Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Soft sensing and haptics for medical procedures

Minimally invasive surgery (MIS) lacks sufficient haptic feedback to the surgeon due to the length and flexibility of surgical tools. This haptic disconnect is exacerbated in robotic-MIS, which utilizes tele-operation to control surgical tools. Tactile sensation in MIS and robotic-MIS can be restored in a safe and conformable manner through soft sensors and soft haptic feedback devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soft sensors and soft haptic systems for MIS and R-MIS.

References

  1. Othman, W. et al. Tactile sensing for minimally invasive surgery: conventional methods and potential emerging tactile technologies. Front. Robot. AI 8, 705662 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Runciman, M., Darzi, A. & Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft Robot. 6, 423–443 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCandless, M., Gerald, A., Carroll, A., Aihara, H. & Russo, S. A soft robotic sleeve for safer colonoscopy procedures. IEEE Robot. Autom. Lett. 6, 5292–5299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, Y. et al. Optical-waveguide based tactile sensing for surgical instruments of minimally invasive surgery. Front. Robot. AI 8, 773166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Avery, J., Shulakova, D., Runciman, M., Mylonas, G. P. & Darzi, A. Tactile sensor for minimally invasive surgery using electrical impedance tomography. IEEE Trans. Med. Robot. Bionics 2, 561–564 (2020).

    Article  Google Scholar 

  6. Gerald, A. et al. A soft robotic haptic feedback glove for colonoscopy procedures. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 583–590 (IEEE, 2022).

  7. Abiri, A. et al. Multi-modal haptic feedback for grip force reduction in robotic surgery. Sci. Rep. 9, 5016 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Li, M. et al. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators. Smart Mater. Struct. 23, 095007 (2014).

    Article  ADS  Google Scholar 

  9. Chen, S., Chen, Y., Yang, J., Han, T. & Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. npj Flex. Electron. 7, 1 (2023).

    Article  Google Scholar 

  10. Aydin, M. et al. Novel soft haptic biofeedback — pilot study on postural balance and proprioception. Sensors 22, 3779 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Russo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerald, A., Russo, S. Soft sensing and haptics for medical procedures. Nat Rev Mater 9, 86–88 (2024). https://doi.org/10.1038/s41578-024-00653-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00653-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research