Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genetic changes of Wilms tumour

Abstract

Wilms tumour is the most common renal malignancy of childhood. The disease is curable in the majority of cases, albeit at considerable cost in terms of late treatment-related effects in some children. However, one in ten children with Wilms tumour will die of their disease despite modern treatment approaches. The genetic changes that underpin Wilms tumour have been defined by studies of familial cases and by unbiased DNA sequencing of tumour genomes. Together, these approaches have defined the landscape of cancer genes that are operative in Wilms tumour, many of which are intricately linked to the control of fetal nephrogenesis. Advances in our understanding of the germline and somatic genetic changes that underlie Wilms tumour may translate into better patient outcomes. Improvements in risk stratification have already been seen through the introduction of molecular biomarkers into clinical practice. A host of additional biomarkers are due to undergo clinical validation. Identifying actionable mutations has led to potential new targets, with some novel compounds undergoing testing in early phase trials. Avenues that warrant further exploration include targeting Wilms tumour cancer genes with a non-redundant role in nephrogenesis and targeting the fetal renal transcriptome.

Key points

  • Wilms tumour is the most common childhood renal malignancy; the incidence differs between ethnicities worldwide.

  • The treatment of Wilms tumour can be considered a success story, but the management of patients with high-risk histology, bilateral tumours and/or relapsed disease remains challenging.

  • The genetic changes that underpin Wilms tumour are diverse and involve ~40 cancer genes; this diversity is particularly surprising given the monotonous driver landscape of other childhood renal tumours.

  • Genome sequencing of Wilms tumours has identified cancer genes that harbour likely driver mutations, including epigenetic remodellers, microRNA processing genes and the transcription factors SIX1 and SIX2.

  • Many Wilms tumour-related genes have pivotal roles in the developing kidney, supporting the hypothesis that Wilms tumour development is coupled to aberrant nephrogenesis.

  • Targeting somatic variants with prognostic significance, as well as the fetal renal transcriptome, may provide promising therapeutic avenues for patients with relapsed or refractory disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of Wilms tumour histology.
Fig. 2: The role of Wilms tumour genes in nephrogenesis.

References

  1. Breslow, N., Olshan, A., Beckwith, J. B. & Green, D. M. Epidemiology of Wilms tumor. Med. Pediatr. Oncol. 21, 172–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Rivera, M. N. & Haber, D. A. Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat. Rev. Cancer 5, 699–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maschietto, M. et al. The IGF signalling pathway in Wilms tumours—a report from the ENCCA renal tumours biology-driven drug development workshop. Oncotarget 5, 8014–8026 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, S. B. & Haber, D. A. Wilms Tumor and the WT1 gene. Exp. Cell Res. 264, 74–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Koesters, R. et al. Mutational activation of the β-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 59, 3880–3882 (1999).

    CAS  PubMed  Google Scholar 

  8. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Walz, A. L. et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wegert, J. et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breslow, N., Beck, J. B., Gol, M. & Sharpies, K. Age distribution of Wilms’ tumor: report from the National Wilms’ Tumor Study. Cancer Res. 48, 1653–1657 (1988).

    CAS  PubMed  Google Scholar 

  14. Scott, R. H., Stiller, C. A., Walker, L. & Rahman, N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J. Med. Genet. 43, 705–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maas, S. M. et al. Phenotype, cancer risk, and surveillance in Beckwith–Wiedemann syndrome depending on molecular genetic subgroups. Am. J. Med. Genet. A 170, 2248–2260 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Nakata, K. et al. Childhood cancer incidence and survival in Japan and England: a population-based study (1993–2010). Cancer Sci. 109, 422–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Heck, J. E. et al. Risk of childhood cancer by maternal birthplace. JAMA Pediatr. 170, 585 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Howe, H. L. et al. Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among U. S. Hispanic/Latino populations. Cancer 107, 1711–1742 (2006).

    Article  PubMed  Google Scholar 

  19. Jia, W. et al. Association between HACE1 gene polymorphisms and Wilms’ tumor risk in a Chinese population. Cancer Invest. 35, 633–638 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Fu, W. et al. BARD1 gene polymorphisms confer nephroblastoma susceptibility. EBioMedicine 16, 101–105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turnbull, C. et al. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nat. Genet. 44, 681–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukuzawa, R. et al. Epigenetic differences between Wilms’ tumours in white and east-Asian children. Lancet 363, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kaneko, Y. et al. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan and the penetrance rates in children with WT1 germline mutation. Br. J. Cancer 112, 1121–1133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oue, T. et al. Anaplastic histology Wilms’ tumors registered to the Japan Wilms’ Tumor Study Group are less aggressive than that in the National Wilms’ Tumor Study 5. Pediatr. Surg. Int. 32, 851–855 (2016).

    Article  PubMed  Google Scholar 

  25. van den Heuvel-Eibrink, M. M. et al. Position paper: rationale for the treatment of Wilms tumour in the UMBRELLA SIOP–RTSG 2016 protocol. Nat. Rev. Urol. 14, 743–752 (2017).

    Article  PubMed  Google Scholar 

  26. Metzger, M. L. & Dome, J. S. Current therapy for Wilms’ tumor. Oncologist 10, 815–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Brok, J., Treger, T. D., Gooskens, S. L., van den Heuvel-Eibrink, M. M. & Pritchard-Jones, K. Biology and treatment of renal tumours in childhood. Eur. J. Cancer 68, 179–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Dome, J. S. et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J. Clin. Oncol. 33, 2999–3007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dome, J. S., Perlman, E. J. & Graf, N. Risk stratification for wilms tumor: current approach and future directions. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.14694/EdBook_AM.2014.34.215 (2014).

    Article  PubMed  Google Scholar 

  30. Krepischi, A. C. V. et al. Genomic imbalances pinpoint potential oncogenes and tumor suppressors in Wilms tumors. Mol. Cytogenet. 9, 20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grundy, P. E. et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 23, 7312–7321 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez, C. V. et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor. Ann. Surg. 265, 835–840 (2017).

    Article  PubMed  Google Scholar 

  33. Perlman, E. J. et al. WT1 mutation and 11P15 loss of heterozygosity predict relapse in very low-risk wilms tumors treated with surgery alone: a children’s oncology group study. J. Clin. Oncol. 29, 698–703 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson, J. et al. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer. Nat. Genet. 50, 944–950 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Pritchard-Jones, K. et al. Omission of doxorubicin from the treatment of stage II-III, intermediate-risk Wilms’ tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet 386, 1156–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Gramatges, M. M. & Bhatia, S. Evidence for genetic risk contributing to long-term adverse treatment effects in childhood cancer survivors. Annu. Rev. Med. 69, 247–262 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Spreafico, F. et al. Treatment of relapsed Wilms tumors: lessons learned. Expert Rev. Anticancer Ther. 9, 1807–1815 (2009).

    Article  PubMed  Google Scholar 

  38. Brok, J. et al. Relapse of Wilms’ tumour and detection methods: a retrospective analysis of the 2001 Renal Tumour Study Group–International Society of Paediatric Oncology Wilms’ tumour protocol database. Lancet Oncol. 19, P1072–P1081 (2018).

    Article  Google Scholar 

  39. Ha, T. C. et al. An international strategy to determine the role of high dose therapy in recurrent Wilms’ tumour. Eur. J. Cancer 49, 194–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Furtwängler, R. et al. Update on relapses in unilateral nephroblastoma registered in 3 consecutive SIOP/GPOH studies - a report from the GPOH-nephroblastoma study group. Klin. Padiatr. 223, 113–119 (2011).

    Article  PubMed  Google Scholar 

  41. Malogolowkin, M. et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 50, 236–241 (2008).

    Article  PubMed  Google Scholar 

  42. Green, D. M. et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine and actinomycin D: a report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 48, 493–499 (2007).

    Article  PubMed  Google Scholar 

  43. Green, D. M. et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J. Clin. Oncol. 19, 3719–3724 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Chagtai, T. et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 trial: a SIOP Renal Tumours Biology Consortium Study. J. Clin. Oncol. 34, 3195–3203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gratias, E. J. et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J. Clin. Oncol. 34, 3189–3194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Segers, H. et al. Gain of 1q is a marker of poor prognosis in Wilms’ tumors. Genes Chromosomes Cancer 52, 1065–1074 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Stiller, C. A. & Olshan, A. F. in Renal Tumors of Childhood - Biology and Therapy (eds Prithcard-Jones, K. & Dome, J.) 1–17 (Springer, 2016).

  48. Charlton, J. et al. Comparative methylome analysis identifies new tumour subtypes and biomarkers for transformation of nephrogenic rests into Wilms tumour. Genome Med. 7, 11 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Charlton, J., Irtan, S., Bergeron, C. & Pritchard-Jones, K. Bilateral Wilms tumour: a review of clinical and molecular features. Expert Rev. Mol. Med. 19, e8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dome, J. S. et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J. Clin. Oncol. 24, 2352–2358 (2006).

    Article  PubMed  Google Scholar 

  51. Bardeesy, N. et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat. Genet. 7, 91–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Maschietto, M. et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia. PLOS ONE 9, e109924 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ooms, A. H. A. G. et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clin. Cancer Res. 22, 5582–5591 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wegert, J. et al. TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia. J. Pathol. Clin. Res. 3, 234–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Treger, T. D. et al. Somatic TP53 mutations are detectable in circulating tumor DNA from children with anaplastic Wilms tumors. Transl Oncol. 11, 1301–1306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vainio, S. & Lin, Y. Organogenesis: coordinating early kidney development: lessons from gene targeting. Nat. Rev. Genet. 3, 533–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Hohenstein, P., Pritchard-Jones, K. & Charlton, J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 29, 467–482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trink, A. et al. Geometry of gene expression space of Wilms’ tumors from human patients. Neoplasia 20, 871–881 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dekel, B. et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res. 66, 6040–6049 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Metsuyanim, S. et al. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26, 1808–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Pode-Shakked, N. et al. Evidence of in vitro preservation of human nephrogenesis at the single-cell level. Stem Cell Rep. 9, 279–291 (2017).

    Article  CAS  Google Scholar 

  62. Gadd, S. et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children’s Oncology Group Study. Neoplasia 14, 742–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pode-Shakked, N. et al. Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci. Rep. 6, 23562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pode-Shakked, N. et al. The isolation and characterization of renal cancer initiating cells from human Wilms’ tumour xenografts unveils new therapeutic targets. EMBO Mol. Med. 5, 18–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Shukrun, R. et al. Wilms’ tumor blastemal stem cells dedifferentiate to propagate the tumor bulk. Stem Cell Rep. 3, 24–33 (2014).

    Article  CAS  Google Scholar 

  66. Perdigão-Henriques, R. et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158–172 (2016).

    Article  PubMed  CAS  Google Scholar 

  67. Polosukhina, D. et al. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol. Oncol. 11, 405–421 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Merks, J. H. M., Caron, H. N. & Hennekam, R. C. M. High incidence of malformation syndromes in a series of 1,073 children with cancer. Am. J. Med. Genet. A 134A, 132–143 (2005).

    Article  PubMed  Google Scholar 

  70. Dumoucel, S. et al. Malformations, genetic abnormalities, and Wilms tumor. Pediatr. Blood Cancer 61, 140–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Pritchard-Jones, K. et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Hu, Q. et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J. Clin. Invest. 121, 174–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Hartwig, S. et al. Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137, 1189–1203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, S. et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nat. Genet. 5, 363–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Clericuzio, C., Hingorani, M., Crolla, J. A., van Heyningen, V. & Verloes, A. Clinical utility gene card for: WAGR syndrome. Eur. J. Hum. Genet. 19, 492 (2011).

    Article  Google Scholar 

  80. Breslow, N. E. et al. Characteristics and outcomes of children with the Wilms tumor-Aniridia syndrome: a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 21, 4579–4585 (2003).

    Article  PubMed  Google Scholar 

  81. Mueller, R. F. The Denys-Drash syndrome. J. Med. Genet. 31, 471–477 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelletier, J. et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Karnik, P., Chen, P., Paris, M., Yeger, H. & Williams, B. R. Loss of heterozygosity at chromosome 11p15 in Wilms tumors: identification of two independent regions. Oncogene 17, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Cresswell, G. D. et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine 0, 991–1000 (2016).

    Google Scholar 

  86. Charles, A. K., Brown, K. W. & Berry, P. J. Microdissecting the genetic events in nephrogenic rests and Wilms’ tumor development. Am. J. Pathol. 153, 991–1000 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mussa, A. et al. Cancer risk in Beckwith-Wiedemann syndrome: a systematic review and meta-analysis outlining a novel (Epi)genotype specific histotype targeted screening protocol. J. Pediatr. 176, 142–149 (2016).

    Article  PubMed  Google Scholar 

  88. Cooper, W. N. et al. Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 13, 1025–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Scott, R. H. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3, 327–335 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat. Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ruteshouser, E. C. & Huff, V. Familial Wilms tumor. Am. J. Med. Genet. 129C, 29–34 (2004).

    Article  PubMed  Google Scholar 

  94. Palculict, T. B. et al. Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour. J. Med. Genet. 53, 385–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Hanks, S. et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat. Commun. 5, 4398 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Martins, A. G., Pinto, A. T., Domingues, R. & Cavaco, B. M. Identification of a novel CTR9 germline mutation in a family with Wilms tumor. Eur. J. Med. Genet. 61, 294–299 (2018).

    Article  PubMed  Google Scholar 

  97. Van Oss, S. B., Cucinotta, C. E. & Arndt, K. M. Emerging insights into the roles of the Paf1 complex in gene regulation. Trends Biochem. Sci. 42, 788–798 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rahman, N. et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12–q21. Nat. Genet. 13, 461–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. McDonald, J. M. et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 58, 1387–1390 (1998).

    CAS  PubMed  Google Scholar 

  100. Halliday, B. J. et al. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour. PLOS Genet. 14, e1007399 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dihazi, G. H. et al. Proteomic analysis of embryonic kidney development: Heterochromatin proteins as epigenetic regulators of nephrogenesis. Sci. Rep. 5, 13951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mahamdallie, S. S. et al. Mutations in the transcriptional repressor REST predispose to Wilms tumor. Nat. Genet. 47, 1471–1474 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Cole, B. L., Pritchard, C. C., Anderson, M. & Leary, S. E. Targeted sequencing of malignant supratentorial pediatric brain tumors demonstrates a high frequency of clinically relevant mutations. Pediatr. Dev. Pathol. 21, 380–388 (2017).

    Article  PubMed  Google Scholar 

  104. Southey, M. C. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J. Med. Genet. 53, 800–811 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Carlo, M. I. et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 4, 1228–1235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gopalakrishnan, V. REST and the RESTless: in stem cells and beyond. Future Neurol. 4, 317–329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kusafuka, T., Miao, J., Kuroda, S., Udatsu, Y. & Yoneda, A. Codon 45 of the β-catenin gene, a specific mutational target site of Wilms’ tumor. Int. J. Mol. Med. 10, 395–399 (2002).

    CAS  PubMed  Google Scholar 

  108. Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Ui, A. & Yasui, A. Collaboration of MLLT1/ENL, polycomb and ATM for transcription and genome integrity. Nucleus 7, 138–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Hasselblatt, M. et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am. J. Surg. Pathol. 35, 933–935 (2011).

    Article  PubMed  Google Scholar 

  114. Network, T. C. G. A. R. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  115. Abell, A. N. et al. MAP3K4/CBP-regulated H2B acetylation controls epithelial-mesenchymal transition in trophoblast stem cells. Cell Stem Cell 8, 525–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huynh, K. D., Fischle, W., Verdin, E. & Bardwell, V. J. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pagan, J. K. et al. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J. Biol. Chem. 282, 15248–15257 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto, Y., Abe, A. & Emi, N. Clarifying the impact of polycomb complex component disruption in human cancers. Mol. Cancer Res. 12, 479–484 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Shiba, N. et al. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br. J. Haematol. 175, 476–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Roy, A. et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat. Commun. 6, 8891 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, P. Y. et al. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. 106, dju113 (2014).

  122. Cascon, A. & Robledo, M. MAX and MYC: a heritable breakup. Cancer Res. 72, 3119–3124 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Ferrucci, F. et al. MAX to MYCN intracellular ratio drives the aggressive phenotype and clinical outcome of high risk neuroblastoma. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 235–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Xu, B. et al. Tumor suppressor menin represses paired box gene 2 expression via Wilms tumor suppressor protein-polycomb group complex. J. Biol. Chem. 286, 13937–13944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Russell, B. et al. Clinical management of patients with ASXL1 mutations and Bohring-Opitz syndrome, emphasizing the need for Wilms tumor surveillance. Am. J. Med. Genet. Part A 167, 2122–2131 (2015).

    Article  CAS  Google Scholar 

  126. Mengelbier, L. H. et al. Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat. Commun. 6, 6125 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Williams, R. D. et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in wilms tumor. Genes Chromosomes Cancer 50, 982–995 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Williams, R. D. et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6, 7232–7243 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ruf, R. G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc. Natl Acad. Sci. USA 101, 8090–8095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu, P.-X. et al. Six1 is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Self, M. et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rivera, M. N. et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315, 642–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Beltran, H. The N-myc oncogene: maximizing its targets, regulation, and therapeutic potential. Mol. Cancer Res. 12, 815–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Gustafson, W. C. et al. Drugging MYCN through an allosteric transition in aurora kinase A. Cancer Cell 26, 414–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brok, J., Pritchard-Jones, K., Geller, J. I. & Spreafico, F. Review of phase I and II trials for Wilms’ tumour – can we optimise the search for novel agents? Eur. J. Cancer 79, 205–213 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Wetmore, C. et al. Alisertib is active as single agent in recurrent atypical teratoid rhabdoid tumors in 4 children. Neuro. Oncol. 17, 882–888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. DuBois, S. G. et al. Phase I study of the aurora A kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: a NANT (new approaches to neuroblastoma therapy) trial. J. Clin. Oncol. 34, 1368–1375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yaari, S. et al. Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. Clin. Cancer Res. 11, 4321–4330 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. O’Bryan, J. P. Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol. Res. https://doi.org/10.1016/j.phrs.2018.10.021 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dalpa, E., Gourvas, V., Soulitzis, N. & Spandidos, D. A. K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med. Oncol. 34, 6 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Clark, P. E. et al. β-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms’ tumors. Am. J. Pathol. 179, 3045–3055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cramer, S. L. et al. Pediatric anaplastic embryonal rhabdomyosarcoma: targeted therapy guided by genetic analysis and a patient-derived xenograft study. Front. Oncol. 7, 327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Liu, H. et al. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. Development 145, dev153619 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  147. Burgess, A. et al. Clinical overview of MDM2/X-targeted therapies. Front. Oncol. 6, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wood, A. C. et al. Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatr. Blood Cancer 60, 1860–1867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT02452554 (2018).

  150. Markovsky, E. et al. Wilms tumor NCAM-expressing cancer stem cells as potential therapeutic target for polymeric nanomedicine. Mol. Cancer Ther. 16, 2462–2472 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03155620 (2018).

  152. Essafi, A. et al. A Wt1-controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression. Dev. Cell 21, 559–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Park, J.-S. et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev. Cell 23, 637–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dong, L., Pietsch, S. & Englert, C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int. 88, 684–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walker, K. A., Sims-Lucas, S. & Bates, C. M. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr. Nephrol. 31, 885–895 (2016).

    Article  PubMed  Google Scholar 

  156. Denner, D. R. & Rauchman, M. Mi-2/NuRD is required in renal progenitor cells during embryonic kidney development. Dev. Biol. 375, 105–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Wegert, J. et al. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 48, 1102–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Satoh, Y. et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br. J. Cancer 95, 541–547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Soejima, H. & Higashimoto, K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J. Hum. Genet. 58, 402–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Sanz, M. M., German, J. & Cunniff, C. in GeneReviews® (Univ. of Washington, Seattle, 1993).

  162. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  163. Shuman, C. et al. Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. Am. J. Med. Genet. A 140A, 1497–1503 (2006).

    Article  CAS  Google Scholar 

  164. Karlberg, N. et al. High frequency of tumours in Mulibrey nanism. J. Pathol. 218, 163–171 (2009).

    Article  PubMed  Google Scholar 

  165. Gripp, K. W. et al. Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation. Am. J. Med. Genet. Part A 170, 2559–2569 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. M. Vujanic (Sidra Medicine) for kindly providing the Wilms tumour histology images used in Figure 1. T.T. is funded by a Cambridge Academic Clinical Fellowship. S.B. is funded through personal awards from the Wellcome Trust and the St. Baldrick’s Foundation. K.P.J. is funded in part by the National Institute of Health Research Biomedical Research Centre at Great Ormond Street Hospital, the Great Ormond Street Hospital Children’s Charity and Cancer Research UK (grant no. C1188/A4614).

Reviewer information

Nature Reviews Nephrology thanks A. Reeve and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, contributed to discussions of the content, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Kathy Pritchard-Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anlage

A rudimentary organ in the earliest stage of development during embryogenesis.

Mesenchymal-to-epithelial transition

(MET). The alteration of a cell phenotype from a mesenchymal state to epithelia.

Aniridia

The partial or complete absence of the iris.

Gonadoblastoma

A rare gonadal tumour with a mixture of germ and sex cord stromal cells.

Uniparental disomy

A chromosomal disorder whereby the chromosome pair is inherited from one parent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treger, T.D., Chowdhury, T., Pritchard-Jones, K. et al. The genetic changes of Wilms tumour. Nat Rev Nephrol 15, 240–251 (2019). https://doi.org/10.1038/s41581-019-0112-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0112-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer