critical role in mediating hypertension in response to placental ischemia. J. Hypertens. Open Access 2, 14873 (2013).

    Google Scholar 

  136. Reeve, K. et al. Placental CD4+ T cells from preeclamptic patients cause autoantibodies to the angiotensin II type I receptor and hypertension in a pregnant rat model of preeclampsia. Exploration Med. 3, 99–111 (2022).

    Article  CAS  Google Scholar 

  137. Deer, E. et al. Progesterone induced blocking factor reduces hypertension and placental mitochondrial dysfunction in response to sFlt-1 during pregnancy. Cells 10, 2817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh, R. P. et al. Th17 cells in inflammation and autoimmunity. Autoimmun. Rev. 13, 1174–1181 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Kamali, A. N. et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol. Immunol. 105, 107–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Fu, B. et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal–fetal interface. Proc. Natl Acad. Sci. 110, E231–E240 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Fu, B., Tian, Z. & Wei, H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell. Mol. Immunol. 11, 564–570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cornelius, D. C. et al. Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R1192–R1199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nguyen, H. et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovascular Res. 97, 696–704 (2013).

    Article  CAS  Google Scholar 

  144. Gaffen, S. L. An overview of IL-17 function and signaling. Cytokine 43, 402–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dinh, Q. N., Drummond, G. R., Sobey, C. G. & Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed. Res. Int. 2014, 406960 (2014).

    Article  PubMed  Google Scholar 

  146. Cornelius, D. C. et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension 62, 1068–1073 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kawahara, T., Ohdan, H., Zhao, G., Yang, Y. G. & Sykes, M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells. J. Immunol. 171, 5406–5414 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Allman, D., Wilmore, J. R. & Gaudette, B. T. The continuing story of T-cell independent antibodies. Immunol. Rev. 288, 128–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Muzzio, D., Zenclussen, A. C. & Jensen, F. The role of B cells in pregnancy: the good and the bad. Am. J. Reprod. Immunol. 69, 408–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Jensen, F. et al. CD19+CD5+ cells as indicators of preeclampsia. Hypertension 59, 861–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Wallukat, G. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 103, 945–952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Torricelli, M. et al. Levels of antibodies against protein C and protein S in pregnancy and in preeclampsia. J. Matern. Fetal Neonatal Med. 22, 993–999 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Nor Azlin, M. I. et al. Thyroid autoantibodies and associated complications during pregnancy. J. Obstet. Gynaecol. 30, 675–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Hubel, C. A. et al. Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 49, 612–617 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Rieber-Mohn, A. B. et al. Auto-antibodies against the angiotensin II type I receptor in women with uteroplacental acute atherosis and preeclampsia at delivery and several years postpartum. J. Reprod. Immunol. 128, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Zeng, B., Kwak-Kim, J., Liu, Y. & Liao, A. H. Treg cells are negatively correlated with increased memory B cells in pre-eclampsia while maintaining suppressive function on autologous B-cell proliferation. Am. J. Reprod. Immunol. 70, 454–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Cornelius, D. C. et al. Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1-AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1243–R1250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Robillard, P.-Y., Dekker, G., Scioscia, M. & Saito, S. Progress in the understanding of the pathophysiology of immunologic maladaptation related to early-onset preeclampsia and metabolic syndrome related to late-onset preeclampsia. Am. J. Obstet. Gynecol. 226, S867–S875 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Robillard, P.-Y. Epidemiological evidence that severe obese women (pre-pregnancy BMI≥ 40 kg/m2) should lose weight during their pregnancy. J. Matern. Fetal Neonatal Med. 35, 6618–6623 (2021).

    Article  PubMed  Google Scholar 

  161. Dechend, R. et al. AT1 receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 101, 2382–2387 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Regal, J. F. et al. Role of IgM and angiotensin II type I receptor autoantibodies in local complement activation in placental ischemia-induced hypertension in the rat. Mol. Immunol. 78, 38–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Murphy, S. R. & Cockrell, K. Regulation of soluble fms-like tyrosine kinase-1 production in response to placental ischemia/hypoxia: role of angiotensin II. Physiol. Rep. 3, https://doi.org/10.14814/phy2.12310 (2015).

  164. Quan, A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum. Dev. 82, 23–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Elliott, S. E. et al. Characterization of antibody specificities associated with preeclampsia. Hypertension 63, 1086–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Wenzel, K. et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension 58, 77–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Irani, R. A. et al. The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growth restriction seen in preeclampsia. J. Exp. Med. 206, 2809–2822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xia, Y., Wen, H., Bobst, S., Day, M. C. & Kellems, R. E. Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Investig. 10, 82–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Thway, T. M. et al. Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation. Circulation 110, 1612–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Brewer, J. et al. Endothelin-1, oxidative stress, and endogenous angiotensin II: mechanisms of angiotensin II type I receptor autoantibody-enhanced renal and blood pressure response during pregnancy. Hypertension 62, 886–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Cunningham, M. W. et al. AT1-AA (Angiotensin II Type 1 receptor agonistic autoantibody) blockade prevents preeclamptic symptoms in placental ischemic rats. Hypertension 71, 886–893 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Vaka, V. R. et al. Blockade of endogenous angiotensin II type I receptor agonistic autoantibody activity improves mitochondrial reactive oxygen species and hypertension in a rat model of preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R256–R262 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Duncan, J. W. et al. Angiotensin II type 1 receptor autoantibody blockade improves cerebral blood flow autoregulation and hypertension in a preclinical model of preeclampsia. Hypertens. Pregnancy 39, 451–460 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Panayi, G. S. B cells: a fundamental role in the pathogenesis of rheumatoid arthritis? Rheumatology 44, ii3–ii7 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Cianchini, G. et al. Treatment of severe pemphigus with rituximab: report of 12 cases and a review of the literature. Arch. Dermatol. 143, 1033–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Cianchini, G. et al. Severe persistent pemphigoid gestationis: long-term remission with rituximab. Br. J. Dermatol. 157, 388–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. LaMarca, B. et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension 57, 865–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Chakravarty, E. F., Murray, E. R., Kelman, A. & Farmer, P. Pregnancy outcomes after maternal exposure to rituximab. Blood 117, 1499–1506 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Das, G. et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 5, e453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Smith, J. B. et al. Rituximab, MS, and pregnancy. Neurol. Neuroimmunol. Neuroinflamm. 7, https://doi.org/10.1212/NXI.0000000000000734 (2020).

  181. Friedrichs, B. et al. The effects of rituximab treatment during pregnancy on a neonate. Haematologica 91, 1426–1427 (2006).

    PubMed  Google Scholar 

  182. Vaught, A. J. et al. Direct evidence of complement activation in HELLP syndrome: a link to atypical hemolytic uremic syndrome. Exp. Hematol. 44, 390–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Burwick, R. M., Fichorova, R. N., Dawood, H. Y., Yamamoto, H. S. & Feinberg, B. B. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension 62, 1040–1045 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Stefanovic, V. The extended use of eculizumab in pregnancy and complement activation-associated diseases affecting maternal, fetal and neonatal kidneys — the future is now? J. Clin. Med. 8, 407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lokki, A. I., Haapio, M. & Heikkinen-Eloranta, J. Eculizumab treatment for postpartum HELLP syndrome and aHUS — case report. Front. Immunol. 11, 548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Smith, D. D. & Costantine, M. M. The role of statins in the prevention of preeclampsia. Am. J. Obstet. Gynecol. 226, S1171–S1181 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lefkou, E. et al. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J. Clin. Investig. 126, 2933–2940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Dodd, J. M., Jones, L., Flenady, V., Cincotta, R. & Crowther, C. A. Prenatal administration of progesterone for preventing preterm birth in women considered to be at risk of preterm birth. Cochrane Database Syst. Rev. (2013).

  190. Amaral, L. M. et al. 17-Hydroxyprogesterone caproate improves hypertension and renal endothelin-1 in response to sFlt-1 induced hypertension in pregnant rats. Pregnancy Hypertens. 22, 151–155 (2020).

    Article  PubMed  Google Scholar 

  191. Singh, J., Ahmed, A. & Girardi, G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension 58, 716–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Shah, D. M. Role of the renin-angiotensin system in the pathogenesis of preeclampsia. Am. J. Physiol. Renal Physiol. 288, F614–F625 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Xia, Y., Ramin, S. M. & Kellems, R. E. Potential roles of angiotensin receptor-activating autoantibody in the pathophysiology of preeclampsia. Hypertension 50, 269–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Cunningham, M. W. et al. Agonistic autoantibodies to the angiotensin II type 1 receptor enhance angiotensin II-induced renal vascular sensitivity and reduce renal function during pregnancy. Hypertension 68, 1308–1313 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, W. et al. Mechanism of agonistic angiotensin II type I receptor autoantibody-amplified contractile response to Ang II in the isolated rat thoracic aorta. Acta Biochim. Biophys. Sin. 47, 851–856 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Singh, K. D. et al. Novel allosteric ligands of the angiotensin receptor AT1R as autoantibody blockers. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2019126118 (2021).

  197. LaMarca, B. et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension 54, 905–909 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Parrish, M. R. et al. Hypertension in response to AT1-AA: role of reactive oxygen species in pregnancy-induced hypertension. Am. J. Hypertens. 24, 835–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Zhou, C. C. et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med. 14, 855–862 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Parrish, M. R. et al. The effect of immune factors, tumor necrosis factor-α, and agonistic autoantibodies to the angiotensin II type I receptor on soluble fms-like tyrosine-1 and soluble endoglin production in response to hypertension during pregnancy. Am. J. Hypertens. 23, 911–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Zhou, C. C. et al. Angiotensin II induces soluble fms-like tyrosine kinase-1 release via calcineurin signaling pathway in pregnancy. Circ. Res. 100, 88–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Zhou, C. C. Upregulation of placental soluble fms-like tyrosine kinase 1 by AT1 receptor agonistic autoantibodies in preeclampsia. Hypertens. Pregnancy 25, 38 (2006).

    Google Scholar 

  203. Zhou, C. C. et al. Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-α induction contributes to increased soluble endoglin production in preeclampsia. Circulation 121, 436–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cunningham, M. W. et al. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertens. 15, 72–77 (2019).

    Article  PubMed  Google Scholar 

  205. Wang, Z. C. et al. Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells. Eur. Rev. Med. Pharmacol. Sci. 21, 1159–1168 (2017).

    PubMed  Google Scholar 

  206. Dechend, R. et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 107, 1632–1639 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Vaka, V. R. et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension 72, 703–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Parrish, M. R. et al. Angiotensin II type 1 autoantibody induced hypertension during pregnancy is associated with renal endothelial dysfunction. Gend. Med. 8, 184–188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the manuscript. E.D. and B.L. made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Babbette LaMarca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks S. Saito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fetal resorption

The disintegration and absorption of one or more fetuses in the uterus after the completion of organogenesis.

Flow-mediated dilation

A vascular function test traditionally performed in the brachial artery, which measures the change in artery diameter in response to reactive hyperaemia.

Hofbauer cells

A diverse population of fetal macrophages that reside within placental tissue (in the chorionic villus); they are present as early as 18 days post-conception and persist throughout pregnancy.

Spiral uterine artery remodelling

An adaptive process in pregnancy that allows placental blood flow volume to increase while blood flow resistance decreases.

Syncytiotrophoblasts

A specialized, continuous layer of epithelial cells that cover the surface of embryonic placental villi and are in direct contact with maternal blood.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deer, E., Herrock, O., Campbell, N. et al. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 19, 257–270 (2023). https://doi.org/10.1038/s41581-022-00670-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00670-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing