Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the progression of chronic kidney disease

Abstract

Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.

Key points

  • Current therapies for chronic kidney disease (CKD) target multiple pathogenic pathways, but only retard disease progression; an improved understanding of CKD pathogenesis is needed to optimize treatment.

  • In experimental models, partial epithelial–mesenchymal transition contributes to renal fibrosis through epithelial G2/M cell cycle arrest and induction of a senescence-related phenotype; these processes are potential therapeutic targets.

  • Strategies that target activated myofibroblasts (the main collagen-producing cells) or enzymes that are involved in collagen degradation could potentially improve or even reverse renal fibrosis.

  • Kidney injury results in the reactivation of developmental pathways that contribute to CKD progression; these pathways represent additional therapeutic avenues.

  • Growth factors such as PDGF, CTGF and Gremlin promote both inflammation and fibrosis in kidney disease; these factors constitute targets for CKD.

  • Epigenetic modulators are exploitable mechanisms to prevent or reduce kidney damage; microRNA therapies and BET inhibitors are renoprotective in preclinical models and are now undergoing clinical trials with CKD end points.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential role of AngII in the development of kidney fibrosis.
Fig. 2: Tubular cell injury in AKI, AKI-to-CKD transition and CKD progression.
Fig. 3: Glomerular injury and fibrosis.

Similar content being viewed by others

References

  1. Thomas, B. et al. Global cardiovascular and renal outcomes of reduced GFR. J. Am. Soc. Nephrol. 28, 2167–2179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens, L. A. et al. Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the kidney early evaluation program (KEEP). Am. J. Kidney Dis. 55, S23–S33 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    PubMed  Google Scholar 

  4. Babickova, J. et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 91, 70–85 (2017).

    CAS  PubMed  Google Scholar 

  5. Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216–C225 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Papazova, D. A. et al. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis. Model. Mech. 8, 281–293 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hodgkins, K. S. & Schnaper, H. W. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr. Nephrol. 27, 901–909 (2012).

    PubMed  Google Scholar 

  8. Leaf, I. A. & Duffield, J. S. What can target kidney fibrosis? Nephrol. Dial. Transpl. 32, i89–i97 (2017).

    CAS  Google Scholar 

  9. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    CAS  PubMed  Google Scholar 

  10. Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. 2, 52 (2015).

    Google Scholar 

  11. Wehrmann, M. et al. Long-term prognosis of focal sclerosing glomerulonephritis. An analysis of 250 cases with particular regard to tubulointerstitial changes. Clin. Nephrol. 33, 115–122 (1990).

    CAS  PubMed  Google Scholar 

  12. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanz, A. B. et al. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev. Proteomics. 16, 77–92 (2018).

    PubMed  Google Scholar 

  14. Perez-Gomez, M. et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J. Clin. Med. 4, 1325–1347 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Andersen, S., Mischak, H., Zürbig, P., Parving, H. H. & Rossing, P. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol. 11, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Ruiz-Ortega, M. et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 21, 16–20 (2006).

    CAS  PubMed  Google Scholar 

  17. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 393, 1937–1947 (2019).

    CAS  PubMed  Google Scholar 

  18. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    CAS  PubMed  Google Scholar 

  19. Herrington, W. G. et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin. Kidney J. 11, 749–761 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Akuta, N. et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol. Res. 49, 531–539 (2018).

    Google Scholar 

  21. Ali, B. H. et al. Effects of the SGLT-2 inhibitor canagliflozin on adenine-induced chronic kidney disease in rats. Cell. Physiol. Biochem. 52, 27–39 (2019).

    CAS  PubMed  Google Scholar 

  22. Woods, T. C. et al. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus. Am. J. Nephrol. 49, 331–342 (2019).

    CAS  PubMed  Google Scholar 

  23. Kang, W.-L. & Xu, G.-S. Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. Sci. Rep. 6, 19979 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spires, D. et al. Prevention of the progression of renal injury in diabetic rodent models with preexisting renal disease with chronic endothelin A receptor blockade. Am. J. Physiol. Ren. Physiol. 315, F977–F985 (2018).

    CAS  Google Scholar 

  25. Wang, J. et al. Atrasentan alleviates high glucose-induced podocyte injury by the microRNA-21/forkhead box O1 axis. Eur. J. Pharmacol. 852, 142–150 (2019).

    CAS  PubMed  Google Scholar 

  26. Remuzzi, A. et al. Regression of renal disease by angiotensin ii antagonism is caused by regeneration of kidney vasculature. J. Am. Soc. Nephrol. 27, 699–705 (2016).

    CAS  PubMed  Google Scholar 

  27. Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    CAS  PubMed  Google Scholar 

  28. Fioretto, P., Barzon, I. & Mauer, M. Is diabetic nephropathy reversible? Diabetes Res. Clin. Pract. 104, 323–328 (2014).

    PubMed  Google Scholar 

  29. Sancho-Martinez, S. M., Lopez-Novoa, J. M. & Lopez-Hernandez, F. J. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin. Kidney J. 8, 548–559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanz, A. B., Santamaría, B., Ruiz-Ortega, M., Egido, J. & Ortiz, A. Mechanisms of renal apoptosis in health and disease. J. Am. Soc. Nephrol. 19, 1634–1642 (2008).

    CAS  PubMed  Google Scholar 

  31. Wei, Q., Dong, G., Franklin, J. & Dong, Z. The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 72, 53–62 (2007).

    PubMed  Google Scholar 

  32. Wei, Q. et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am. J. Physiol. Ren. Physiol. 293, F1282–F1291 (2007).

    CAS  Google Scholar 

  33. Santamaría, B. et al. Apoptosis: from advances in PD to therapeutic targets in DM. Nefrologia 28, 23–26 (2008).

    PubMed  Google Scholar 

  34. Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).

    CAS  PubMed  Google Scholar 

  35. Herzog, C., Yang, C., Holmes, A. & Kaushal, G. P. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am. J. Physiol. Ren. Physiol. 303, F1239–F1250 (2012).

    CAS  Google Scholar 

  36. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03510897 (2019).

  37. Baisantry, A. et al. Time dependent p53 inhibition determines senescence attenuation and long term outcome after renal ischemia/reperfusion. Am. J. Physiol. Ren. Physiol. 316, 1124–1132 (2019).

    Google Scholar 

  38. Dagher, P. C. et al. The p53 inhibitor pifithrin-α can stimulate fibrosis in a rat model of ischemic acute kidney injury. Am. J. Physiol. Ren. Physiol. 302, F284–F291 (2012).

    CAS  Google Scholar 

  39. Yang, B. et al. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 29, 1900–1916 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ortiz, A. et al. Cytokines and Fas regulate apoptosis in murine renal interstitial fibroblasts. J. Am. Soc. Nephrol. 8, 1845–1854 (1997).

    CAS  PubMed  Google Scholar 

  41. Martin-Sanchez, D. et al. Targeting of regulated necrosis in kidney disease. Nefrologia 38, 125–135 (2018).

    PubMed  Google Scholar 

  42. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin-Sanchez, D. et al. TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proc. Natl Acad. Sci. USA 115, 4182–4187 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Xiao, X. et al. Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am. J. Nephrol. 46, 131–138 (2017).

    CAS  PubMed  Google Scholar 

  45. Imamura, M. et al. RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase. JCI Insight. 3, e94979 (2018).

    PubMed Central  Google Scholar 

  46. Landau, S. I. et al. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int. 95, 797–814 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Boya, P., Reggiori, F. & Codogno, P. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15, 713–720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lenoir, O., Tharaux, P.-L. & Huber, T. B. Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int. 90, 950–964 (2016).

    CAS  PubMed  Google Scholar 

  49. Lin, T.-A., Wu, V. C.-C. & Wang, C.-Y. Autophagy in chronic kidney diseases. Cells. 8, 61 (2019).

    CAS  PubMed Central  Google Scholar 

  50. Liu, N., Xu, L., Shi, Y. & Zhuang, S. Podocyte autophagy: a potential therapeutic target to prevent the progression of diabetic nephropathy. J. Diabetes Res. 2017, 3560238 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, X. et al. IGFBP7 regulates sepsis-induced acute kidney injury through ERK1/2 signaling. J. Cell. Biochem. 120, 7602–7611 (2018).

    Google Scholar 

  52. Wang, W.-G., Sun, W.-X., Gao, B.-S., Lian, X. & Zhou, H.-L. Cell cycle arrest as a therapeutic target of acute kidney injury. Curr. Protein Pept. Sci. 18, 1224–1231 (2017).

    CAS  PubMed  Google Scholar 

  53. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543. 1p following 143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Canaud, G. et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci. Transl. Med. 11, eaav4754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ding, Y. et al. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25, 2835–2846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, H. et al. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12, 1472–1486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, J. et al. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am. J. Pathol. 183, 160–172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rayego-Mateos, S. et al. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J. Pathol. 244, 127–241 (2018).

    Google Scholar 

  59. Djudjaj, S. et al. Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest. J. Am. Soc. Nephrol. 28, 3590–3604 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01765790 (2019).

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT01541670 (2017).

  62. Valino-Rivas, L. et al. CD74 in Kidney Disease. Front. Immunol. 6, 483 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Valentijn, F. A., Falke, L. L., Nguyen, T. Q. & Goldschmeding, R. Cellular senescence in the aging and diseased kidney. J. Cell Commun. Signal. 12, 69–82 (2018).

    CAS  PubMed  Google Scholar 

  64. Coppe, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 18, e12950 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Jin, H. et al. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight. 4, e125490 (2019).

    PubMed Central  Google Scholar 

  68. Kuroo, M. Introduction: aging research comes of age. Cell. Mol. Life Sci. 57, 695–697 (2000).

    CAS  PubMed  Google Scholar 

  69. Moreno, J. A. et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J. Am. Soc. Nephrol. 22, 1315–1325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez-Fernandez, B. et al. Albumin downregulates Klotho in tubular cells. Nephrol. Dial. Transpl. 33, 1712–1722 (2018).

    CAS  Google Scholar 

  71. Sanchez-Nino, M. D., Sanz, A. B. & Ortiz, A. Klotho to treat kidney fibrosis. J. Am. Soc. Nephrol. 24, 687–689 (2013).

    CAS  PubMed  Google Scholar 

  72. Zhou, L., Li, Y., Zhou, D., Tan, R. J. & Liu, Y. Loss of klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y. et al. Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice. J. Mol. Med. 97, 541–552 (2019).

    CAS  PubMed  Google Scholar 

  74. Donate-Correa, J. et al. Pentoxifylline for renal protection in diabetic kidney disease. a model of old drugs for new horizons. J. Clin. Med. 8, 287 (2019).

    CAS  PubMed Central  Google Scholar 

  75. Navarro-Gonzalez, J. F. et al. Effects of pentoxifylline on soluble klotho concentrations and renal tubular cell expression in diabetic kidney disease. Diabetes Care 41, 1817–1820 (2018).

    CAS  PubMed  Google Scholar 

  76. Lin, S.-L. et al. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J. Am. Soc. Nephrol. 13, 2916–2929 (2002).

    CAS  PubMed  Google Scholar 

  77. Lin, S.-L. et al. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J. Am. Soc. Nephrol. 16, 2702–2713 (2005).

    CAS  PubMed  Google Scholar 

  78. Wen, W. X., Lee, S. Y., Siang, R. & Koh, R. Y. Repurposing pentoxifylline for the treatment of fibrosis: an overview. Adv. Ther. 34, 1245–1269 (2017).

    CAS  PubMed  Google Scholar 

  79. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

    CAS  PubMed  Google Scholar 

  81. Boutet, A. et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 25, 5603–5613 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lovisa, S., Zeisberg, M. & Kalluri, R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol. Metab. 27, 681–695 (2016).

    CAS  PubMed  Google Scholar 

  84. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    CAS  PubMed  Google Scholar 

  85. Zeisberg, M. & Kalluri, R. Physiology of the renal interstitium. Clin. J. Am. Soc. Nephrol. 10, 1831–1840 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    CAS  PubMed  Google Scholar 

  87. Ucero, A. C. et al. TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochim. Biophys. Acta 1832, 1744–1755 (2013).

    CAS  PubMed  Google Scholar 

  88. Bulow, R. D. & Boor, P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 67, 643–661 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Fu, H. et al. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J. Am. Soc. Nephrol. 28, 785–801 (2017).

    CAS  PubMed  Google Scholar 

  90. Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    PubMed  Google Scholar 

  91. Hu, K., Mars, W. M. & Liu, Y. Novel actions of tissue-type plasminogen activator in chronic kidney disease. Front. Biosci. 13, 5174–5186 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rerolle, J. P., Hertig, A., Nguyen, G., Sraer, J. D. & Rondeau, E. P. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int. 58, 1841–1850 (2000).

    CAS  PubMed  Google Scholar 

  93. Malgorzewicz, S., Skrzypczak-Jankun, E. & Jankun, J. Plasminogen activator inhibitor-1 in kidney pathology (Review). Int. J. Mol. Med. 31, 503–510 (2013).

    CAS  PubMed  Google Scholar 

  94. Oda, T. et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int. 60, 587–596 (2001).

    CAS  PubMed  Google Scholar 

  95. Eddy, A. A. & Fogo, A. B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol. 17, 2999–3012 (2006).

    CAS  PubMed  Google Scholar 

  96. Nicholas, S. B. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 67, 1297–1307 (2005).

    CAS  PubMed  Google Scholar 

  97. Gu, C., Zhang, J., Noble, N. A., Peng, X.-R. & Huang, Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 311, F852–F863 (2016).

    CAS  Google Scholar 

  98. Matsuo, S. et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int. 67, 2221–2238 (2005).

    CAS  PubMed  Google Scholar 

  99. Yao, L. et al. Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Nephrol. Dial. Transpl. 34, 2042–2050 (2019).

    Google Scholar 

  100. Wang, X. et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Ren. Physiol. 299, F973–F982 (2010).

    CAS  Google Scholar 

  101. Nishida, M. et al. MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem. Biophys. Res. Commun. 354, 133–139 (2007).

    CAS  PubMed  Google Scholar 

  102. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Ren. Physiol. 302, F1351–F1361 (2012).

    CAS  Google Scholar 

  103. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    CAS  PubMed  Google Scholar 

  104. Meng, X.-M. et al. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J. Pathol. 227, 175–188 (2012).

    CAS  PubMed  Google Scholar 

  105. Rodrigues-Diez, R. et al. TGF-β blockade increases renal inflammation caused by the C-terminal Module of the CCN2. Mediators Inflamm. 2015, 506041 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    CAS  PubMed  Google Scholar 

  107. Chung, I.-M. et al. Blockade of TGF-beta by catheter-based local intravascular gene delivery does not alter the in-stent neointimal response, but enhances inflammation in pig coronary arteries. Int. J. Cardiol. 145, 468–475 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Zheng, S. G., Gray, J. D., Ohtsuka, K., Yamagiwa, S. & Horwitz, D. A. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 169, 4183–4189 (2002).

    CAS  PubMed  Google Scholar 

  109. Massague, J. TGFβ in Cancer. Cell 134, 215–230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Voelker, J. et al. Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 28, 953–962 (2017).

    CAS  PubMed  Google Scholar 

  111. Ix, J. H. & Shlipak, M. G. Trial of pirfenidone to prevent progression of chronic kidney disease (TOP? CKD). Grantome http://grantome.com/grant/NIH/U01-DK111510-01A1 (2018).

  112. Murphy, M. et al. IHG-1 amplifies TGF-β1 signaling and is increased in renal fibrosis. J. Am. Soc. Nephrol. 19, 1672–1680 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Manson, S. R., Austin, P. F., Guo, Q. & Moore, K. H. BMP-7 Signaling and its critical roles in kidney development, the responses to renal injury, and chronic kidney disease. Vitam. Horm. 99, 91–144 (2015).

    CAS  PubMed  Google Scholar 

  114. Munoz-Felix, J. M., Gonzalez-Nunez, M., Martinez-Salgado, C. & Lopez-Novoa, J. M. TGF-beta/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol. Ther. 156, 44–58 (2015).

    CAS  PubMed  Google Scholar 

  115. Meng, X.-M., Chung, A. C. K. & Lan, H. Y. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin. Sci. 124, 243–254 (2013).

    CAS  Google Scholar 

  116. Ruiz-Ortega, M., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G. & Egido, J. TGF-β signaling in vascular fibrosis. Cardiovasc. Res. 74, 196–206 (2007).

    CAS  PubMed  Google Scholar 

  117. Matsui, F. & Meldrum, K. K. The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. J. Surg. Res. 178, 339–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ross, R., Glomset, J., Kariya, B. & Harker, L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl Acad. Sci. USA 71, 1207–1210 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fredriksson, L., Li, H. & Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor. Rev. 15, 197–204 (2004).

    CAS  PubMed  Google Scholar 

  120. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. Developmental patterns of PDGF B-chain, PDGF-receptor, and α-actin expression in human glomerulogenesis. Kidney Int. 42, 390–399 (1992).

    CAS  PubMed  Google Scholar 

  121. Boor, P., Ostendorf, T. & Floege, J. PDGF and the progression of renal disease. Nephrol. Dial. Transpl. 29, i45–i54 (2014).

    CAS  Google Scholar 

  122. Kok, H. M., Falke, L. L., Goldschmeding, R. & Nguyen, T. Q. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat. Rev. Nephrol. 10, 700–711 (2014).

    CAS  PubMed  Google Scholar 

  123. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int. 43, 286–294 (1993).

    CAS  PubMed  Google Scholar 

  124. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    CAS  PubMed  Google Scholar 

  125. Hudkins, K. L. et al. Exogenous PDGF-D is a potent mesangial cell mitogen and causes a severe mesangial proliferative glomerulopathy. J. Am. Soc. Nephrol. 15, 286–298 (2004).

    CAS  PubMed  Google Scholar 

  126. Floege, J., van Roeyen, C., Boor, P. & Ostendorf, T. The role of PDGF-D in mesangioproliferative glomerulonephritis. Contrib. Nephrol. 157, 153–158 (2007).

    CAS  PubMed  Google Scholar 

  127. van Roeyen, C. R. C. et al. Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int. 80, 1292–1305 (2011).

    PubMed  Google Scholar 

  128. Iida, H. et al. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc. Natl Acad. Sci. USA 88, 6560–6564 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Waldherr, R. et al. Expression of cytokines and growth factors in human glomerulonephritides. Pediatr. Nephrol. 7, 471–478 (1993).

    CAS  PubMed  Google Scholar 

  130. Gesualdo, L. et al. Expression of platelet-derived growth factor receptors in normal and diseased human kidney. An immunohistochemistry and in situ hybridization study. J. Clin. Invest. 94, 50–58 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Eitner, F. et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J. Am. Soc. Nephrol. 14, 1145–1153 (2003).

    CAS  PubMed  Google Scholar 

  132. Ludewig, D., Kosmehl, H., Sommer, M., Bohmer, F. D. & Stein, G. PDGF receptor kinase blocker AG1295 attenuates interstitial fibrosis in rat kidney after unilateral obstruction. Cell Tissue Res. 299, 97–103 (2000).

    CAS  PubMed  Google Scholar 

  133. Sadanaga, A. et al. Amelioration of autoimmune nephritis by imatinib in MRL/lpr mice. Arthritis Rheum. 52, 3987–3996 (2005).

    CAS  PubMed  Google Scholar 

  134. Zoja, C. et al. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 70, 97–103 (2006).

    CAS  PubMed  Google Scholar 

  135. Lassila, M. et al. Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J. Am. Soc. Nephrol. 16, 363–373 (2005).

    CAS  PubMed  Google Scholar 

  136. Graciano, M. L. & Mitchell, K. D. Imatinib ameliorates renal morphological changes in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am. J. Physiol. Ren. Physiol. 302, F60–F69 (2012).

    CAS  Google Scholar 

  137. Schellings, M. W. M. et al. Imatinib attenuates end-organ damage in hypertensive homozygous TGR(mRen2)27 rats. Hypertension 47, 467–474 (2006).

    CAS  PubMed  Google Scholar 

  138. Savikko, J., Taskinen, E. & Von Willebrand, E. Chronic allograft nephropathy is prevented by inhibition of platelet-derived growth factor receptor: tyrosine kinase inhibitors as a potential therapy. Transplantation 75, 1147–1153 (2003).

    CAS  PubMed  Google Scholar 

  139. Chen, Y.-T. et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    CAS  PubMed  Google Scholar 

  140. Wang, S., Wilkes, M. C., Leof, E. B. & Hirschberg, R. Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J. 19, 1–11 (2005).

    PubMed  Google Scholar 

  141. Buhl, E. M. et al. The role of PDGF-D in healthy and fibrotic kidneys. Kidney Int. 89, 848–861 (2016).

    CAS  PubMed  Google Scholar 

  142. Nakamura, H. et al. Electroporation-mediated PDGF receptor-IgG chimera gene transfer ameliorates experimental glomerulonephritis. Kidney Int. 59, 2134–2145 (2001).

    CAS  PubMed  Google Scholar 

  143. Ostendorf, T. et al. A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediator of mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 14, 2237–2247 (2003).

    CAS  PubMed  Google Scholar 

  144. Suzuki, H. et al. Deletion of platelet-derived growth factor receptor-beta improves diabetic nephropathy in Ca(2)(+)/calmodulin-dependent protein kinase IIalpha (Thr286Asp) transgenic mice. Diabetologia 54, 2953–2962 (2011).

    CAS  PubMed  Google Scholar 

  145. Edeling, M., Ragi, G., Huang, S., Pavenstadt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lavoz, C. et al. Gremlin activates the Notch pathway linked to renal inflammation. Clin. Sci. 132, 1097–1115 (2018).

    CAS  Google Scholar 

  148. Marquez-Exposito, L. et al. Could the Notch signaling pathway be a potential therapeutic option in renal diseases? Nefrologia 38, 466–475 (2018).

    PubMed  Google Scholar 

  149. Sanchez-Nino, M. D. & Ortiz, A. Notch3 and kidney injury: never two without three. J. Pathol. 228, 266–273 (2012).

    CAS  PubMed  Google Scholar 

  150. Gewin, L. S. Renal tubule repair: is Wnt/beta-catenin a friend or foe? Genes 9, 58 (2018).

    PubMed Central  Google Scholar 

  151. DiRocco, D. P., Kobayashi, A., Taketo, M. M., McMahon, A. P. & Humphreys, B. D. Wnt4/beta-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, J. et al. Wnt/beta-catenin pathway forms a negative feedback loop during TGF-beta1 induced human normal skin fibroblast-to-myofibroblast transition. J. Dermatol. Sci. 65, 38–49 (2012).

    CAS  PubMed  Google Scholar 

  153. Xue, H. et al. Disruption of the Dapper3 gene aggravates ureteral obstruction-mediated renal fibrosis by amplifying Wnt/β-catenin signaling. J. Biol. Chem. 288, 15006–15014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lin, X. et al. Role of the Wnt/β-catenin signaling pathway in inducing apoptosis and Renal fibrosis in 5/6-nephrectomized rats. Mol. Med. Rep. 15, 3575–3582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wei, S. Y. et al. Multiple mechanisms are involved in salt-sensitive hypertension-induced renal injury and interstitial fibrosis. Sci. Rep. 7, 1–14 (2017).

    Google Scholar 

  156. Li, Z. et al. Prorenin receptor is an amplifier of Wnt/ β -catenin signaling in kidney injury and fibrosis. J. Am. Soc. Nephrol. 28, 2393–2408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hao, S. et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Xiao, L. et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J. Am. Soc. Nephrol. 27, 1727–1740 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Ma, Q., Wang, Y., Zhang, T. & Zuo, W. Notch-mediated Sox9(+) cell activation contributes to kidney repair after partial nephrectomy. Life Sci. 193, 104–109 (2018).

    CAS  PubMed  Google Scholar 

  160. Kumar, S. et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 12, 1325–1338 (2015).

    CAS  PubMed  Google Scholar 

  161. Kang, H. M. et al. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep. 14, 861–871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Dreval, K. et al. miR-1247 blocks SOX9-mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. Toxicology 384, 40–49 (2017).

    CAS  PubMed  Google Scholar 

  163. Zhu, F. et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation. Oncotarget 8, 70707–70726 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Gill, P. S. & Rosenblum, N. D. Control of murine kidney development by sonic hedgehog and its GLI effectors. Cell Cycle 5, 1426–1430 (2006).

    CAS  PubMed  Google Scholar 

  165. Zhou, D., Tan, R. J. & Liu, Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator. Sci. China. Life Sci. 59, 920–929 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    CAS  PubMed  Google Scholar 

  167. Rauhauser, A. A. et al. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am. J. Physiol. Ren. Physiol. 309, F770–F778 (2015).

    CAS  Google Scholar 

  168. Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest. 125, 2935–2951 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. Ding, H. et al. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801–813 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Fabian, S. L. et al. Hedgehog-Gli pathway activation during kidney fibrosis. Am. J. Pathol. 180, 1441–1453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Latchoumycandane, C., Hanouneh, M., Nagy, L. E. & McIntyre, T. M. Inflammatory PAF receptor signaling initiates hedgehog signaling and kidney fibrogenesis during ethanol consumption. PLOS ONE 10, e0145691 (2015).

    PubMed  PubMed Central  Google Scholar 

  172. Zhou, D. et al. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25, 2187–2200 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mann, K. K., Wallner, B., Lossos, I. S. & Miller, W. H. J. Darinaparsin: a novel organic arsenical with promising anticancer activity. Expert. Opin. Investig. Drugs 18, 1727–1734 (2009).

    CAS  PubMed  Google Scholar 

  174. Tsimberidou, A. M. et al. A phase I clinical trial of darinaparsin in patients with refractory solid tumors. Clin. Cancer Res. 15, 4769–4776 (2009).

    CAS  PubMed  Google Scholar 

  175. Lan, X. et al. Hedgehog pathway plays a vital role in HIV-induced epithelial-mesenchymal transition of podocyte. Exp. Cell Res. 352, 193–201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mezzano, S. et al. Gremlin and renal diseases: ready to jump the fence to clinical utility? Nephrol. Dial. Transplant. 33, 735–741 (2018).

    CAS  PubMed  Google Scholar 

  177. Rodrigues-Diez, R. et al. Gremlin is a downstream profibrotic mediator of transforming growth factor-beta in cultured renal cells. Nephron. Exp. Nephrol. 122, 62–74 (2012).

    CAS  PubMed  Google Scholar 

  178. Walsh, D. W. et al. Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim. Biophys. Acta 1782, 10–21 (2008).

    CAS  PubMed  Google Scholar 

  179. Dolan, V. et al. Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am. J. Kidney Dis. 45, 1034–1039 (2005).

    CAS  PubMed  Google Scholar 

  180. Lavoz, C. et al. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J. Pathol. 236, 407–420 (2015).

    CAS  PubMed  Google Scholar 

  181. Marquez-Exposito, L. et al. Gremlin regulates tubular epithelial to mesenchymal transition via VEGFR2: potential role in renal fibrosis. Front. Pharmacol. 9, 1195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Logue, O. C., McGowan, J. W. D., George, E. M. & Bidwell, G. L. 3rd. Therapeutic angiogenesis by vascular endothelial growth factor supplementation for treatment of renal disease. Curr. Opin. Nephrol. Hypertens. 25, 404–409 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Beck, S., Simmet, T., Muller, I., Lang, F. & Gawaz, M. Gremlin-1 C-terminus regulates function of macrophage migration inhibitory factor (MIF). Cell. Physiol. Biochem. 38, 801–808 (2016).

    CAS  PubMed  Google Scholar 

  184. Muller, I. et al. Gremlin-1 is an inhibitor of macrophage migration inhibitory factor and attenuates atherosclerotic plaque growth in ApoE -/-Mice. J. Biol. Chem. 288, 31635–31645 (2013).

    PubMed  PubMed Central  Google Scholar 

  185. Droguett, A. et al. Gremlin, a potential urinary biomarker of anca-associated crescentic glomerulonephritis. Sci. Rep. 9, 1–9 (2019).

    CAS  Google Scholar 

  186. Mezzano, S. et al. Expression of gremlin, a bone morphogenetic protein antagonist, in glomerular crescents of pauci-immune glomerulonephritis. Nephrol. Dial. Transpl. 22, 1882–1890 (2007).

    CAS  Google Scholar 

  187. Rayego-Mateos, S. et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm. 2018, 8739473 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. Leask, A. & Abraham, D. J. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem. Cell Biol. 81, 355–363 (2003).

    CAS  PubMed  Google Scholar 

  189. Ruperez, M. et al. Angiotensin II increases connective tissue growth factor in the kidney. Am. J. Pathol. 163, 1937–1947 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ruperez, M. et al. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 108, 1499–1505 (2003).

    CAS  PubMed  Google Scholar 

  191. Ito, Y. et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 53, 853–861 (1998).

    CAS  PubMed  Google Scholar 

  192. Gupta, S., Clarkson, M. R., Duggan, J. & Brady, H. R. Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int. 58, 1389–1399 (2000).

    CAS  PubMed  Google Scholar 

  193. Sánchez-López, E. et al. Inhibitory effect of interleukin-1β on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. Am. J. Physiol. Ren. Physiol. 294, F149–F160 (2008).

    Google Scholar 

  194. Liu, B.-C., Zhang, J.-D., Zhang, X.-L., Wu, G.-Q. & Li, M.-X. Role of connective tissue growth factor (CTGF) module 4 in regulating epithelial mesenchymal transition (EMT) in HK-2 cells. Clin. Chim. Acta. 373, 144–150 (2006).

    CAS  PubMed  Google Scholar 

  195. Rodrigues-Diez, R. et al. Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharm. Res. 25, 2447–2461 (2008).

    CAS  PubMed  Google Scholar 

  196. Rodrigues-Diez, R. et al. The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Lab. Invest. 93, 812–824 (2013).

    CAS  PubMed  Google Scholar 

  197. Sanchez-Lopez, E. et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J. Am. Soc. Nephrol. 20, 1513–1526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Rayego-Mateos, S. et al. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J. Mol. Cell Biol. 5, 323–335 (2013).

    CAS  PubMed  Google Scholar 

  199. Adler, S. G. et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol. 5, 1420–1428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00782561 (2009).

  201. Lech, M. et al. Macrophage phenotype controls long-term AKI outcomes–kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25, 292–304 (2014).

    CAS  PubMed  Google Scholar 

  202. Guiteras, R., Flaquer, M. & Cruzado, J. M. Macrophage in chronic kidney disease. Clin. Kidney J. 9, 765–771 (2016).

    CAS  Google Scholar 

  203. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Han, H. I., Skvarca, L. B., Espiritu, E. B., Davidson, A. J. & Hukriede, N. A. The role of macrophages during acute kidney injury: destruction and repair. Pediatr. Nephrol. 34, 561–569 (2019).

    PubMed  Google Scholar 

  205. Cao, Q., Harris, D. C. H. & Wang, Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology 30, 183–194 (2015).

    CAS  PubMed  Google Scholar 

  206. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  207. Wilson, H. M. et al. Bone-marrow-derived macrophages genetically modified to produce IL-10 reduce injury in experimental glomerulonephritis. Mol. Ther. 6, 710–717 (2002).

    CAS  PubMed  Google Scholar 

  208. Jung, M. et al. Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int. 81, 969–982 (2012).

    CAS  PubMed  Google Scholar 

  209. Kluth, D. C. et al. Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J. Immunol. 166, 4728–4736 (2001).

    CAS  PubMed  Google Scholar 

  210. Zheng, D. et al. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron. Exp. Nephrol. 118, e87–e99 (2011).

    PubMed  Google Scholar 

  211. Wang, Y. et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72, 290–299 (2007).

    CAS  PubMed  Google Scholar 

  212. Wang, N., Liang, H. & Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 5, 614 (2014).

    PubMed  PubMed Central  Google Scholar 

  213. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS  PubMed  Google Scholar 

  214. Meng, X. M. et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7, e2495–e2499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Peda, J. D. et al. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease. Dis. Model. Mech. 9, 1051–1061 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    CAS  PubMed  Google Scholar 

  217. Pauleau, A.-L. et al. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol. 172, 7565–7573 (2004).

    CAS  PubMed  Google Scholar 

  218. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  PubMed  Google Scholar 

  219. Lang, R., Patel, D., Morris, J. J., Rutschman, R. L. & Murray, P. J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169, 2253–2263 (2002).

    CAS  PubMed  Google Scholar 

  220. Moreno, J. A. et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert. Opin. Investig. Drugs 27, 917–930 (2018).

    CAS  PubMed  Google Scholar 

  221. Ridker, P. M. et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol. 71, 2405–2414 (2018).

    CAS  PubMed  Google Scholar 

  222. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    PubMed  PubMed Central  Google Scholar 

  223. de Morales, A. M. et al. Pentoxifylline, progression of chronic kidney disease (CKD) and cardiovascular mortality: long-term follow-up of a randomized clinical trial. J. Nephrol. 32, 581–587 (2019).

    PubMed  Google Scholar 

  224. Niewczas, M. A. et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat. Med. 25, 805–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hickson, L. J., Eirin, A. & Lerman, L. O. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89, 767–778 (2016).

    PubMed  PubMed Central  Google Scholar 

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02693366 (2020).

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02382874 (2015).

  228. Cortvrindt, C., Speeckaert, R., Moerman, A., Delanghe, J. R. & Speeckaert, M. M. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 49, 247–258 (2017).

    CAS  PubMed  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00936585 (2016).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03358134 (2017).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03403036 (2019).

  232. Ramani, K. & Biswas, P. S. Interleukin-17: friend or foe in organ fibrosis. Cytokine. 120, 282–288 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Ramani, K. et al. IL-17 receptor signaling negatively regulates the development of tubulointerstitial fibrosis in the kidney. Mediators Inflamm. 2018, 5103672 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Ramani, K. & Biswas, P. S. Emerging roles of the Th17/IL-17-axis in glomerulonephritis. Cytokine 77, 238–244 (2016).

    PubMed  Google Scholar 

  235. Peng, X. et al. IL-17A produced by both gammadelta T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J. Pathol. 235, 79–89 (2015).

    CAS  PubMed  Google Scholar 

  236. Xue, L. et al. Detrimental functions of IL-17A in renal ischemia-reperfusion injury in mice. J. Surg. Res. 171, 266–274 (2011).

    CAS  PubMed  Google Scholar 

  237. Ortiz, A. et al. Translational value of animal models of kidney failure. Eur. J. Pharmacol. 759, 205–220 (2015).

    CAS  PubMed  Google Scholar 

  238. Lavoz, C. et al. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 95, 1418–1432 (2019).

    CAS  PubMed  Google Scholar 

  239. Mehrotra, P. et al. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. Am. J. Physiol. Ren. Physiol. 312, F385–F397 (2017).

    CAS  Google Scholar 

  240. Sun, B. et al. Role of interleukin 17 in TGF-beta signaling-mediated renal interstitial fibrosis. Cytokine 106, 80–88 (2018).

    CAS  PubMed  Google Scholar 

  241. Orejudo, M. & Ruiz-Ortega, M. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front. Pharmacol. https://doi.org/10.3389/fphar.2019.01015 (2019).

  242. Schlondorff, D. Putting the glomerulus back together: per aspera ad astra (“a rough road leads to the stars”). Kidney Int. 85, 991–998 (2014).

    PubMed  Google Scholar 

  243. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    CAS  PubMed  Google Scholar 

  244. Sanchez-Nino, M. D. et al. Lyso-Gb3 activates Notch1 in human podocytes. Hum. Mol. Genet. 24, 5720–5732 (2015).

    CAS  PubMed  Google Scholar 

  245. Sanchez-Nino, M. D. et al. Fn14 in podocytes and proteinuric kidney disease. Biochim. Biophys. Acta 1832, 2232–2243 (2013).

    CAS  PubMed  Google Scholar 

  246. Sanchez-Nino, M. D. et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol. Dial. Transpl. 26, 1797–1802 (2011).

    CAS  Google Scholar 

  247. Gonzalez-Guerrero, C. et al. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-kappaB-mediated inflammatory responses in kidney tubular cells. Toxicol. Appl. Pharmacol. 272, 825–841 (2013).

    CAS  PubMed  Google Scholar 

  248. Berzal, S. et al. GSK3, snail, and adhesion molecule regulation by cyclosporine a in renal tubular cells. Toxicol. Sci. 127, 425–437 (2012).

    CAS  PubMed  Google Scholar 

  249. Rodrigues-Diez, R. et al. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling. Sci. Rep. https://doi.org/10.1038/srep27915 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Sanchez-Nino, M. D. et al. HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II. Lab. Invest. 92, 32–45 (2012).

    CAS  PubMed  Google Scholar 

  251. Bonventre, J. V. Can we target tubular damage to prevent renal function decline in diabetes? Semin. Nephrol. 32, 452–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Hasegawa, K. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19, 1496–1504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Morgado-Pascual, J. L. et al. Epigenetic modification mechanisms involved in inflammation and fibrosis in renal pathology. Mediators Inflamm. 2018, 2931049 (2018).

    PubMed  PubMed Central  Google Scholar 

  254. Fontecha-Barriuso, M. et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol. Dial. Transplant. 33, 1875–1886 (2018).

    CAS  PubMed  Google Scholar 

  255. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Suarez-Alvarez, B. et al. Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J. Am. Soc. Nephrol. 28, 504–519 (2017).

    CAS  PubMed  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02586155 (2019).

  258. Kulikowski, E. et al. Apabetalone mediated epigenetic modulation is associated with favorable kidney function and alkaline phosphatase profile in patients with chronic kidney disease. Kidney Blood Press. Res. 43, 449–457 (2018).

    CAS  PubMed  Google Scholar 

  259. Levin, A. A. Treating disease at the RNA level with Oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    PubMed  Google Scholar 

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03373786 (2019).

  261. O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNAs biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).

    Google Scholar 

  262. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Trionfini, P., Benigni, A. & Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 11, 23–33 (2015).

    CAS  PubMed  Google Scholar 

  264. Fierro-Fernandez, M., Miguel, V. & Lamas, S. Role of redoximiRs in fibrogenesis. Redox Biol. 7, 58–67 (2016).

    CAS  PubMed  Google Scholar 

  265. Pottier, N., Cauffiez, C., Perrais, M., Barbry, P. & Mari, B. FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends Pharmacol. Sci. 35, 119–126 (2014).

    CAS  PubMed  Google Scholar 

  266. Lv, W. et al. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol. Genomics 50, 20–34 (2018).

    CAS  PubMed  Google Scholar 

  267. Denby, L. et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am. J. Pathol. 179, 661–672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhong, X., Chung, A. C. K., Chen, H.-Y., Meng, X.-M. & Lan, H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668–1681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Xu, Y.-F., Hannafon, B. N. & Ding, W.-Q. MicroRNA regulation of human pancreatic cancer stem cells. Stem Cell Investig. 4, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  270. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).

    PubMed  PubMed Central  Google Scholar 

  271. Lai, J. Y. et al. MicroRNA-21 in glomerular injury. J. Am. Soc. Nephrol. 26, 805–816 (2015).

    CAS  PubMed  Google Scholar 

  272. Kolling, M. et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol. Ther. 25, 165–180 (2017).

    PubMed  PubMed Central  Google Scholar 

  273. Loboda, A., Sobczak, M., Jozkowicz, A. & Dulak, J. TGF-beta1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016, 8319283 (2016).

    PubMed  PubMed Central  Google Scholar 

  274. Price, N. L. et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight. 4, e131102 (2019).

    PubMed Central  Google Scholar 

  275. Fierro-Fernández, M. et al. MiR-9-5p protects from kidney fibrosis by metabolic reprogramming. FASEB J. 34, 410–431 (2019).

    PubMed  Google Scholar 

  276. Zhao, X., Kwan, J. Y. Y., Yip, K., Liu, P. P. & Liu, F.-F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug. Discov. https://doi.org/10.1038/s41573-019-0040-5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Xu, X. et al. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol. Genomics 46, 789–797 (2014).

    PubMed  PubMed Central  Google Scholar 

  278. Wang, B. et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Pan, J. et al. Role of microRNA-29b in angiotensin II-induced epithelial-mesenchymal transition in renal tubular epithelial cells. Int. J. Mol. Med. 34, 1381–1387 (2014).

    CAS  PubMed  Google Scholar 

  280. Li, M., Li, H., Liu, X., Xu, D. & Wang, F. MicroRNA-29b regulates TGF-beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp. Cell Res. 345, 115–124 (2016).

    CAS  PubMed  Google Scholar 

  281. Kriegel, A. J., Liu, Y., Fang, Y., Ding, X. & Liang, M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics 44, 237–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Li, R. et al. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int. 84, 1129–1144 (2013).

    CAS  PubMed  Google Scholar 

  283. Chung, A. C. K., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Lan, H. Y. Smads as therapeutic targets for chronic kidney disease. Kidney Res. Clin. Pract. 31, 4–11 (2012).

    PubMed  PubMed Central  Google Scholar 

  285. Rogler, C. E. et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50, 575–584 (2009).

    CAS  PubMed  Google Scholar 

  286. Denby, L. et al. MicroRNA-214 antagonism protects against renal fibrosis. J. Am. Soc. Nephrol. 25, 65–80 (2014).

    CAS  PubMed  Google Scholar 

  287. Bai, M. et al. MicroRNA-214 promotes chronic kidney disease by disrupting mitochondrial oxidative phosphorylation. Kidney Int. 95, 1389–1404 (2019).

    CAS  PubMed  Google Scholar 

  288. Wang, X. et al. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci. Rep. 6, 31506 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Tang, O., Chen, X.-M., Shen, S., Hahn, M. & Pollock, C. A. MiRNA-200b represses transforming growth factor-beta1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am. J. Physiol. Ren. Physiol. 304, F1266–F1273 (2013).

    CAS  Google Scholar 

  290. Wang, B. et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60, 280–287 (2011).

    CAS  PubMed  Google Scholar 

  291. Yang, S., Abdulla, R., Lu, C. & Zhang, L. Inhibition of microRNA-376b protects against renal interstitial fibrosis via inducing macrophage autophagy by upregulating Atg5 in mice with chronic kidney disease. Kidney Blood Press. Res. 43, 1749–1764 (2018).

    CAS  PubMed  Google Scholar 

  292. Duisters, R. F. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178 (2009).

    CAS  PubMed  Google Scholar 

  293. van Almen, G. C. et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10, 769–779 (2011).

    PubMed  Google Scholar 

  294. Bhatt, K., Kato, M. & Natarajan, R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am. J. Physiol. Ren. Physiol. 310, F109–F118 (2016).

    CAS  Google Scholar 

  295. Koga, K. et al. MicroRNA-26a inhibits TGF-beta-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia 58, 2169–2180 (2015).

    CAS  PubMed  Google Scholar 

  296. Wang, J. et al. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J. Diabetes Complications 30, 406–414 (2016).

    PubMed  Google Scholar 

  297. Graham, J. R., Williams, C. M. M. & Yang, Z. MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J. Cell. Biochem. 115, 1539–1548 (2014).

    CAS  PubMed  Google Scholar 

  298. Tian, X. et al. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J. Cell. Physiol. 234, 14221–14233 (2019).

    CAS  PubMed  Google Scholar 

  299. Wu, L. et al. MicroRNA-27a induces mesangial cell injury by targeting of ppargamma, and its in vivo knockdown prevents progression of diabetic nephropathy. Sci. Rep. 6, 26072 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Selby, N. M. et al. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol. Dial. Transpl. 33, ii4–ii14 (2018).

    CAS  Google Scholar 

  301. Sun, Q. et al. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci. Transl. Med. 11, eaat4865 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Magalhaes, P. et al. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci. Rep. 7, 16915 (2017).

    PubMed  PubMed Central  Google Scholar 

  303. Montesi, S. B., Desogere, P., Fuchs, B. C. & Caravan, P. Molecular imaging of fibrosis: recent advances and future directions. J. Clin. Invest. 129, 24–33 (2019).

    PubMed  PubMed Central  Google Scholar 

  304. Rodriguez-Ortiz, M. E. et al. Novel urinary biomarkers for improved prediction of progressive egfr loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci. Rep. 8, 15940 (2018).

    PubMed  PubMed Central  Google Scholar 

  305. Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).

    CAS  Google Scholar 

  306. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    CAS  PubMed  Google Scholar 

  307. Parving, H. H. et al. Effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. Ugeskr. Laeger 163, 5519–5524 (2001).

    CAS  PubMed  Google Scholar 

  308. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    CAS  PubMed  Google Scholar 

  309. Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med. 377, 1930–1942 (2017).

    CAS  PubMed  Google Scholar 

  310. Navarro-Gonzalez, J. F. et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J. Am. Soc. Nephrol. 26, 220–229 (2015).

    CAS  PubMed  Google Scholar 

  311. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03550443 (2019).

  312. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03918447 (2020).

  313. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03019185 (2019).

  314. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  315. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02689778 (2019).

  316. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02855268 (2020).

  317. Xiong, M. et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am. J. Physiol. Renal Physiol. 302, F369–F379 (2020).

    Google Scholar 

  318. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Neprhol. 22, 1462–1474 (2011).

    CAS  Google Scholar 

  319. Makino, K. et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J. Immunol. 190, 3905–3915 (2013).

    CAS  PubMed  Google Scholar 

  320. Liu, M. et al. Hypoxia-induced activation of Twist/miR-214/E-cadherin axis promotes renal tubular epithelial cell mesenchymal transition and renal fibrosis. Biochem. Biophys. Res. Commun. 495, 2324–2330 (2018).

    CAS  PubMed  Google Scholar 

  321. Meng, J. et al. MicroRNA-196a/b mitigate renal fibrosis by targeting TGF-receptor 2. J. Am. Soc. Nephrol. 27, 3006–3021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Macconi, D. et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J. Am. Soc. Nephrol. 23, 1496–1505 (2013).

    Google Scholar 

  323. Jiang, L. et al. A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int. 84, 285–296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Espinosa-Diez, C. et al. Targeting of Gamma-Glutamyl-Cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-β-dependent fibrogenesis. Antiox. Redox Signal. 23, 1092–1105 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by Grants from the Instituto de Salud Carlos III (ISCIII) and Fondos FEDER European Union (PI17/00119, PI16/02057, and Red de Investigación Renal REDINREN: RD16/0009), the Ministerio de Economía y Competitividad (MINECO) SAF2015-66107-R, Comunidad de Madrid “NOVELREN” B2017/BMD3751, CIFRA2-CM B2017/BMD-3686, Sociedad Española de Nefrologia, and Fundación Renal “Iñigo Alvarez de Toledo”, all from Spain. The CBMSO receives institutional support from Fundación “Ramón Areces”. The “Juan de la Cierva de Formacion” training programme (FJCI-2016-29050; salary of SR-M) and the Jose Castillejo mobility funding programme (CAS18/00318, CAS19/00133, salary of SR-M and R.R.R-D) of the Ministerio de Ciencia, Innovacion y Universidades, Spain. We thank Verónica Miguel (CBMSO), and Macarena Orejudo and Laura Marquez-Exposito (both UAM) for help with literature searches and comments on the text before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, contributed to discussions of the content, wrote the text and reviewed or edited the article before submission.

Corresponding author

Correspondence to Marta Ruiz-Ortega.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Necroptosis

A programmed form of necrosis or inflammatory cell death.

Ferroptosis

A type of programmed cell death that is dependent on iron and characterized by the accumulation of lipid peroxides.

Senescence-associated secretory phenotype

A phenotype that enables senescent cells to release a distinct secretome consisting of profibrotic and pro-inflammatory factors.

MicroRNAs

(miRNAs). Small non-coding RNAs that repress the translation and/or induce the degradation of their mRNA targets.

Bromodomain and extra-terminal domain family proteins

(BET). ‘Reader’ proteins that recognize and bind to the acetylated lysine in histones and other proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S. et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol 16, 269–288 (2020). https://doi.org/10.1038/s41581-019-0248-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0248-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing