Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Conceptual advances and evolving terminology in acute kidney disease

An Author Correction to this article was published on 06 April 2021

This article has been updated

Abstract

Over the past decade, new insights into epidemiology, pathophysiology and biomarkers have modified our understanding of acute kidney dysfunction and damage, and their association with subsequent chronic kidney disease. The concept of acute kidney injury (AKI), which has relied on established but nonetheless flawed biomarkers of solute clearance (serum creatinine levels and urinary output), has been challenged by the identification of novel biomarkers of tubular stress and/or damage. The expression of some of these novel biomarkers precedes changes in conventional biomarkers or can increase their predictive power, and might therefore enhance the clinical accuracy of the definition of AKI. In addition, the need to consider AKI recurrence, duration and progression to chronic kidney disease within the clinical and epidemiological framework of AKI led to the emergence of the concept of acute kidney disease. New definitions of acute syndromes of kidney impairment and injury are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in kidney structure and function.
Fig. 2: Resting and stress glomerular function and its relationship to serum creatinine.
Fig. 3: Types and consequences of kidney damage and dysfunction.
Fig. 4: Markers and characteristics of kidney disease.
Fig. 5: Pathogenesis and clinical consequences of various forms of AKI.

Similar content being viewed by others

Change history

References

  1. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  2. Kellum, J. A., Sileanu, F. E., Bihorac, A., Hoste, E. A. & Chawla, L. S. Recovery after acute kidney injury. Am. J. Respir. Crit. Care Med. 195, 784–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Priyanka, P. et al. The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2019.11.137 (2020).

    Article  PubMed  Google Scholar 

  4. Chawla, L. S., Amdur, R. L., Amodeo, S., Kimmel, P. L. & Palant, C. E. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 79, 1361–1369 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. KDIGO, A. K. I. W. G. Kidney disease: improving global outcomes (KDIGO) clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–141 (2012).

    Google Scholar 

  6. Bellomo, R., Kellum, J. A. & Ronco, C. Defining acute renal failure: physiological principles. Intensive Care Med. 30, 33–37 (2004).

    Article  PubMed  Google Scholar 

  7. Mehta, R. L. et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kellum, J. A. Acute kidney injury. Crit. Care Med. 36, S141–145 (2008).

    Article  PubMed  Google Scholar 

  10. Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 22, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Desanti De Oliveira, B. et al. Molecular nephrology: types of acute tubular injury. Nat. Rev. Nephrol. 15, 599–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Barasch, J., Zager, R. & Bonventre, J. V. Acute kidney injury: a problem of definition. Lancet 389, 779–781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maynard, S. E. & Thadhani, R. Pregnancy and the kidney. J. Am. Soc. Nephrol. 20, 14–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ackermann, U. Cardiac output, GFR, and renal excretion rates during maintained volume load in rats. Am. J. Physiol. 235, H670–676 (1978).

    CAS  PubMed  Google Scholar 

  15. Vincent, J. L. et al. The clinical relevance of oliguria in the critically ill patient: analysis of a large observational database. Crit. Care 24, 171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prowle, J. R. et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit. Care 15, R172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jin, K. et al. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes. Chest 152, 972–979 (2017).

    Article  PubMed  Google Scholar 

  18. Kellum, J. A. et al. Classifying AKI by urine output versus serum creatinine level. J. Am. Soc. Nephrol. 26, 2231–2238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaddourah, A., Basu, R. K., Bagshaw, S. M., Goldstein, S. L. & AWARE Investigators. Epidemiology of acute kidney injury in critically Ill children and young adults. N. Engl. J. Med. 376, 11–20 (2017).

    Article  PubMed  Google Scholar 

  20. Ronco, C., Bellomo, R. & Kellum, J. Understanding renal functional reserve. Intensive Care Med. 43, 917–920 (2017).

    Article  PubMed  Google Scholar 

  21. Ronco, C. & Chawla, L. S. Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron 134, 191–194 (2016).

    Article  PubMed  Google Scholar 

  22. Sharma, A. et al. Optimizing a kidney stress test to evaluate renal functional reserve. Clin. Nephrol. 86, 18–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Husain-Syed, F. et al. Cardio-pulmonary-renal interactions: a multidisciplinary approach. J. Am. Coll. Cardiol. 65, 2433–2448 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wesson, L. G., Jr in Physiology of the Human Kidney 96-108 (Grune and Stratton, 1969).

  25. Glassford, N. J. et al. Interobserver agreement for post mortem renal histopathology and diagnosis of acute tubular necrosis in critically ill patients. Crit. Care Resusc. 19, 337–343 (2017).

    PubMed  Google Scholar 

  26. Levin, A. S., Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  27. Kudose, S., Hoshi, M., Jain, S. & Gaut, J. P. Renal histopathologic findings associated with severity of clinical acute kidney injury. Am. J. Surg. Pathol. 42, 625–635 (2018).

    Article  PubMed  Google Scholar 

  28. Chawla, L. S. et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit. Care 17, R207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI — an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Koyner, J. L. et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)IGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI. J. Am. Soc. Nephrol. 26, 1747–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Joannidis, M. et al. Use of cell cycle arrest biomarkers in conjunction with classical markers of acute kidney injury. Crit. Care Med. 47, e820–e826 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zappitelli, M. et al. The association of albumin/creatinine ratio with postoperative AKI in children undergoing cardiac surgery. Clin. J. Am. Soc. Nephrol. 7, 1761–1769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dubin, R. F. et al. Urinary tubular injury biomarkers are associated with ESRD and death in the REGARDS study. Kidney Int. Rep. 3, 1183–1192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. US Food & Drug Administration. Review submission of the qualification of seven biomarkers of drug-induced nephrotoxicity in rats. https://www.fda.gov/media/82532/download (2008).

  37. US Department of Health and Human Services. US Food & Drug Administration https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?ID=DEN130031 (2014).

  38. Husain-Syed, F. et al. Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol. Dial. Transpl. 34, 308–317 (2019).

    Article  CAS  Google Scholar 

  39. Emlet, D. R. et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am. J. Physiol. Renal Physiol. 312, F284–F296 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Zarbock, A. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313, 2133–2141 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zarbock, A. & Kellum, J. A. Remote Ischemic preconditioning and protection of the kidney–a novel therapeutic option. Crit. Care Med. 44, 607–616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kellum, J. A. & Chawla, L. S. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol. Dial. Transpl. 31, 16–22 (2016).

    Article  CAS  Google Scholar 

  43. Katz, N. M., Kellum, J. A. & Ronco, C. Acute kidney stress and prevention of acute kidney Injury. Crit. Care Med. 47, 993–996 (2019).

    Article  PubMed  Google Scholar 

  44. McCullough, P. A. et al. Serial urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 and the prognosis for acute kidney injury over the course of critical illness. Cardiorenal Med. 9, 358–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chu, R. et al. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin. J. Am. Soc. Nephrol. 9, 1175–1182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. NIDDK National Institute of Diabetes and Digestive and Kidney Diseases. Kidney Personalized Medicine Project https://www.niddk.nih.gov/research-funding/research-programs/kidney-precision-medicine-project-kpmp (2020).

  47. Wen, X. et al. Time-dependent effects of histone deacetylase inhibition in sepsis-associated acute kidney injury. Intensive Care Med. Exp. 8, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Husain-Syed, F. et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann. Thorac. Surg. 105, 1094–1101 (2018).

    Article  PubMed  Google Scholar 

  49. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kramann, R., Tanaka, M. & Humphreys, B. D. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J. Am. Soc. Nephrol. 25, 1924–1931 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kane-Gill, S. L., Kirisci, L., Verrico, M. M. & Rothschild, J. M. Analysis of risk factors for adverse drug events in critically ill patients*. Crit. Care Med. 40, 823–828 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sawhney, S. et al. Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury. Kidney Int. 92, 440–452 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. See, E. J. et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 95, 160–172 (2019).

    Article  PubMed  Google Scholar 

  54. Stads, S., Fortrie, G., van Bommel, J., Zietse, R. & Betjes, M. G. Impaired kidney function at hospital discharge and long-term renal and overall survival in patients who received CRRT. Clin. J. Am. Soc. Nephrol. 8, 1284–1291 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bucaloiu, I. D., Kirchner, H. L., Norfolk, E. R., Hartle, J. E. 2nd & Perkins, R. M. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 81, 477–485 (2012).

    Article  PubMed  Google Scholar 

  56. Rimes-Stigare, C. et al. Long-term mortality and risk factors for development of end-stage renal disease in critically ill patients with and without chronic kidney disease. Crit. Care 19, 383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brown, J. R., Kramer, R. S., Coca, S. G. & Parikh, C. R. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann. Thorac. Surg. 90, 1142–1148 (2010).

    Article  PubMed  Google Scholar 

  58. Fujii, T., Uchino, S., Takinami, M. & Bellomo, R. Subacute kidney injury in hospitalized patients. Clin. J. Am. Soc. Nephrol. 9, 457–461 (2014).

    Article  PubMed  Google Scholar 

  59. Uchino, S., Bellomo, R., Bagshaw, S. M. & Goldsmith, D. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol. Dial. Transpl. 25, 1833–1839 (2010).

    Article  Google Scholar 

  60. Coca, S. G., King, J. T. Jr., Rosenthal, R. A., Perkal, M. F. & Parikh, C. R. The duration of postoperative acute kidney injury is an additional parameter predicting long-term survival in diabetic veterans. Kidney Int. 78, 926–933 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mehta, S. et al. The prognostic importance of duration of AKI: a systematic review and meta-analysis. BMC Nephrol. 19, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Federspiel, C. K. et al. Duration of acute kidney injury in critically ill patients. Ann. Intensive Care 8, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Heung, M. et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data. Am. J. Kidney Dis. 67, 742–752 (2016).

    Article  PubMed  Google Scholar 

  64. Ravn, B., Prowle, J. R., Martensson, J., Martling, C. R. & Bell, M. Superiority of serum cystatin C over creatinine in prediction of long-term prognosis at discharge from ICU. Crit. Care Med. 45, e932–e940 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. James, M. T. et al. Incidence and prognosis of acute kidney diseases and disorders using an integrated approach to laboratory measurements in a Universal Health care system. JAMA Netw. Open 2, e191795 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    Article  PubMed  Google Scholar 

  67. Ronco, C., Ferrari, F. & Ricci, Z. Recovery after acute kidney injury: a new prognostic dimension of the syndrome. Am. J. Respir. Crit. Care Med. 195, 711–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Srisawat, N. et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 80, 545–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liangos, O. et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol. 18, 904–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Parr, S. K. et al. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 87, 640–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Srisawat, N. & Kellum, J. A. The role of biomarkers in acute kidney injury. Crit. Care Clin. 36, 125–140 (2020).

    Article  PubMed  Google Scholar 

  72. Albert, C. et al. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am. J. Kidney Dis. 76, 826–841 e821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luft, F. C. Biomarkers and predicting acute kidney injury. Acta Physiol. 231, e13479 (2021).

    Article  CAS  Google Scholar 

  74. Ostermann, M. et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw. Open 3, e2019209 (2020).

    Article  PubMed  Google Scholar 

  75. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article  PubMed  Google Scholar 

  76. Selby, N. M. et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J. Am. Soc. Nephrol. 30, 505–515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ostermann, M. et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 98, 294–309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yamamoto, T. et al. Renal L-type fatty acid–binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 18, 2894–2902 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Yasuda, K., Nakanishi, K. & Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci. 20, 649 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  80. Gravestein, L. A. & Borst, J. Tumor necrosis factor receptor family members in the immune system. Semin. Immunol. 10, 423–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Venturi, S. & Venturi, M. Iodine in evolution of salivary glands and in oral health. Nutr. Health 20, 119–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Lau, W. H., Leong, W. S., Ismail, Z. & Gam, L. H. Qualification and application of an ELISA for the determination of Tamm Horsfall protein (THP) in human urine and its use for screening of kidney stone disease. Int. J. Biol. Sci. 4, 215–222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kunz, L. I. et al. Regulation of YKL-40 expression by corticosteroids: effect on pro-inflammatory macrophages in vitro and its modulation in COPD in vivo. Respir. Res. 16, 154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoste, E. et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. 46, 943–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schulz-Knappe, P. et al. HCC-1, a novel chemokine from human plasma. J. Exp. Med. 183, 295–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Ronco, C. Nefrologia Medica 2nd edn. (Piccin, 2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the manuscript, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to John A. Kellum.

Ethics declarations

Competing interests

J.A.K. discloses consulting fees and grant support from Baxter, bioMerieux/Astute Medical and Bioporto. R.B. discloses grant support from Ortho Diagnostics and speaking fees from bioMérieux. C.R. discloses consulting fees from Baxter, and speaking fees from Ortho Diagnostics, bioMérieux and Bioporto.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellum, J.A., Ronco, C. & Bellomo, R. Conceptual advances and evolving terminology in acute kidney disease. Nat Rev Nephrol 17, 493–502 (2021). https://doi.org/10.1038/s41581-021-00410-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00410-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing