Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid-metal-based magnetic fluids

Abstract

Magnetic fluids, suspensions of magnetic particles in carrier liquids like water, oil or organic solvents, combine magnetic properties with fluidity to achieve features such as rapid magnetic response, reversible viscosity, and tunable thermal and optical properties. However, these carriers tend to have low densities and boiling points, affecting the suspension stability and working temperature range of magnetic fluids. Using liquid metals — which have high densities, boiling points and chemical stability in addition to excellent conductivity — as the carrier liquid can not only overcome these issues but also make the resulting liquid-metal-based magnetic fluids (LMMFs) highly conductive, substantially expanding the functions of magnetic fluids. Furthermore, LMMFs behave in complex yet versatile ways owing to synergies between the electrical conduction of the liquid metal and the magnetism of the suspended particles. This Review provides a comprehensive overview of LMMFs, beginning with their fabrication methods and an interpretation of their suspension stability. We summarize the properties and applications of LMMFs, highlighting their superiority over traditional magnetic fluids. Finally, we discuss the challenges and prospects of these materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication methods and stability of liquid-metal-based magnetic fluids.
Fig. 2: Typical properties of liquid-metal-based magnetic fluids.
Fig. 3: Applications of liquid-metal-based magnetic fluids in biomedical engineering and thermal management.
Fig. 4: Applications of liquid-metal-based magnetic fluids in printing, patterning and flexible sensors.
Fig. 5: Applications of liquid-metal-based magnetic fluids in soft robotics.

Similar content being viewed by others

References

  1. Stöhr, J. & Siegmann, H. C. in Magnetism 61–103 (Springer, 2006).

  2. Rosensweig, R. E. Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437–461 (1987).

    Article  Google Scholar 

  3. Chantrell, R. W., Bradbury, A., Popplewell, J. & Charles, S. W. Agglomerate formation in a magnetic fluid. J. Appl. Phys. 53, 2742–2744 (1982).

    Article  CAS  Google Scholar 

  4. De Vicente, J., Klingenberg, D. J. & Hidalgo-Alvarez, R. Magnetorheological fluids: a review. Soft Matter 7, 3701 (2011).

    Article  Google Scholar 

  5. Philip, J. Magnetic nanofluids (ferrofluids): recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 311, 102810 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Butter, K., Bomans, P. H. H., Frederik, P. M., Vroege, G. J. & Philipse, A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2, 88–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dunne, P. et al. Liquid flow and control without solid walls. Nature 581, 58–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. Science 365, 264–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, W. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559, 77–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J. et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 12, 7136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seol, M.-L., Jeon, S.-B., Han, J.-W. & Choi, Y.-K. Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017).

    Article  CAS  Google Scholar 

  12. Puga, J. B. et al. Novel thermal switch based on magnetic nanofluids with remote activation. Nano Energy 31, 278–285 (2017).

    Article  CAS  Google Scholar 

  13. Nkurikiyimfura, I., Wang, Y. & Pan, Z. Heat transfer enhancement by magnetic nanofluids — a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013).

    Article  CAS  Google Scholar 

  14. Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. Proc. Natl Acad. Sci. USA 119, e2203116119 (2022).

  15. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mertelj, A., Lisjak, D., Drofenik, M. & Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 504, 237–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, N. A. Ferromagnetic ferrofluids. Nature 504, 229–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Rosensweig, R. E. Ferrohydrodynamics (Cambridge Univ. Press, 1997).

  19. Ashtiani, M., Hashemabadi, S. H. & Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 374, 716–730 (2015).

    Article  CAS  Google Scholar 

  20. Chen, S., Wang, H. Z., Zhao, R. Q., Rao, W. & Liu, J. Liquid metal composites. Matter 2, 1446–1480 (2020).

    Article  Google Scholar 

  21. Yan, J., Lu, Y., Chen, G., Yang, M. & Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47, 2518–2533 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. & Wang, D. et al. Liquid metal combinatorics toward materials discovery. Adv. Mater. 35, 2303533 (2023).

    Article  CAS  Google Scholar 

  24. Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat. Commun. 13, 5576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khoshmanesh, K. et al. Liquid metal enabled microfluidics. Lab Chip 17, 974–993 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Mao, G. et al. Soft electromagnetic actuators. Sci. Adv. https://doi.org/10.1126/sciadv.abc0251 (2020).

  28. Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. https://doi.org/10.1126/scirobotics.abg2171 (2022).

  29. Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20, 851–858 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023).

    Article  Google Scholar 

  32. Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, G. et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium–indium liquid metal–air battery operated at room temperature. Adv. Energy Mater. 8, 1–9 (2018).

    Article  Google Scholar 

  34. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zuraiqi, K. et al. Liquid metals in catalysis for energy applications. Joule 4, 2290–2321 (2020).

    Article  CAS  Google Scholar 

  36. Agno, K.-C. et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01116-z (2023).

  37. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. Nat. Electron. 6, 779–789 (2023).

    Article  Google Scholar 

  39. Nan, K. et al. Low-cost gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. Nat. Biomed. Eng. 6, 1092–1104 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Greenwood, N. N. in Advances in Inorganic Chemistry and Radiochemistry Vol. 5, 91–134 (1963).

  41. Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, 1–11 (2021).

    CAS  Google Scholar 

  44. Chang, H. et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv. Mater. Interfaces 5, 1800571 (2018).

    Article  Google Scholar 

  45. Xiong, M., Gao, Y. & Liu, J. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J. Magn. Magn. Mater. 354, 279–283 (2014).

    Article  CAS  Google Scholar 

  46. Ma, B. et al. A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019).

    Article  Google Scholar 

  47. Xing, W. et al. Construction of 3D conductive network in liquid gallium with enhanced thermal and electrical performance. Adv. Mater. Technol. 7, 2100970 (2022).

    Article  CAS  Google Scholar 

  48. Daalkhaijav, U., Yirmibesoglu, O. D., Walker, S. & Mengüç, Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol. 3, 1700351 (2018).

    Article  Google Scholar 

  49. Kagan, I. Y., Rykov, V. G. & Yantovskii, E. I. Ferromagnetic electrically conducting liquids. Magn. Gidrodin. 6, 155–157 (1970).

    Google Scholar 

  50. Ito, R., Dodbiba, G. & Fujita, T. MR fluid of liquid gallium dispersing magnetic particles. Int. J. Mod. Phys. B 19, 1430–1436 (2005).

    Article  CAS  Google Scholar 

  51. Guo, R., Sun, X., Yuan, B., Wang, H. & Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 6, 1901478 (2019).

    Article  CAS  Google Scholar 

  52. Liu, T.-Y., Ye, J., Fu, J.-H., Li, D.-D. & Liu, J. in Intelligent Robotics and Applications (eds Liu, X. J. at al.) 412–421 (Springer, 2021).

  53. Yang, C., Bian, X., Qin, J., Guo, T. & Zhao, X. Metal-based magnetic functional fluids with amorphous particles. RSC Adv. 4, 59541–59547 (2014).

    Article  CAS  Google Scholar 

  54. Yang, C., Liu, Z., Yu, M. & Bian, X. Liquid metal Ga–Sn alloy based ferrofluids with amorphous nano-sized Fe–Co–B magnetic particles. J. Mater. Sci. 55, 13303–13313 (2020).

    Article  CAS  Google Scholar 

  55. Shao, Z. et al. Eutectic crystallized FePd nanoparticles for liquid metal magnet. Chem. Commun. 56, 6555–6558 (2020).

    Article  CAS  Google Scholar 

  56. Zhao, S., Yang, C., Bian, X., Guo, T. & Yu, M. Ga-based magnetic fluid with Al2O3-coated Ni nanoparticles. RSC Adv. 5, 41961–41966 (2015).

    Article  CAS  Google Scholar 

  57. Huang, M., Lin, W., Tuersun, Y., Huang, X. & Chu, S. Core–shelled nanoparticle fillers for recoverable magnetic liquid metal with high stability. Adv. Mater. Technol. 8, 2201231 (2023).

    Article  CAS  Google Scholar 

  58. Yu, M., Bian, X., Wang, T. & Wang, J. Metal-based magnetic fluids with core–shell structure FeB@SiO2 amorphous particles. Soft Matter 13, 6340–6348 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Dodbiba, G., Ono, K., Park, H. S., Matsuo, S. & Fujita, T. FeNbVB alloy particles suspended in liquid gallium: investigating the magnetic properties of the MR suspension. Int. J. Mod. Phys. B 25, 947–955 (2011).

    Article  CAS  Google Scholar 

  60. Park, H. S., Cao, L. F., Dodbiba, G. & Fujita, T. Liquid gallium based temperature sensitive functional fluid dispersing chemically synthesized FeMB nanoparticles. J. Phys. Conf. Ser. 149, 012108 (2009).

    Article  Google Scholar 

  61. Fujita, T. et al. Movement of liquid gallium dispersing low concentration of temperature sensitive magnetic particles under magnetic field. J. Magn. Magn. Mater. 323, 1207–1210 (2011).

    Article  CAS  Google Scholar 

  62. Cao, L. F., Park, H. S., Dodbiba, G. & Fujita, T. Dispersion of submicron Ni particles into liquid gallium. Magnetohydrodynamics 44, 97–104 (2008).

    Article  Google Scholar 

  63. Chang, H. et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl. Mater. Interfaces 12, 14125–14135 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, D., Wang, X. & Rao, W. Precise regulation of Ga-based liquid metal oxidation. Accounts. Mater. Res. 2, 1093–1103 (2021).

    CAS  Google Scholar 

  65. Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. J. Microelectromech. Syst. 25, 1050–1057 (2016).

    Article  CAS  Google Scholar 

  66. Kim, D. & Lee, J.-B. Magnetic-field-induced liquid metal droplet manipulation. J. Korean Phys. Soc. 66, 282–286 (2015).

    Article  CAS  Google Scholar 

  67. Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. On-demand magnetic manipulation of liquid metal in microfluidic channels for electrical switching applications. Lab. Chip 17, 128–133 (2017).

    Article  CAS  Google Scholar 

  68. Chen, R. et al. Magnetically controllable liquid metal marbles. Adv. Mater. Interfaces 6, 1901057 (2019).

    Article  CAS  Google Scholar 

  69. Liu, H. et al. Magnetic steering of liquid metal mobiles. Soft Matter 14, 3236–3245 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Guo, Z. et al. Nanoheterostructure by liquid metal sandwich‐based interfacial galvanic replacement for cancer targeted theranostics. Small 19, 2300751 (2023).

    Article  CAS  Google Scholar 

  71. Tang, J., Zhao, X., Li, J., Zhou, Y. & Liu, J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv. Sci. 4, 1700024 (2017).

    Article  Google Scholar 

  72. A. de Castro, I. et al. A gallium-based magnetocaloric liquid metal ferrofluid. Nano Lett. 17, 7831–7838 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Elbourne, A. et al. Antibacterial liquid metals: biofilm treatment via magnetic activation. ACS Nano 14, 802–817 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Cheeseman, S. et al. Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. J. Mater. Chem. B 8, 10776–10787 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Carle, F., Bai, K., Casara, J., Vanderlick, K. & Brown, E. Development of magnetic liquid metal suspensions for magnetohydrodynamics. Phys. Rev. Fluids 2, 013301 (2017).

    Article  Google Scholar 

  76. Kim, S., Kim, S., Hong, K., Dickey, M. D. & Park, S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal–elastomer conductors. ACS Appl. Mater. Interfaces 14, 37110–37119 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, H. et al. PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 5, 222–229 (2018).

    Article  CAS  Google Scholar 

  78. Ren, L. et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv. Mater. 30, 1802595 (2018).

    Article  Google Scholar 

  79. Lu, Y. et al. Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal reinforcement. ACS Appl. Mater. Interfaces 13, 5256–5265 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Lu, Y. et al. Dynamic leakage-free liquid metals. Adv. Funct. Mater. 33, 2210961 (2023).

    Article  CAS  Google Scholar 

  81. Shen, Y. et al. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat. Commun. 14, 6276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scherer, C. & Figueiredo Neto, A. M. Ferrofluids: properties and applications. Braz. J. Phys. 35, 718–727 (2005).

    Article  CAS  Google Scholar 

  83. Singh, R., Pathak, S., Jain, K., Noorjahan & Kim, S. Correlating the dipolar interactions induced magneto‐viscoelasticity and thermal conductivity enhancements in nanomagnetic fluids. Small https://doi.org/10.1002/smll.202205741 (2023).

  84. Biedermann, A. R., Mazurek, M., Schröder, J. & Arenz, M. Physical and chemical stability of nanoparticles in ferrofluid before and after impregnation: implications for magnetic pore fabric studies. Geochemistry, Geophys. Geosyst. 24, e2023GC011125 (2023).

  85. Maity, D. & Agrawal, D. C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 308, 46–55 (2007).

    Article  CAS  Google Scholar 

  86. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC, 2007).

  87. Garrett, R. H. & Grisham, C. M. Biochemistry (Cengage Learning, 2010).

  88. Wu, Y.-Y., Lin, W. P. & Lee, C. C. A study of chemical reactions of silver and indium at 180 °C. J. Mater. Sci. Mater. Electron. 23, 2235–2244 (2012).

    Article  CAS  Google Scholar 

  89. Lin, S., Cho, C. & Chang, H. Interfacial reactions in Cu/Ga and Cu/Ga/Cu couples. J. Electron. Mater. 43, 204–211 (2014).

    Article  CAS  Google Scholar 

  90. Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, H. et al. A liquid gripper based on phase transitional metallic ferrofluid. Adv. Funct. Mater. 31, 2100274 (2021).

    Article  CAS  Google Scholar 

  92. Bai, K. et al. Effective magnetic susceptibility of suspensions of ferromagnetic particles. J. Appl. Phys. 124, 123901 (2018).

    Article  Google Scholar 

  93. Martin, A., Odier, P., Pinton, J.-F. & Fauve, S. Magnetic permeability of a diphasic flow, made of liquid gallium and iron beads. Eur. Phys. J. B 18, 337–341 (2000).

    Article  Google Scholar 

  94. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167–R181 (2003).

    Article  CAS  Google Scholar 

  95. Chen, B. C. et al. Hysteresis loss-induced temperature in ferromagnetic nanoparticle. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2013.2278311 (2014).

  96. Sun, X. et al. Stiffness tunable implanted electrode enabled by magnetic liquid metal for wireless hyperthermia. Appl. Mater. Today 27, 101495 (2022).

    Article  Google Scholar 

  97. Sun, X. et al. Flexible skin patch enabled tumor hybrid thermophysical therapy and adaptive antitumor immune response. Adv. Healthc. Mater. 12, 2202872 (2023).

    Article  CAS  Google Scholar 

  98. Wang, Q. et al. Magnetoactive liquid–solid phase transitional matter. Matter 6, 855–872 (2023).

    Article  CAS  Google Scholar 

  99. Fiorillo, F. in Characterization and Measurement of Magnetic Materials 25–88 (Elsevier, 2004).

  100. Zhao, R., Kim, Y., Chester, S. A., Sharma, P. & Zhao, X. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124, 244–263 (2019).

    Article  CAS  Google Scholar 

  101. Lu, Y. et al. Liquid metal-based magnetorheological fluid with a large magnetocaloric effect. ACS Appl. Mater. Interfaces 12, 48748–48755 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Sun, W., Yu, J. & Cai, Y. Influence of magnetic field, magnetic particle percentages, and particle diameters on the stiffness of magnetorheological fluids. J. Intell. Mater. Syst. Struct. 31, 2312–2325 (2020).

    Article  CAS  Google Scholar 

  103. Lu, Y. et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 1, 637–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. McAteer, M. A. et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat. Med. 13, 1253–1258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2019).

    Article  Google Scholar 

  106. Liu, S., Zhao, Y., Hao, W., Zhang, X.-D. & Ming, D. Micro- and nanotechnology for neural electrode–tissue interfaces. Biosens. Bioelectron. 170, 112645 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Li, S., Dong, C. & Lv, Y. Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering. Biomater. Adv. 139, 212975 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, D. et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale 13, 8817–8836 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Shen, B. G., Sun, J. R., Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545–4564 (2009).

    Article  CAS  Google Scholar 

  110. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lyubina, J., Schäfer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735–3739 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, Y. et al. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. Nat. Commun. 13, 1397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xing, W. et al. Cuttlefish-inspired self-adaptive liquid metal network enabling electromagnetic interference shielding and thermal management. Adv. Mater. Technol. 8, 1–9 (2023).

    Article  Google Scholar 

  114. Zou, Z. et al. 3D printing of liquid metals: recent advancements and challenges. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202213312 (2023).

  115. Chen, S., Cui, Z., Wang, H., Wang, X. & Liu, J. Liquid metal flexible electronics: past, present, and future. Appl. Phys. Rev. 10, 021308 (2023).

  116. Guo, R. et al. Semi-liquid-metal‐(Ni‐EGaIn)‐based ultraconformable electronic tattoo. Adv. Mater. Technol. 4, 1900183 (2019).

    Article  CAS  Google Scholar 

  117. Guo, R. et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv. Eng. Mater. 20, 1800054 (2018).

    Article  Google Scholar 

  118. Wang, X. et al. Ni-doped liquid metal printed highly stretchable and conformable strain sensor for multifunctional human-motion monitoring. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3276–3279 (IEEE, 2018).

  119. Hajalilou, A. et al. Digitally printable magnetic liquid metal composite for recyclable soft‐matter electronics. Adv. Mater. Technol. 8, 2201621 (2023).

    Article  CAS  Google Scholar 

  120. Ma, B., Xu, C., Cui, L., Zhao, C. & Liu, H. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence. ACS Appl. Mater. Interfaces 13, 5574–5582 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, C. et al. Guiding magnetic liquid metal for flexible circuit. Int. J. Extrem. Manuf. 3, 025102 (2021).

    Article  CAS  Google Scholar 

  122. Zhang, J. et al. Surface-embedded liquid metal electrodes with abrasion resistance via direct magnetic printing. ACS Appl. Mater. Interfaces 14, 53405–53412 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, Y. et al. A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29, 1903840 (2019).

    Article  Google Scholar 

  124. Hoang, T. T. et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications. Adv. Intell. Syst. 4, 2200282 (2022).

    Article  Google Scholar 

  125. Baharfar, M. & Kalantar-Zadeh, K. Emerging role of liquid metals in sensing. ACS Sens. 7, 386–408 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, H. et al. Shape‐deformable and locomotive MXene (Ti3C2Tx)‐encapsulated magnetic liquid metal for 3D‐motion-adaptive synapses. Adv. Funct. Mater. 33, 2210385 (2023).

    Article  CAS  Google Scholar 

  127. Kim, S. et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. ACS Appl. Mater. Interfaces 15, 28954–28963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cao, L. et al. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 32, 2000827 (2020).

    Article  CAS  Google Scholar 

  129. Li, J. et al. Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices. Nano Res. 16, 1764–1772 (2023).

    Article  CAS  Google Scholar 

  130. Zhu, R. et al. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022).

    Article  CAS  Google Scholar 

  131. He, X., Ni, M., Wu, J., Xuan, S. & Gong, X. Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity. J. Mater. Sci. Technol. 92, 60–68 (2021).

    Article  CAS  Google Scholar 

  132. He, X., Wu, J., Hu, T., Xuan, S. & Gong, X. A 3D-printed coaxial microfluidic device approach for generating magnetic liquid metal droplets with large size controllability. Microfluid. Nanofluidics 24, 30 (2020).

    Article  CAS  Google Scholar 

  133. Hu, L. et al. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl. Mater. Interfaces 11, 8685–8692 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, B. et al. Leech‐inspired shape-encodable liquid metal robots for reconfigurable circuit welding and transient electronics. Adv. Intell. Syst. 4, 2200080 (2022).

    Article  Google Scholar 

  135. Zhao, P., Yan, L. & Gao, X. Millirobot based on a phase-transformable magnetorheological liquid metal. ACS Appl. Mater. Interfaces 15, 37658–37667 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Jeong, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnetic three dimensional liquid metal manipulation. Lab Chip 19, 3261–3267 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Zhao, P., Yan, L. & Gao, X. Magnetic liquid metal droplet robot with multifunction and high output force in milli-newton. Soft Robot. 10, 1146–1158 (2023).

    Article  PubMed  Google Scholar 

  138. Jeong, J., Seo, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnet polarity dependent reversible dynamic behavior of magnetic liquid metal marble. Mater. Res. Express 7, 015708 (2020).

    Article  CAS  Google Scholar 

  139. Jeong, J., Seo, J., Chung, S. K., Lee, J.-B. & Kim, D. Magnetic field-induced recoverable dynamic morphological change of gallium-based liquid metal. J. Microelectromech. Syst. 29, 1208–1215 (2020).

    Article  CAS  Google Scholar 

  140. Li, X. et al. Programmable digital liquid metal droplets in reconfigurable magnetic fields. ACS Appl. Mater. Interfaces 12, 37670–37679 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, W., Liang, Q. & Chen, T. 3D manipulation of magnetic liquid metals. Adv. Intell. Syst. 2, 1900170 (2020).

    Article  Google Scholar 

  142. Zhang, Y. et al. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 22, 2923–2933 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Li, F. et al. Magnetically- and electrically-controllable functional liquid metal droplets. Adv. Mater. Technol. 4, 1800694 (2019).

    Article  Google Scholar 

  144. Liu, C., Li, D., Huang, J., Guo, Z. & Liu, W. High-performance magnetic and electric control of liquid metal droplets. Langmuir 39, 7495–7502 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J., Guo, R. & Liu, J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J. Mater. Chem. B 4, 5349–5357 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Merhebi, S. et al. Magnetic and conductive liquid metal gels. ACS Appl. Mater. Interfaces 12, 20119–20128 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, J., Soon, R. H., Wei, Z., Hu, W. & Sitti, M. Liquid metal–elastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots. Adv. Sci. 9, 2203730 (2022).

    Article  CAS  Google Scholar 

  148. Xu, Y. et al. Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022).

    Article  CAS  Google Scholar 

  149. Li, W. et al. Magneto-induced self-stratifying liquid metal–elastomer composites with high thermal conductivity for soft actuator. Cell Rep. Phys. Sci. 4, 101209 (2023).

    Article  CAS  Google Scholar 

  150. Hong, K. et al. An ultrastretchable electrical switch fiber with a magnetic liquid metal core for remote magnetic actuation. Polymers 13, 2407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Peng, M. et al. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid.Soft Sci. 3, 36 (2023).

    Article  CAS  Google Scholar 

  152. Zhao, R., Dai, H. & Yao, H. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robot. Autom. Lett. 7, 4535–4541 (2022).

    Article  Google Scholar 

  153. Zhou, X. et al. Variable stiffness wires based on magnetorheological liquid metals. Int. J. Smart Nano Mater. 13, 232–243 (2022).

    Article  Google Scholar 

  154. Zhang, M. et al. A magnetically and thermally controlled liquid metal variable stiffness material. Adv. Eng. Mater. 25, 2201296 (2023).

    Article  CAS  Google Scholar 

  155. Ge, H., Li, H., Mei, S. & Liu, J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew. Sustain. Energy Rev. 21, 331–346 (2013).

    Article  CAS  Google Scholar 

  156. Duan, L. et al. Colourful liquid metals. Nat. Rev. Mater. 7, 929–931 (2022).

    Article  Google Scholar 

  157. Duan, L. et al. Surface optics and color effects of liquid metal materials.Adv. Mater. 35, 2210515 (2023).

    Article  CAS  Google Scholar 

  158. Cui, Y. et al. Interfacial wetting behaviors of liquid Ga alloys/FeGa3 based on metallic bond interaction. Colloids Surf. A 569, 102–109 (2019).

    Article  CAS  Google Scholar 

  159. Pu, H., Jiang, F. & Yang, Z. Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite. Mater. Chem. Phys. 100, 10–14 (2006).

    Article  CAS  Google Scholar 

  160. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, H. et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33, 2103104 (2021).

  162. Tan, S., Gui, H., Yuan, B. & Liu, J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl. Phys. Lett. 107, 071904 (2015).

    Article  Google Scholar 

  163. Jin, S. W. et al. Stretchable loudspeaker using liquid metal microchannel. Sci. Rep. https://doi.org/10.1038/srep11695 (2015).

  164. Guo, R., Sheng, L., Gong, H. Y. & Liu, J. Liquid metal spiral coil enabled soft electromagnetic actuator. Sci. China Technol. Sci. 61, 516–521 (2018).

    Article  CAS  Google Scholar 

  165. Zhang, X.-D., Zhou, Y.-X. & Liu, J. A novel layered stack electromagnetic pump towards circulating metal fluid: design, fabrication and test. Appl. Therm. Eng. 179, 115610 (2020).

    Article  Google Scholar 

  166. Zhou, Y.-X., Zu, J.-S. & Liu, J. Insights into fluidic endogenous magnetism and magnetic monopoles from a liquid metal droplet machine. Soft Sci. 1, 15 (2021).

    CAS  Google Scholar 

  167. Tang, J. et al. Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01540-x (2023).

  168. Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Fatima, S. S. et al. Current state and future prospects of liquid metal catalysis. Nat. Catal. 6, 1131–1139 (2023).

    Article  Google Scholar 

  170. Cebeci, Y. & Sönmez, İ. A study on the relationship between critical surface tension of wetting and oil agglomeration recovery of calcite. J. Colloid Interface Sci. 273, 300–305 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, T., Sen, P. & Kim, C.-J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 21, 443–450 (2012).

    Article  CAS  Google Scholar 

  172. Hao, Y., Gao, J., Lv, Y. & Liu, J. Low melting point alloys enabled stiffness tunable advanced materials. Adv. Funct. Mater. 32, 2201942 (2022).

    Article  CAS  Google Scholar 

  173. Saien, J. & Fadaei, V. The study of interfacial tension of kerosene–water under influence of CTAB surfactant and different size silica nanoparticles. J. Mol. Liq. 255, 439–446 (2018).

    Article  CAS  Google Scholar 

  174. Dai, J. & Wang, Z. A comparison of the impregnation of cellulose insulation by ester and mineral oil. IEEE Trans. Dielectr. Electr. Insul. 15, 374–381 (2008).

    Article  Google Scholar 

  175. Barca, F., Caporossi, T. & Rizzo, S. Silicone oil: different physical proprieties and clinical applications. Biomed. Res. Int. https://doi.org/10.1155/2014/502143 (2014).

  176. Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics (CRC, 2016).

  177. Jain, N., Zhang, X., Hawkett, B. S. & Warr, G. G. Stable and water-tolerant ionic liquid ferrofluids. ACS Appl. Mater. Interfaces 3, 662–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Handschuh-Wang, S., Stadler, F. J. & Zhou, X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 125, 20113–20142 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China project nos. 51890893, 52076213 and 91748206; the Frontier Project of the Chinese Academy of Sciences; and the 2115 Talent Development Program of China Agricultural University. The authors thank M. Guo and J. Gao for help with drawing some of the images in this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion, writing and editing of the Review. Y.L., Z.H. and J.L. supervised the Review.

Corresponding authors

Correspondence to Yongyu Lu, Zhizhu He or Jing Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yi Du, Long Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAMEO chemicals database: https://cameochemicals.noaa.gov/

European Chemicals Agency: https://echa.europa.eu/information-on-chemicals

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, W., Lu, Y., Wang, H. et al. Liquid-metal-based magnetic fluids. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00679-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00679-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing