Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of inflammasomes in kidney disease

Abstract

Inflammasomes are multiprotein innate immune complexes that regulate caspase-dependent inflammation and cell death. Pattern recognition receptors, such as nucleotide-binding oligomerization domain (NOD)-like receptors and absent in melanoma 2 (AIM2)-like receptors, sense danger signals or cellular events to activate canonical inflammasomes, resulting in caspase 1 activation, pyroptosis and the secretion of IL-1β and IL-18. Non-canonical inflammasomes can be activated by intracellular lipopolysaccharides, toxins and some cell signalling pathways. These inflammasomes regulate the activation of alternative caspases (caspase 4, caspase 5, caspase 11 and caspase 8) that lead to pyroptosis, apoptosis and the regulation of other cellular pathways. Many inflammasome-related genes and proteins have been implicated in animal models of kidney disease. In particular, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome has been shown to contribute to a wide range of acute and chronic microbial and non-microbial kidney diseases via canonical and non-canonical mechanisms that regulate inflammation, pyroptosis, apoptosis and fibrosis. In patients with chronic kidney disease, immunomodulation therapies targeting IL-1β such as canakinumab have been shown to prevent cardiovascular events. Moreover, findings in experimental models of kidney disease suggest that small-molecule inhibitors targeting NLRP3 and other inflammasome components are promising therapeutic agents.

Key points

  • Canonical inflammasomes are multiprotein complexes that consist of pattern recognition receptors (PRRs), the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and caspase 1.

  • Canonical inflammasomes regulate activation of caspase 1, which results in the maturation and secretion of cytokines such as IL-1β and IL-18 and the cleavage of gasdermin D (GSDMD), which drives pyroptosis.

  • Non-canonical inflammasomes activate alternative caspases such as caspase 8, caspase 4, caspase 5 and caspase 11, which drive cell death and regulate canonical inflammasome complex assembly.

  • The NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome is activated by danger-associated molecular patterns including extracellular ATP; the absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA.

  • Inflammasome-forming PRRs and related proteins have been implicated in a variety of kidney diseases, including acute kidney injury, chronic kidney disease and diabetic kidney disease, via canonical and non-canonical pathways.

  • Novel inflammasome-targeting agents, including an IL-1β monoclonal antibody, caspase 1 inhibitors and NLRP3 inhibitors, have shown promising effects in experimental models and may provide new therapeutic strategies for kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammasome-forming genes.
Fig. 2: Activation and functions of canonical inflammasomes.
Fig. 3: The interaction between inflammasomes and pyroptosis.
Fig. 4: Activation and functions of non-canonical inflammasomes.
Fig. 5: Therapeutic strategies that block inflammasomes and their downstream effects.

Similar content being viewed by others

References

  1. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  2. Rathinam, V. A. K. & Chan, F. K. Inflammasome, inflammation, and tissue homeostasis. Trends Mol. Med. 24, 304–318 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Soares, J. L. S. et al. Gain-of-function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing? Clin. Immunol. 187, 46–49 (2018).

    CAS  PubMed  Google Scholar 

  4. Cheng, C. H., Lee, Y. S., Chang, C. J., Lin, J. C. & Lin, T. Y. Genetic polymorphisms in inflammasome-dependent innate immunity among pediatric patients with severe renal parenchymal infections. PLOS ONE 10, e0140128 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  7. Minkiewicz, J., de Rivero Vaccari, J. P. & Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121 (2013).

    PubMed  Google Scholar 

  8. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  9. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hara, H. et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 175, 1651–1664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  14. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363–375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  18. Place, D. E. & Kanneganti, T. D. Recent advances in inflammasome biology. Curr. Opin. Immunol. 50, 32–38 (2018).

    CAS  PubMed  Google Scholar 

  19. Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  21. MacDonald, J. A., Wijekoon, C. P., Liao, K. C. & Muruve, D. A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65, 851–862 (2013).

    CAS  PubMed  Google Scholar 

  22. Juliana, C. et al. Anti-inflammatory compounds parthenolide and Bay 11–7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchetti, C. et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mastrocola, R. et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev. 2016, 5271251 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Rathinam, V. A., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mishra, B. B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).

    CAS  PubMed  Google Scholar 

  27. Stutz, A. et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214, 1725–1736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    CAS  PubMed  Google Scholar 

  30. Wu, J., Fernandes-Alnemri, T. & Alnemri, E. S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 30, 693–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  32. Yamasaki, K. et al. NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem. 284, 12762–12771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    CAS  PubMed  Google Scholar 

  34. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gong, T., Yang, Y., Jin, T., Jiang, W. & Zhou, R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 39, 393–406 (2018).

    CAS  PubMed  Google Scholar 

  40. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    CAS  PubMed  Google Scholar 

  41. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  42. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

    CAS  PubMed  Google Scholar 

  45. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    CAS  PubMed  Google Scholar 

  47. Jourdan, T. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 19, 1132–1140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Inoue, M. et al. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal. 5, ra38 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    CAS  PubMed  Google Scholar 

  50. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung, H. et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 23, 1331–1346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau, A. et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J. Clin. Invest. 128, 2894–2913 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    CAS  PubMed  Google Scholar 

  54. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  55. Vilaysane, A. & Muruve, D. A. The innate immune response to DNA. Semin. Immunol. 21, 208–214 (2009).

    CAS  PubMed  Google Scholar 

  56. Morrone, S. R. et al. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun. 6, 7827 (2015).

    CAS  PubMed  Google Scholar 

  57. Schneider, K. S. et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep. 21, 3846–3859 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Saiga, H. et al. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24, 637–644 (2012).

    CAS  PubMed  Google Scholar 

  60. Yang, Y. et al. The AIM2 inflammasome is involved in macrophage activation during infection with virulent Mycobacterium bovis strain. J. Infect. Dis. 208, 1849–1858 (2013).

    CAS  PubMed  Google Scholar 

  61. Belhocine, K. & Monack, D. M. Francisella infection triggers activation of the AIM2 inflammasome in murine dendritic cells. Cell. Microbiol. 14, 71–80 (2012).

    CAS  PubMed  Google Scholar 

  62. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lian, Q. et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 27, 784–800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Micco, A. et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl Acad. Sci. USA 113, E4671–E4680 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Heilig, R. & Broz, P. Function and mechanism of the pyrin inflammasome. Eur. J. Immunol. 48, 230–238 (2018).

    CAS  PubMed  Google Scholar 

  66. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Anand, P. K. et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389–393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cerretti, D. P. et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 256, 97–100 (1992).

    CAS  PubMed  Google Scholar 

  69. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1-beta processing in monocytes. Nature 356, 768–774 (1992).

    CAS  PubMed  Google Scholar 

  70. Ghayur, T. et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386, 619–623 (1997).

    CAS  PubMed  Google Scholar 

  71. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    CAS  PubMed  Google Scholar 

  72. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vigano, E. et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6, 8761 (2015).

    CAS  PubMed  Google Scholar 

  75. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018).

    CAS  PubMed  Google Scholar 

  76. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    PubMed  Google Scholar 

  77. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    CAS  PubMed  Google Scholar 

  79. Man, S. M. et al. Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1β production. J. Immunol. 191, 5239–5246 (2013).

    CAS  PubMed  Google Scholar 

  80. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    CAS  PubMed  Google Scholar 

  81. Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    CAS  PubMed  Google Scholar 

  83. Schmid-Burgk, J. L. et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45, 2911–2917 (2015).

    CAS  PubMed  Google Scholar 

  84. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  85. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Ruhl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. 45, 2927–2936 (2015).

    PubMed  Google Scholar 

  88. Platnich, J. M. et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 25, 1525–1536 (2018).

    CAS  PubMed  Google Scholar 

  89. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bakker, P. J. et al. A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion. Am. J. Pathol. 184, 2013–2022 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bracey, N. A. et al. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem. 289, 19571–19584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Monteleone, M. et al. Interleukin-1beta maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    CAS  PubMed  Google Scholar 

  93. Artlett, C. M. Inflammasomes in wound healing and fibrosis. J. Pathol. 229, 157–167 (2012).

    Google Scholar 

  94. Ben-Sasson, S. Z. et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schneider, B. E. et al. A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur. J. Immunol. 40, 396–405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Harrison, O. J. et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 8, 1226–1236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, G. Y. Role of Nlrp6 and Nlrp12 in the maintenance of intestinal homeostasis. Eur. J. Immunol. 44, 321–327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Longman, R. S. et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin, J. C. et al. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol. 7, 101–113 (2014).

    CAS  PubMed  Google Scholar 

  101. Bruchard, M. et al. Corrigendum: the receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat. Immunol. 16, 1292 (2015).

    CAS  PubMed  Google Scholar 

  102. Bruchard, M. et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat. Immunol. 16, 859–870 (2015).

    CAS  PubMed  Google Scholar 

  103. Hu, S. et al. The DNA sensor AIM2 maintains intestinal homeostasis via regulation of epithelial antimicrobial host defense. Cell Rep. 13, 1922–1936 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ratsimandresy, R. A., Indramohan, M., Dorfleutner, A. & Stehlik, C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell. Mol. Immunol. 14, 127–142 (2017).

    CAS  PubMed  Google Scholar 

  105. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  106. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21, 906–913 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnan, S. M. et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br. J. Pharmacol. 173, 752–765 (2016).

    CAS  PubMed  Google Scholar 

  110. Choubey, D. Absent in melanoma 2 proteins in the development of cancer. Cell. Mol. Life Sci. 73, 4383–4395 (2016).

    CAS  PubMed  Google Scholar 

  111. Moon, J. S. et al. mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12, 102–115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Karasawa, T. et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler. Thromb. Vasc. Biol. 38, 744–756 (2018).

    CAS  PubMed  Google Scholar 

  116. Moon, J. S. et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 22, 1002–1012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Edelstein, C. L. et al. Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol. Dial. Transplant. 22, 1052–1061 (2007).

    CAS  PubMed  Google Scholar 

  119. Melnikov, V. Y. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest. 110, 1083–1091 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bani-Hani, A. H. et al. IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 76, 500–511 (2009).

    CAS  PubMed  Google Scholar 

  121. Yamanishi, K. et al. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl Res. 173, 101–114 (2016).

    CAS  PubMed  Google Scholar 

  122. Yamanishi, K. et al. Physiological and molecular effects of interleukin-18 administration on the mouse kidney. J. Transl Med. 16, 51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lichtnekert, J. et al. Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLOS ONE 6, e26778 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chun, J. et al. NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci. Rep. 6, 24667 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Anders, H. J. et al. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int. 93, 656–669 (2018).

    CAS  PubMed  Google Scholar 

  126. DeWolf, S. E. et al. Expression of TLR2, NOD1, and NOD2 and the NLRP3 inflammasome in renal tubular epithelial cells of male versus female mice. Nephron 137, 68–76 (2017).

    CAS  PubMed  Google Scholar 

  127. Romero, C. A. et al. Uric acid activates NRLP3 inflammasome in an in-vivo model of epithelial to mesenchymal transition in the kidney. J. Mol. Histol. 48, 209–218 (2017).

    CAS  PubMed  Google Scholar 

  128. Man, S. M. et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl Acad. Sci. USA 111, 7403–7408 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Anders, H. J. & Muruve, D. A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol. 22, 1007–1018 (2011).

    CAS  PubMed  Google Scholar 

  130. Komada, T. et al. ASC in renal collecting duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am. J. Pathol. 184, 1287–1298 (2014).

    CAS  PubMed  Google Scholar 

  131. Pulskens, W. P. et al. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLOS ONE 9, e85775 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Correa-Costa, M. et al. Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLOS ONE 6, e29004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bakker, P. J. et al. Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int. 85, 1112–1122 (2014).

    CAS  PubMed  Google Scholar 

  134. Solini, A. et al. The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation. J. Pathol. 231, 342–353 (2013).

    CAS  PubMed  Google Scholar 

  135. Zhang, C. et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 60, 154–162 (2012).

    CAS  PubMed  Google Scholar 

  136. Zhuang, Y. et al. NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J. Biol. Chem. 289, 25101–25111 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wen, Y. et al. NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 7, 54290–54302 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Cao, Y. et al. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury. FEBS J. 282, 3799–3807 (2015).

    CAS  PubMed  Google Scholar 

  139. Shahzad, K. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 (2015).

    CAS  PubMed  Google Scholar 

  140. Andersen, K., Eltrich, N., Lichtnekert, J., Anders, H. J. & Vielhauer, V. The NLRP3/ASC inflammasome promotes T cell-dependent immune complex glomerulonephritis by canonical and noncanonical mechanisms. Kidney Int. 86, 965–978 (2014).

    CAS  PubMed  Google Scholar 

  141. Gong, W. et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am. J. Physiol. Renal Physiol. 310, F1081–F1088 (2016).

    CAS  PubMed  Google Scholar 

  142. Yu, G. et al. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int. Immunopharmacol. 43, 203–209 (2017).

    CAS  PubMed  Google Scholar 

  143. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nazir, S. et al. Cytoprotective activated protein C averts Nlrp3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition. Blood 130, 2664–2677 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shigeoka, A. A. et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol. 185, 6277–6285 (2010).

    CAS  PubMed  Google Scholar 

  146. Tang, T. T. et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 9, 351 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, H. J. et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 346, 465–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Komada, T. et al. Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury. Sci. Rep. 5, 10901 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Shen, J. et al. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci. Rep. 6, 34682 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, Z. et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis. 9, 983 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Linkermann, A. et al. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J. Am. Soc. Nephrol. 24, 1545–1557 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, W. et al. Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am. J. Physiol. Renal Physiol. 288, F997–F1004 (2005).

    CAS  PubMed  Google Scholar 

  154. Purves, J. T. & Hughes, F. M. Jr. Inflammasomes in the urinary tract: a disease-based review. Am. J. Physiol. Renal Physiol. 311, F653–F662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, M. J., Liu, Q. L. & Liu, C. H. Correlation of CCR5 and NLRP3 gene polymorphisms with renal damage due to hepatitis C virus-related cryoglobulinemia. Exp. Ther. Med. 16, 3055–3059 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Feria, M. G., Taborda, N. A., Hernandez, J. C. & Rugeles, M. T. HIV replication is associated to inflammasomes activation, IL-1 beta, IL-18 and caspase-1 expression in GALT and peripheral blood. PLOS ONE 13, e0192845 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Hernandez, J. C., Latz, E. & Urcuqui-Inchima, S. HIV-1 induces the first signal to activate the NLRP3 inflammasome in monocyte-derived macrophages. Intervirology 57, 36–42 (2014).

    CAS  PubMed  Google Scholar 

  158. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Galloway, N. L. K. et al. Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid-tissue-derived CD4 T cells. Cell Rep. 12, 1555–1563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Monroe, K. M. et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343, 428–432 (2014).

    CAS  PubMed  Google Scholar 

  161. Haque, S. et al. HIV promotes NLRP3 inflammasome complex activation in murine HIV-associated nephropathy. Am. J. Pathol. 186, 347–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Mulay, S. R. & Anders, H. J. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat. Rev. Nephrol. 13, 226–240 (2017).

    CAS  PubMed  Google Scholar 

  163. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    CAS  PubMed  Google Scholar 

  164. Prencipe, G. et al. Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J. Am. Soc. Nephrol. 25, 1163–1169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Darisipudi, M. N. et al. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome. J. Am. Soc. Nephrol. 23, 1783–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Timoshanko, J. R., Kitching, A. R., Iwakura, Y., Holdsworth, S. R. & Tipping, P. G. Contributions of IL-1β and IL-1α to crescentic glomerulonephritis in mice. J. Am. Soc. Nephrol. 15, 910–918 (2004).

    CAS  PubMed  Google Scholar 

  167. Shahzad, K. et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2270–2275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Xia, M., Conley, S. M., Li, G., Li, P. L. & Boini, K. M. Inhibition of hyperhomocysteinemia-induced inflammasome activation and glomerular sclerosis by NLRP3 gene deletion. Cell Physiol. Biochem. 34, 829–841 (2014).

    CAS  PubMed  Google Scholar 

  169. Abais, J. M. et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J. Biol. Chem. 289, 27159–27168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Yu, J. W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, S. et al. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis. 8, e2937 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mahajan, V. S. et al. Striking immune phenotypes in gene-targeted mice are driven by a copy-number variant originating from a commercially available C57BL/6 strain. Cell Rep. 15, 1901–1909 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ulland, T. K. et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat. Commun. 7, 13180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, H. et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 43, 648–655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lu, L. H. et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J. Pharmacol. Exp. Ther. 324, 111–117 (2008).

    CAS  PubMed  Google Scholar 

  177. Tadagavadi, R. K. & Reeves, W. B. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 21, 53–63 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Denes, A. et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc. Natl Acad. Sci. USA 112, 4050–4055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Guo, Q. et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front. Immunol. 9, 1197 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Zhen, J. et al. AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1β, and IL-18. Mediators Inflamm. 2014, 190860 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Zhang, W. et al. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J. Clin. Immunol. 33, 925–937 (2013).

    PubMed  Google Scholar 

  182. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Yuan, F. et al. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLOS ONE 11, e0164135 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Li, Q. et al. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling. Kidney Int. 94, 551–566 (2018).

    CAS  PubMed  Google Scholar 

  186. Nagaishi, T. et al. SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms. Immunity 25, 769–781 (2006).

    CAS  PubMed  Google Scholar 

  187. Luan, P. et al. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation. FASEB J. 32, 1070–1084 (2018).

    CAS  PubMed  Google Scholar 

  188. Moore, C. B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    CAS  PubMed  Google Scholar 

  189. Arnoult, D. et al. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J. Cell Sci. 122, 3161–3168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Stokman, G. et al. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J. Exp. Med. 214, 2405–2420 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    CAS  PubMed  Google Scholar 

  192. Magitta, N. F. et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 10, 120–124 (2009).

    CAS  PubMed  Google Scholar 

  193. Pontillo, A. et al. Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity 45, 271–278 (2012).

    CAS  PubMed  Google Scholar 

  194. Pontillo, A., Reis, E. C., Liphaus, B. L., Silva, C. A. & Carneiro-Sampaio, M. Inflammasome polymorphisms in juvenile systemic lupus erythematosus. Autoimmunity 48, 434–437 (2015).

    PubMed  Google Scholar 

  195. Pontillo, A. et al. Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity 43, 583–589 (2010).

    CAS  PubMed  Google Scholar 

  196. Ito, S., Hara, Y. & Kubota, T. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Res. Ther. 16, R52 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Liu, R. et al. Novel genes and variants associated with IgA nephropathy by co-segregating with the disease phenotypes in 10 IgAN families. Gene 571, 43–51 (2015).

    CAS  PubMed  Google Scholar 

  198. Granata, S. et al. NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. PLOS ONE 10, e0122272 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. Muruve, D. A. et al. The biobank for the molecular classification of kidney disease: research translation and precision medicine in nephrology. BMC Nephrol. 18, 252 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Ulke-Lemee, A. et al. Quantification of inflammasome adaptor protein ASC in biological samples by multiple-reaction monitoring mass spectrometry. Inflammation 41, 1396–1408 (2018).

    CAS  PubMed  Google Scholar 

  201. Fu, R. et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 69, 1636–1646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Balasubramaniam, G., Almond, M. & Dasgupta, B. Improved renal function in diabetic patients with acute gout treated with anakinra. Kidney Int. 88, 195–196 (2015).

    CAS  PubMed  Google Scholar 

  203. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  PubMed  Google Scholar 

  204. Milhavet, F. et al. The infevers autoinflammatory mutation online registry: update with new genes and functions. Hum. Mutat. 29, 803–808 (2008).

    PubMed  Google Scholar 

  205. Cordero, M. D., Alcocer-Gomez, E. & Ryffel, B. Gain of function mutation and inflammasome driven diseases in human and mouse models. J. Autoimmun. 91, 13–22 (2018).

    CAS  PubMed  Google Scholar 

  206. French, F. M. F. C. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

    Google Scholar 

  207. Chang, C. The pathogenesis of neonatal autoimmune and autoinflammatory diseases: a comprehensive review. J. Autoimmun. 41, 100–110 (2013).

    CAS  PubMed  Google Scholar 

  208. Scarpioni, R. et al. Renal involvement in secondary amyloidosis of Muckle-Wells syndrome: marked improvement of renal function and reduction of proteinuria after therapy with human anti-interleukin-1β monoclonal antibody canakinumab. Clin. Rheumatol. 34, 1311–1316 (2015).

    PubMed  Google Scholar 

  209. Neven, B. et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 62, 258–267 (2010).

    CAS  PubMed  Google Scholar 

  210. Omi, T. et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur. J. Hum. Genet. 14, 1295–1305 (2006).

    CAS  PubMed  Google Scholar 

  211. Johansson, A. et al. NLRC4 inflammasome is an important regulator of interleukin-18 levels in patients with acute coronary syndromes: genome-wide association study in the PLATelet inhibition and patient Outcomes Trial (PLATO). Circ. Cardiovasc. Genet. 8, 498–506 (2015).

    CAS  PubMed  Google Scholar 

  212. Furman, D. et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Bachove, I. & Chang, C. Anakinra and related drugs targeting interleukin-1 in the treatment of cryopyrin- associated periodic syndromes. Open Access Rheumatol. 6, 15–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Ottaviani, S. et al. Efficacy of anakinra in gouty arthritis: a retrospective study of 40 cases. Arthritis Res. Ther. 15, R123 (2013).

    PubMed  PubMed Central  Google Scholar 

  215. Loustau, C. et al. Effectiveness and safety of anakinra in gout patients with stage 4–5 chronic kidney disease or kidney transplantation: a multicentre, retrospective study. Joint Bone Spine 85, 755–760 (2018).

    CAS  PubMed  Google Scholar 

  216. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    CAS  PubMed  Google Scholar 

  217. Sundy, J. S. et al. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study. J. Rheumatol. 41, 1703–1711 (2014).

    CAS  PubMed  Google Scholar 

  218. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    CAS  PubMed  Google Scholar 

  219. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  220. Ridker, P. M. et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol. 71, 2405–2414 (2018).

    CAS  PubMed  Google Scholar 

  221. Homsi, E., Janino, P. & de Faria, J. B. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 69, 1385–1392 (2006).

    CAS  PubMed  Google Scholar 

  222. Sogawa, Y. et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci. Rep. 7, 8801 (2017).

    PubMed  PubMed Central  Google Scholar 

  223. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 103, 2–30 (2013).

    PubMed  Google Scholar 

  224. Zaki, M. H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T. D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol. 185, 4912–4920 (2010).

    CAS  PubMed  Google Scholar 

  225. Yang, J. et al. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc. Natl Acad. Sci. USA 115, 6792–6797 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Hu, J. J. et al. Identification of pyroptosis inhibitors that target a reactive cysteine in gasdermin D. Preprint at bioRxiv https://doi.org/10.1101/365908 (2018).

    Article  Google Scholar 

  227. Lamkanfi, M. et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  229. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    CAS  PubMed  Google Scholar 

  231. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    CAS  PubMed  Google Scholar 

  232. Ummarino, D. Lupus nephritis: NLRP3 inflammasome ignites podocyte dysfunction. Nat. Rev. Rheumatol. 13, 451 (2017).

    PubMed  Google Scholar 

  233. Strickson, S. et al. The anti-inflammatory drug BAY 11–7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J. 451, 427–437 (2013).

    CAS  PubMed  Google Scholar 

  234. Zhao, J. et al. Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int. Immunopharmacol. 17, 116–122 (2013).

    CAS  PubMed  Google Scholar 

  235. Kolati, S. R. et al. BAY 11–7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ. Toxicol. Pharmacol. 39, 690–699 (2015).

    CAS  PubMed  Google Scholar 

  236. Marchetti, C. et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol. 63, 316–322 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Huang, Y. et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med. 10, e8689 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Leung, Y. Y., Yao Hui, L. L. & Kraus, V. B. Colchicine—update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 45, 341–350 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Zheng, L. et al. Fluorofenidone attenuates interleukin-1beta production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology (Carlton) 23, 573–584 (2018).

    CAS  Google Scholar 

  241. Lee, H. E. et al. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci. Rep. 6, 38622 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Martinez, G. J., Celermajer, D. S. & Patel, S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis 269, 262–271 (2018).

    CAS  PubMed  Google Scholar 

  243. Ozen, S. et al. EULAR recommendations for the management of familial Mediterranean fever. Ann. Rheum. Dis. 75, 644–651 (2016).

    CAS  PubMed  Google Scholar 

  244. Ito, H., Kanbe, A., Sakai, H. & Seishima, M. Activation of NLRP3 signalling accelerates skin wound healing. Exp. Dermatol. 27, 80–86 (2018).

    CAS  PubMed  Google Scholar 

  245. Juliana, C. et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617–36622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Swanson, K. V. et al. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214, 3611–3626 (2017).

    PubMed  PubMed Central  Google Scholar 

  248. Eugenia Schroeder, M. et al. Pro-inflammatory Ca2+-activated K+ channels are inhibited by hydroxychloroquine. Sci. Rep. 7, 1892 (2017).

    PubMed  PubMed Central  Google Scholar 

  249. Lech, M., Avila-Ferrufino, A., Skuginna, V., Susanti, H. E. & Anders, H. J. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int. Immunol. 22, 717–728 (2010).

    CAS  PubMed  Google Scholar 

  250. Kadoya, H. et al. Excess aldosterone is a critical danger signal for inflammasome activation in the development of renal fibrosis in mice. FASEB J. 29, 3899–3910 (2015).

    CAS  PubMed  Google Scholar 

  251. Masumoto, J. et al. Expression of apoptosis-associated speck-like protein containing a caspase recruitment domain, a pyrin N-terminal homology domain-containing protein, in normal human tissues. J. Histochem. Cytochem. 49, 1269–1275 (2001).

    CAS  PubMed  Google Scholar 

  252. Gauer, S. et al. IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 72, 1081–1087 (2007).

    CAS  PubMed  Google Scholar 

  253. Chan, A. J. et al. Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation. Am. J. Pathol. 184, 1411–1418 (2014).

    CAS  PubMed  Google Scholar 

  254. Faubel, S. et al. Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int. 66, 2202–2213 (2004).

    CAS  PubMed  Google Scholar 

  255. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Sayanthooran, S., Magana-Arachchi, D. N., Gunerathne, L., Abeysekera, T. D. & Sooriyapathirana, S. S. Upregulation of oxidative stress related genes in a chronic kidney disease attributed to specific geographical locations of Sri Lanka. Biomed. Res. Int. 2016, 7546265 (2016).

    PubMed  PubMed Central  Google Scholar 

  257. Dessing, M. C. et al. Donor and recipient genetic variants in NLRP3 associate with early acute rejection following kidney transplantation. Sci. Rep. 6, 36315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by operating grants from the Canadian Institutes for Health Research (CIHR) and the Kidney Foundation of Canada and by a team grant under the CIHR Inflammation in Chronic Disease Signature Initiative. D.A.M. holds a Tier II Canada Research Chair. T.K. was supported by a fellowship from the Manpei Suzuki Diabetes Foundation, Japan. The authors thank J. Chun (University of Calgary) for critical review of the manuscript before submission.

Reviewer information

Nature Reviews Nephrology thanks B. Isermann, D. Mattson, A. Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data, discussed the content, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel A. Muruve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Glossary

Pathogen-associated molecular patterns

(PAMPs). Molecular structures produced by pathogens and recognized as foreign to trigger innate immune responses.

Danger-associated molecular patterns

(DAMPs). Endogenous molecules released by damaged or necrotic cells and recognized as a ‘danger’ signal to trigger innate immune responses.

Pyroptosis

A type of regulated cell death that depends on the formation of plasma membrane pores by gasdermin D. This process often occurs as a consequence of activation of inflammatory caspases such as caspase 1, caspase 4, caspase 5 and caspase 11.

Post-apoptotic secondary necrosis

The process of cell membrane degradation with the release of cell components following apoptotic cell death.

Secondary pyroptosis

A gasdermin-D-independent lytic form of cell death with a feature of pyroptosis such as IL-1β-release.

TH2 cells

T helper 2 (TH2) cells are a subset of CD4+ effector T lymphocytes that produce cytokines such as IL-4, IL-5, IL-6, IL-9, IL-13 and IL-25. TH2 cells are critical for immune responses against parasites and trigger allergic inflammation in diseases such as asthma.

Ketone body

An endogenous product of fatty acid oxidation, which occurs in the liver when carbohydrates are scarce. The three ketone bodies are acetoacetates, β-hydroxybutyrate and acetone.

Type II apoptotic cells

In type II apoptotic cells, caspase 8 activation at the death-inducing signalling complex is inhibited by the caspase 3 inhibitor X-linked inhibitor of apoptosis and cellular FLICE inhibitory protein (cFLIP). Type II cells require the mitochondrial pathway to fully initiate the cell death programme via caspase 8 activation at the outer mitochondrial membrane.

Type I apoptotic cells

Type I apoptotic cells activate caspase 8 directly via recruitment to the death-inducing signalling complex at the plasma membrane. This complex acts directly on the executioner caspase 3 to initiate apoptosis.

High-sensitivity C-reactive protein

(hsCRP). An acute phase protein that is released from the liver during bacterial infection, tissue inflammation and trauma.

Honeybee propolis

A natural resinous mixture produced by honeybees from materials collected from plants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komada, T., Muruve, D.A. The role of inflammasomes in kidney disease. Nat Rev Nephrol 15, 501–520 (2019). https://doi.org/10.1038/s41581-019-0158-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0158-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing