Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design principles for strong and tough hydrogels

Abstract

Hydrogels are crosslinked polymer networks swollen with water. Owing to their soft and water-containing nature, hydrogels are promising materials for applications in many fields, such as biomedical engineering, soft robotics and environmental studies. One of the main obstacles to the practical application of hydrogels is their low mechanical strength and toughness. Since the 2000s, many breakthroughs in the development of mechanically strong and tough hydrogels have led to enormous advances in the study of soft materials and our understanding of their failure mechanisms. Research has also been conducted on long-term mechanical stability — that is, the cyclic fatigue resistance and self-strengthening properties of hydrogels — to enable their application as load-bearing materials. This Review provides a comprehensive overview of the design principles for tough hydrogels. Strategies to obtain self-growing and reinforced hydrogels that can adapt to their surrounding mechanical environment are also presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogel swelling, deswelling and fracture behaviours.
Fig. 2: Swelling (elastic) hydrogels.
Fig. 3: Deswelling (viscoelastic) hydrogels and hydrogels with high-order structure.
Fig. 4: Fracture energy and fatigue threshold versus elastic modulus and strength of hydrogels fabricated by various strategies.
Fig. 5: Fatigue fracture measurement and the mechanisms proposed to enhance the fatigue resistance of hydrogels.
Fig. 6: Strategies proposed for mechanochemical strengthening and self-growing hydrogels.
Fig. 7: Force-induced self-growing and strengthening in DN hydrogels.

Similar content being viewed by others

References

  1. El-Sherbiny, I. M. & Yacoub, M. H. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 38 (2013).

    Article  Google Scholar 

  2. Nonoyama, T. & Gong, J. P. Tough double network hydrogel and its biomedical applications. Annu. Rev. Chem. Biomol. Eng. 12, 393–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  CAS  Google Scholar 

  4. Long, R. & Hui, C.-Y. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter 12, 8069–8086 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, J., Li, J., Vlassak, J. J. & Suo, Z. Fatigue fracture of hydrogels. Extreme Mech. Lett. 10, 24–31 (2017).

    Article  Google Scholar 

  7. Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K. & Meunier, J. Delayed fracture of an inhomogeneous soft solid. Science 280, 265–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka, Y., Fukao, K. & Miyamoto, Y. Fracture energy of gels. Eur. Phys. J. E 3, 395–401 (2000).

    Article  CAS  Google Scholar 

  9. Flory, P. J. & Rehner, J. Jr. Statistical mechanics of cross-linked polymer networks II. swelling. J. Chem. Phys. 11, 521–526 (2004).

    Article  Google Scholar 

  10. Hong, W., Zhao, X., Zhou, J. & Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793 (2008).

    Article  CAS  Google Scholar 

  11. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  12. Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).

    Article  CAS  Google Scholar 

  15. Liu, C. et al. Tough hydrogels with rapid self-reinforcement. Science 372, 1078–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Nonoyama, T. et al. Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Adv. Mater. 32, e1905878 (2020).

    Article  PubMed  Google Scholar 

  17. Haraguchi, K. & Takehisa, T. Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120 (2002).

    Article  CAS  Google Scholar 

  18. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Karino, T., Shibayama, M. & Ito, K. Slide-ring gel: topological gel with freely movable cross-links. Phys. B Condens. Matter 385–386, 692–696 (2006).

    Article  Google Scholar 

  20. Bin Imran, A. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014).

    Article  Google Scholar 

  21. Jiang, L. et al. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30, 5013–5019 (2018).

    Article  CAS  Google Scholar 

  22. Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008).

    Article  CAS  Google Scholar 

  23. Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U.-I. & Sakai, T. ‘Nonswellable’ hydrogel without mechanical hysteresis. Science 343, 873–875 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Ohira, M. et al. Star-polymer-DNA gels showing highly predictable and tunable mechanical responses. Adv. Mater. 34, e2108818 (2022).

    Article  PubMed  Google Scholar 

  25. Shibayama, M., Li, X. & Sakai, T. Precision polymer network science with tetra-PEG gels — a decade history and future. Colloid Polym. Sci. 297, 1–12 (2018).

    Article  Google Scholar 

  26. Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Nian, G., Kim, J., Bao, X. & Suo, Z. Making highly elastic and tough hydrogels from doughs. Adv. Mater. 34, e2206577 (2022).

    Article  PubMed  Google Scholar 

  28. Kamiyama, Y. et al. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci. Adv. 8, eadd0226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakajima, T. et al. Tough double-network gels and elastomers from the nonprestretched first network. ACS Macro Lett. 8, 1407–1412 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Nakajima, T. et al. A universal molecular stent method to toughen any hydrogels based on double network concept. Adv. Funct. Mater. 22, 4426–4432 (2012).

    Article  CAS  Google Scholar 

  31. Zheng, Y. et al. In situ and real-time visualization of mechanochemical damage in double-network hydrogels by prefluorescent probe via oxygen-relayed radical trapping. J. Am. Chem. Soc. 145, 7376–7389 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    Article  CAS  Google Scholar 

  33. Gong, J. P. Materials both tough and soft. Science 344, 161–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, X. et al. A mechanically strong, highly stable, thermoplastic, and self‐healable supramolecular polymer hydrogel. Adv. Mater. 27, 3566–3571 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Hu, X., Vatankhah-Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y. J. et al. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater. 31, 1430–1440 (2019).

    Article  CAS  Google Scholar 

  37. Han, Z. et al. A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8, eabl5066 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, P., Ma, S., Wang, X. & Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Luo, F. et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 27, 2722–2727 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cui, K. et al. Multiscale energy dissipation mechanism in tough and self-healing hydrogels. Phys. Rev. Lett. 121, 185501 (2018).

    Article  PubMed  Google Scholar 

  41. Cui, K. et al. Phase separation behavior in tough and self-healing polyampholyte hydrogels. Macromolecules 53, 5116–5126 (2020).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Sci. Adv. 7, eabe8210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo, H., Sanson, N., Hourdet, D. & Marcellan, A. Thermoresponsive toughening with crack bifurcation in phase‐separated hydrogels under isochoric conditions. Adv. Mater. 28, 5857–5864 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, Y. et al. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater. 27, 1605350 (2017).

    Article  Google Scholar 

  45. Li, J., Suo, Z. & Vlassak, J. J. Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2, 6708–6713 (2014).

    Article  PubMed  Google Scholar 

  46. Holloway, J. L., Lowman, A. M. & Palmese, G. R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9, 826–833 (2013).

    Article  CAS  Google Scholar 

  47. Liang, X. et al. Anisotropically fatigue-resistant hydrogels. Adv. Mater. 33, e2102011 (2021).

    Article  PubMed  Google Scholar 

  48. Mredha, M. T. I. et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30, 1704937 (2018).

    Article  Google Scholar 

  49. Zhou, Y. et al. The stiffness-threshold conflict in polymer networks and a resolution. J. Appl. Mech. 87, 031002 (2020).

    Article  CAS  Google Scholar 

  50. Zhang, W. et al. Fatigue of double-network hydrogels. Eng. Fract. Mech. 187, 74–93 (2018).

    Article  Google Scholar 

  51. Zhang, W., Hu, J., Yang, H., Suo, Z. & Lu, T. Fatigue-resistant adhesion II: swell tolerance. Extreme Mech. Lett. 43, 101182 (2021).

    Article  Google Scholar 

  52. Liu, P., Zhang, Y., Guan, Y. & Zhang, Y. Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35, 2210021 (2023).

    Article  CAS  Google Scholar 

  53. Lei, H. et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 11, 4032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi, X. et al. Double hydrogen‐bonding reinforced high‐performance supramolecular hydrogel thermocell for self‐powered sensing remote‐controlled by light. Adv. Funct. Mater. 33, 2211720 (2023).

    Article  CAS  Google Scholar 

  55. Xiao, Y. et al. Fatigue of amorphous hydrogels with dynamic covalent bonds. Extreme Mech. Lett. 53, 101679 (2022).

    Article  Google Scholar 

  56. Yang, H., Chen, X., Sun, B., Tang, J. & Vlassak, J. J. Fracture tolerance induced by dynamic bonds in hydrogels. J. Mech. Phys. Solids 169, 105083 (2022).

    Article  CAS  Google Scholar 

  57. Liu, B. et al. Tough and fatigue-resistant polymer networks by crack tip softening. Proc. Natl Acad. Sci. USA 120, e2217781120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, X. et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. U.S.A. 117, 7606–7612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, G., Kim, J., Hassan, S. & Suo, Z. Self-assembled nanocomposites of high water content and load-bearing capacity. Proc. Natl Acad. Sci. USA 119, e2203962119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng, Y. et al. Nanophase separation in immiscible double network elastomers induces synergetic strengthening, toughening, and fatigue resistance. Chem. Mater. 33, 3321–3334 (2021).

    Article  Google Scholar 

  61. Liu, J. et al. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 11, 1071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiang, C. et al. Stretchable and fatigue-resistant materials. Mater. Today 34, 7–16 (2020).

    Article  CAS  Google Scholar 

  63. Sun, D. et al. Enhance fracture toughness and fatigue resistance of hydrogels by reversible alignment of nanofibers. ACS Appl. Mater. Interfaces 14, 49389–49397 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Lin, S., Liu, J., Liu, X. & Zhao, X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl Acad. Sci. USA 116, 10244–10249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, M., Sun, S., Dong, G., Long, F. & Butcher, J. T. Soft, strong, tough, and durable protein-based fiber hydrogels. Proc. Natl Acad. Sci. USA 120, e2213030120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Su, G. et al. Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. J. Mater. Chem. A 8, 2074–2082 (2020).

    Article  CAS  Google Scholar 

  67. Liang, X. et al. Bioinspired 2D isotropically fatigue-resistant hydrogels. Adv. Mater. 34, e2107106 (2022).

    Article  PubMed  Google Scholar 

  68. Jia, L., Wu, S., Yuan, R., Xiang, T. & Zhou, S. Biomimetic microstructured antifatigue fracture hydrogel sensor for human motion detection with enhanced sensing sensitivity. ACS Appl. Mater. Interfaces 14, 27371–27382 (2022).

    Article  CAS  Google Scholar 

  69. Lake, G. & Thomas, A. The strength of highly elastic materials. Proc. R. Soc. Lond. A 300, 108–119 (1967).

    Article  CAS  Google Scholar 

  70. Jeon, I., Cui, J., Illeperuma, W. R., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Tan, S., Wang, C., Yang, B., Luo, J. & Wu, Y. Precision polymer network science with tetra-PEG gels — a decade history and future. Colloid Polym. Sci. 34, e2206904 (2022).

    Google Scholar 

  72. Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Xiong, X., Wang, H., Xue, L. & Cui, J. Self-growing organic materials. Angew. Chem. Int. Ed. 62, e202306565 (2023).

    Article  CAS  Google Scholar 

  74. Ji, D. & Kim, J. Recent strategies for strengthening and stiffening tough hydrogels. Adv. Nanobiomed. Res. 1, 2100026 (2021).

    Article  CAS  Google Scholar 

  75. Long, R., Hui, C.-Y., Gong, J. P. & Bouchbinder, E. The fracture of highly deformable soft materials: a tale of two length scales. Annu. Rev. Condens. Matter Phys. 12, 71–94 (2020).

    Article  Google Scholar 

  76. Arruda, E. M. & Boyce, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993).

    Article  CAS  Google Scholar 

  77. Gent, A. N. A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996).

    Article  CAS  Google Scholar 

  78. Zhao, X. A theory for large deformation and damage of interpenetrating polymer networks. J. Mech. Phys. Solids 60, 319–332 (2012).

    Article  CAS  Google Scholar 

  79. Richbourg, N. R. & Peppas, N. A. The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog. Polym. Sci. 105, 101243 (2020).

    Article  CAS  Google Scholar 

  80. Melly, S. K., Liu, L., Liu, Y. & Leng, J. A review on material models for isotropic hyperelasticity. Int. J. Mech. Syst. Dyn. 1, 71–88 (2021).

    Article  Google Scholar 

  81. Boyce, M. C. & Arruda, E. M. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000).

    Article  CAS  Google Scholar 

  82. Marckmann, G. & Verron, E. Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006).

    Article  CAS  Google Scholar 

  83. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  84. Zheng, Y., Nakajima, T., Cui, W., Hui, C.-Y. & Gong, J. P. Swelling effect on the yielding, elasticity, and fracture of double-network hydrogels with an inhomogeneous first network. Macromolecules 56, 3962–3972 (2023).

    Article  CAS  Google Scholar 

  85. Hoshino, K. I., Nakajima, T., Matsuda, T., Sakai, T. & Gong, J. P. Network elasticity of a model hydrogel as a function of swelling ratio: from shrinking to extreme swelling states. Soft Matter 14, 9693–9701 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Matsuda, T., Kawakami, R., Nakajima, T., Hane, Y. & Gong, J. P. Revisiting the origins of the fracture energy of tough double-network hydrogels with quantitative mechanochemical characterization of the damage zone. Macromolecules 54, 10331–10339 (2021).

    Article  CAS  Google Scholar 

  87. Sun, T. L. et al. Bulk energy dissipation mechanism for the fracture of tough and self-healing hydrogels. Macromolecules 50, 2923–2931 (2017).

    Article  CAS  Google Scholar 

  88. de Gennes, P.-G. Soft adhesives. Langmuir 12, 4497–4500 (1996).

    Article  Google Scholar 

  89. Chen, C., Wang, Z. & Suo, Z. Flaw sensitivity of highly stretchable materials. Extreme Mech. Lett. 10, 50–57 (2017).

    Article  Google Scholar 

  90. Mayumi, K. & Ito, K. Structure and dynamics of polyrotaxane and slide-ring materials. Polymer 51, 959–967 (2010).

    Article  CAS  Google Scholar 

  91. Griffith, A. A. V. I. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921).

    Article  Google Scholar 

  92. Bai, R., Yang, J. & Suo, Z. Fatigue of hydrogels. Eur. J. Mech. A 74, 337–370 (2019).

    Article  Google Scholar 

  93. Creton, C. & Ciccotti, M. Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016).

    Article  PubMed  Google Scholar 

  94. Brannon-Peppas, L. & Peppas, N. A. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem. Eng. Sci. 46, 715–722 (1991).

    Article  CAS  Google Scholar 

  95. Tang, J. et al. Swelling behaviors of hydrogels with alternating neutral/highly charged sequences. Macromolecules 53, 8244–8254 (2020).

    Article  CAS  Google Scholar 

  96. Sun, T. L. et al. Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors. Soft matter 11, 9355–9366 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Fan, H., Wang, J. & Jin, Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds. Macromolecules 51, 1696–1705 (2018).

    Article  CAS  Google Scholar 

  98. Canal, T. & Peppas, N. A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 23, 1183–1193 (2004).

    Article  Google Scholar 

  99. Mussault, C., Guo, H., Sanson, N., Hourdet, D. & Marcellan, A. Effect of responsive graft length on mechanical toughening and transparency in microphase-separated hydrogels. Soft Matter 15, 8653–8666 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Hartquist, C. M. et al. An elastomer with ultrahigh strain-induced crystallization. Sci. Adv. 9, eadj0411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsunaga, T., Sakai, T., Akagi, Y., Chung, U.-I. & Shibayama, M. Structure characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42, 1344–1351 (2009).

    Article  CAS  Google Scholar 

  102. Li, X., Nakagawa, S., Tsuji, Y., Watanabe, N. & Shibayama, M. Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation. Sci. Adv. 5, eaax8647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, X. A benchmark for gel structures: bond percolation enables the fabrication of extremely homogeneous gels. Polym. J. 53, 765–777 (2021).

    Article  CAS  Google Scholar 

  104. Sugimura, A. et al. Mechanical properties of a polymer network of tetra-PEG gel. Polym. J. 45, 300–306 (2012).

    Article  Google Scholar 

  105. Akagi, Y., Sakurai, H., Gong, J. P., Chung, U.-I. & Sakai, T. Fracture energy of polymer gels with controlled network structures. J. Chem. Phys. 139, 144905 (2013).

    Article  PubMed  Google Scholar 

  106. Mayumi, K., Liu, C., Yasuda, Y. & Ito, K. Softness, elasticity, and toughness of polymer networks with slide-ring cross-links. Gels 7, 91 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Norioka, C., Inamoto, Y., Hajime, C., Kawamura, A. & Miyata, T. A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 13, 34 (2021).

    Article  CAS  Google Scholar 

  108. Wang, S. et al. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance. Science 380, 1248–1252 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, S., Panyukov, S., Craig, S. L. & Rubinstein, M. Contribution of unbroken strands to the fracture of polymer networks. Macromolecules 56, 2309–2318 (2023).

    Article  CAS  Google Scholar 

  110. Lin, S. & Zhao, X. Fracture of polymer networks with diverse topological defects. Phys. Rev. E 102, 052503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Na, Y.-H. et al. Necking phenomenon of double-network gels. Macromolecules 39, 4641–4645 (2006).

    Article  CAS  Google Scholar 

  112. Webber, R. E., Creton, C., Brown, H. R. & Gong, J. P. Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules 40, 2919–2927 (2007).

    Article  CAS  Google Scholar 

  113. Fukao, K. et al. Effect of relative strength of two networks on the internal fracture process of double network hydrogels as revealed by in situ small-angle X-ray scattering. Macromolecules 53, 1154–1163 (2020).

    Article  CAS  Google Scholar 

  114. Matsuda, T. et al. Yielding criteria of double network hydrogels. Macromolecules 49, 1865–1872 (2016).

    Article  CAS  Google Scholar 

  115. Yu, Q. M., Tanaka, Y., Furukawa, H., Kurokawa, T. & Gong, J. P. Direct observation of damage zone around crack tips in double-network gels. Macromolecules 42, 3852–3855 (2009).

    Article  CAS  Google Scholar 

  116. Brown, H. R. A model of the fracture of double network gels. Macromolecules 40, 3815–3818 (2007).

    Article  CAS  Google Scholar 

  117. Tanaka, Y. A local damage model for anomalous high toughness of double-network gels. Europhys. Lett. 78, 56005 (2007).

    Article  Google Scholar 

  118. Matsuda, T., Kawakami, R., Nakajima, T. & Gong, J. P. Crack tip field of a double-network gel: visualization of covalent bond scission through mechanoradical polymerization. Macromolecules 53, 8787–8795 (2020).

    Article  CAS  Google Scholar 

  119. Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, Y., Yeh, C. J., Qi, Y., Long, R. & Creton, C. From force-responsive molecules to quantifying and mapping stresses in soft materials. Sci. Adv. 6, eaaz5093 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Slootman, J. et al. Quantifying rate- and temperature-dependent molecular damage in elastomer fracture. Phys. Rev. X 10, 041045 (2020).

    CAS  Google Scholar 

  122. Slootman, J., Yeh, C. J., Millereau, P., Comtet, J. & Creton, C. A molecular interpretation of the toughness of multiple network elastomers at high temperature. Proc. Natl Acad. Sci. USA 119, e2116127119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao, X. EML webinar overview: extreme mechanics of soft materials for merging human-machine intelligence. Extreme Mech. Lett. 39, 100784 (2020).

    Article  Google Scholar 

  124. Zheng, Y. et al. How chain dynamics affects crack initiation in double-network gels. Proc. Natl Acad. Sci. USA 118, e2111880118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zheng, Y., Wang, Y., Nakajima, T. & Gong, J. P. Effect of predamage on the fracture energy of double-network hydrogels. ACS Macro Lett. 13, 130–137 (2024).

    Article  CAS  Google Scholar 

  126. Tanaka, Y. et al. Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B 109, 11559–11562 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Nakajima, T. et al. True chemical structure of double network hydrogels. Macromolecules 42, 2184–2189 (2009).

    Article  CAS  Google Scholar 

  128. Wang, W., Narain, R. & Zeng, H. Rational design of self-healing tough hydrogels: a mini review. Front. Chem. 6, 497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  CAS  Google Scholar 

  130. Cui, J. & del Campo, A. Multivalent H-bonds for self-healing hydrogels. Chem. Commun. 48, 9302–9304 (2012).

    Article  CAS  Google Scholar 

  131. Beijer, F. H., Sijbesma, R. P., Kooijman, H., Spek, A. L. & Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 120, 6761–6769 (1998).

    Article  CAS  Google Scholar 

  132. Zhang, X. N. et al. A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules 51, 8136–8146 (2018).

    Article  CAS  Google Scholar 

  133. Zhang, W. et al. Fracture toughness and fatigue threshold of tough hydrogels. ACS Macro Lett. 8, 17–23 (2018).

    Article  PubMed  Google Scholar 

  134. Zhou, X. et al. Shape morphing of anisotropy-encoded tough hydrogels enabled by asymmetrically-induced swelling and site-specific mechanical strengthening. J. Mater. Chem. B 6, 4731–4737 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Ye, Y. N. et al. Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel. Proc. Natl Acad. Sci. USA 118, e2014694118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, H. J. et al. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 28, 4884–4890 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Ihsan, A. B. et al. Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49, 4245–4252 (2016).

    Article  Google Scholar 

  138. Cui, K. et al. Effect of structure heterogeneity on mechanical performance of physical polyampholytes hydrogels. Macromolecules 52, 7369–7378 (2019).

    Article  CAS  Google Scholar 

  139. Li, X. et al. Role of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching. Sci. Adv. 9, eadj6856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, X. & Gong, J. P. Role of dynamic bonds on fatigue threshold of tough hydrogels. Proc. Natl Acad. Sci. USA 119, e2200678119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, X. et al. Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels. Macromolecules 56, 535–544 (2023).

    Article  CAS  Google Scholar 

  142. Spruijt, E., Sprakel, J., Lemmers, M., Stuart, M. A. & van der Gucht, J. Relaxation dynamics at different time scales in electrostatic complexes: time-salt superposition. Phys. Rev. Lett. 105, 208301 (2010).

    Article  PubMed  Google Scholar 

  143. Hassan, C. M. & Peppas, N. A. in Biopolymers: PVA Hydrogels, Anionic Polymerisation Nanocomposites (eds Abe, A. et al.) 37–65 (Springer, 2000).

  144. Zhang, R. et al. Stretch-induced complexation reaction between poly (vinyl alcohol) and iodine: an in situ synchrotron radiation small- nd wide-angle X-ray scattering study. Soft Matter 14, 2535–2546 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Wu, Y. et al. Solvent-exchange assisted wet-annealing: a new strategy for super-strong, tough, stretchable and anti-fatigue hydrogels. Adv. Mater. 35, e2210624 (2023).

    Article  PubMed  Google Scholar 

  146. Lin, S. & Zhao, X. Nanostructured artificial-muscle fibres. Nat. Nanotechnol. 17, 677–678 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, S. et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33, e2007829 (2021).

    Article  PubMed  Google Scholar 

  148. Cui, W. et al. Strong tough conductive hydrogels via the synergy of ion‐induced cross‐linking and salting‐out. Adv. Funct. Mater. 32, 2204823 (2022).

    Article  CAS  Google Scholar 

  149. Zhang, Q. et al. Stretch-induced structural evolution of poly (vinyl alcohol) film in water at different temperatures: an in-situ synchrotron radiation small-and wide-angle X-ray scattering study. Polymer 142, 233–243 (2018).

    Article  Google Scholar 

  150. Lin, S. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhou, W. et al. Toughening mystery of natural rubber deciphered by double network incorporating hierarchical structures. Sci. Rep. 4, 7502 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Katz, J. Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 13, 410–416 (1925).

    Article  Google Scholar 

  153. Trabelsi, S., Albouy, P. A. & Rault, J. Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 35, 10054–10061 (2002).

    Article  CAS  Google Scholar 

  154. Haque, M. A., Kamita, G., Kurokawa, T., Tsujii, K. & Gong, J. P. Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22, 5110–5114 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Haque, M. A., Kurokawa, T., Kamita, G., Yue, Y. & Gong, J. P. Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem. Mater. 23, 5200–5207 (2011).

    Article  CAS  Google Scholar 

  156. Haque, M. A. et al. Lamellar bilayer to fibril structure transformation of tough photonic hydrogel under elongation. Macromolecules 53, 4711–4721 (2020).

    Article  CAS  Google Scholar 

  157. Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011).

    Article  CAS  Google Scholar 

  158. Yue, Y. et al. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 5, 4659 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Yue, Y., Norikane, Y. & Gong, J. P. Ultrahigh‐water‐content photonic hydrogels with large electro‐optic responses in visible to near‐infrared region. Adv. Optical Mater. 9, 2002198 (2021).

    Article  CAS  Google Scholar 

  160. Chen, W., Zhang, Z. & Kouwer, P. H. J. Magnetically driven hierarchical alignment in biomimetic fibrous hydrogels. Small 18, e2203033 (2022).

    Article  PubMed  Google Scholar 

  161. Li, H.-J., Jiang, H. & Haraguchi, K. Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks. Macromolecules 51, 529–539 (2018).

    Article  CAS  Google Scholar 

  162. Kamio, E., Yasui, T., Iida, Y., Gong, J. P. & Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 29, 1704118 (2017).

    Article  Google Scholar 

  163. Pan, C., Wang, J., Ji, X. & Liu, L. Stretchable, compressible, self-healable carbon nanotube mechanically enhanced composite hydrogels with high strain sensitivity. J. Mater. Chem. C 8, 1933–1942 (2020).

    Article  CAS  Google Scholar 

  164. Li, S.-N. et al. Constructing dual ionically cross-linked poly(acrylamide-co-acrylic acid)/chitosan hydrogel materials embedded with chitosan decorated halloysite nanotubes for exceptional mechanical performance. Compos. B Eng. 194, 108046 (2020).

    Article  CAS  Google Scholar 

  165. Zhu, X., Zhang, W., Lu, G., Zhao, H. & Wang, L. Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane-graphene oxide network resulting from multiple dynamic bonds. ACS Nano 16, 16724–16735 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Liang, X. et al. Impact-resistant hydrogels by harnessing 2D hierarchical structures. Adv. Mater. 35, e2207587 (2023).

    Article  PubMed  Google Scholar 

  167. Haraguchi, K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 43, 223–241 (2011).

    Article  CAS  Google Scholar 

  168. Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Sano, K., Ishida, Y. & Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem. Int. Ed. 57, 2532–2543 (2018).

    Article  CAS  Google Scholar 

  170. Ji, D., Nguyen, T. L. & Kim, J. Bioinspired structural composite hydrogels with a combination of high strength, stiffness, and toughness. Adv. Funct. Mater. 31, 2101095 (2021).

    Article  CAS  Google Scholar 

  171. Ning, J., Li, G. & Haraguchi, K. Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 46, 5317–5328 (2013).

    Article  CAS  Google Scholar 

  172. Klein, A., Whitten, P. G., Resch, K. & Pinter, G. Nanocomposite hydrogels: fracture toughness and energy dissipation mechanisms. J. Polym. Sci. B 53, 1763–1773 (2015).

    Article  CAS  Google Scholar 

  173. Haraguchi, K., Farnworth, R., Ohbayashi, A. & Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules 36, 5732–5741 (2003).

    Article  CAS  Google Scholar 

  174. Wang, T. et al. Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–laponite nanocomposite hydrogels. Soft Matter 8, 774–783 (2012).

    Article  CAS  Google Scholar 

  175. Wang, Z. et al. Stretchable materials of high toughness and low hysteresis. Proc. Natl Acad. Sci. USA 116, 5967–5972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hui, C.-Y., Liu, Z. & Phoenix, S. L. Size effect on elastic stress concentrations in unidirectional fiber reinforced soft composites. Extreme Mech. Lett. 33, 100573 (2019).

    Article  Google Scholar 

  177. Cui, W. et al. Fiber-reinforced viscoelastomers show extraordinary crack resistance that exceeds metals. Adv. Mater. 32, e1907180 (2020).

    Article  PubMed  Google Scholar 

  178. Agrawal, A., Rahbar, N. & Calvert, P. D. Strong fiber-reinforced hydrogel. Acta Biomater. 9, 5313–5318 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. King, D. R. et al. Extremely tough composites from fabric reinforced polyampholyte hydrogels. Mater. Horiz. 2, 584–591 (2015).

    Article  CAS  Google Scholar 

  180. Bai, R., Yang, J., Morelle, X. P., Yang, C. & Suo, Z. Fatigue fracture of self-recovery hydrogels. ACS Macro Lett. 7, 312–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Lin, S., Ni, J., Zheng, D. & Zhao, X. Fracture and fatigue of ideal polymer networks. Extreme Mech. Lett. 48, 101399 (2021).

    Article  Google Scholar 

  182. Lei, Z., Gao, W., Zhu, W. & Wu, P. Anti‐fatigue and highly conductive thermocells for continuous electricity generation. Adv. Funct. Mater. 32, 2201021 (2022).

    Article  CAS  Google Scholar 

  183. Ni, J. et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. Matter 4, 1919–1934 (2021).

    Article  CAS  Google Scholar 

  184. Li, C., Yang, H., Suo, Z. & Tang, J. Fatigue-resistant elastomers. J. Mech. Phys. Solids 134, 103751 (2020).

    Article  Google Scholar 

  185. Ramirez, A. L. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Schoenfeld, B. J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength. Cond. Res. 24, 2857–2872 (2010).

    Article  PubMed  Google Scholar 

  187. Wei, G. et al. Sustainable mechanochemical growth of double-network hydrogels supported by vascular-like perfusion. Mater. Horiz. 10, 4882–4891 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Mu, Q. et al. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 13, 6213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang, Z. J. et al. Azo-crosslinked double-network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc. 144, 3154–3161 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Seshimo, K. et al. Segmented polyurethane elastomers with mechanochromic and self-strengthening functions. Angew. Chem. Int. Ed. 60, 8406–8409 (2021).

    Article  Google Scholar 

  191. Li, X. et al. Diselenide as a dual functional mechanophore capable of stress self-reporting and self-strengthening in polyurethane elastomers. CCS Chem. 5, 925–933 (2023).

    Article  CAS  Google Scholar 

  192. Kida, J., Aoki, D. & Otsuka, H. Self-strengthening of cross-linked elastomers via the use of dynamic covalent macrocyclic mechanophores. ACS Macro Lett. 10, 558–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Yang, Y. et al. Self-strengthening, self-welding, shape memory, and recyclable polybutadiene-based material driven by dual-dynamic units. ACS Appl. Mater. Interfaces 14, 3344–3355 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Akagi, Y., Gong, J. P., Chung, U.-I. & Sakai, T. Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 46, 1035–1040 (2013).

    Article  CAS  Google Scholar 

  195. Ito, K. Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci. 14, 28–34 (2010).

    Article  CAS  Google Scholar 

  196. Nakajima, T., Kurokawa, T., Furukawa, H. & Gong, J. P. Effect of the constituent networks of double-network gels on their mechanical properties and energy dissipation process. Soft Matter 16, 8618–8627 (2020).

    Article  PubMed  Google Scholar 

  197. Bai, R. et al. Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 15, 91–96 (2017).

    Article  Google Scholar 

  198. Yu, H. C. et al. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv. Mater. 32, e2005171 (2020).

    Article  PubMed  Google Scholar 

  199. Guo, Y. Z. et al. Facile preparation of cellulose hydrogel with Achilles tendon-like super strength through aligning hierarchical fibrous structure. Chem. Eng. J. 428, 132040 (2022).

    Article  CAS  Google Scholar 

  200. Nonoyama, T. Robust hydrogel–bioceramics composite and its osteoconductive properties. Polym. J. 52, 709–716 (2020).

    Article  CAS  Google Scholar 

  201. Zhang, E., Bai, R., Morelle, X. P. & Suo, Z. Fatigue fracture of nearly elastic hydrogels. Soft Matter 14, 3563–3571 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Zhang, W., Gao, Y., Yang, H., Suo, Z. & Lu, T. Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mech. Lett. 39, 100813 (2020).

    Article  Google Scholar 

  203. Sakai, T. Gelation mechanism and mechanical properties of tetra-PEG gel. React. Funct. Polym. 73, 898–903 (2013).

    Article  CAS  Google Scholar 

  204. Lin, S., Londono, C. D., Zheng, D. & Zhao, X. An extreme toughening mechanism for soft materials. Soft Matter 18, 5742–5749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Xue, B. et al. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres. Nat. Commun. 14, 2583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Guo, X. et al. Stretchable hydrogels with low hysteresis and high fracture toughness for flexible electronics. Macromol. Rapid Commun. 43, e2100716 (2022).

    Article  PubMed  Google Scholar 

  207. Liu, X. et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion. Nat. Methods 20, 1802–1809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ju, Y.-X. et al. Strong silk fibroin/PVA/chitosan hydrogels with high water content inspired by straw rammed earth brick structures. ACS Sustain. Chem. Eng. 10, 13070–13080 (2022).

    Article  CAS  Google Scholar 

  209. Liangsong, Z. et al. Flaw-insensitive fatigue resistance of chemically fixed collagenous soft tissues. Sci. Adv. 9, eade7375 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (grant nos. JP22H04968, JP22K21342, JP22K20521 and JP23K13796).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the discussion, writing, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Xueyu Li or Jian Ping Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Kozho Ito; Shaoting Lin, who co-reviewed with Zhaohan Yu; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gong, J.P. Design principles for strong and tough hydrogels. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00672-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00672-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing